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Abstract: Bilevel programming problems involve two optimization problems where the data of the
first one is implicity determined by the solution of the second. This study introduces the notions of E-
convexity and quasi E-convexity in bilevel programming problems to generalize quasi convex bilevel

programming problems.
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INTRODUCTION

Multilevel programming has been proposed for dealing
with hierarchical systems. It is characterized by the
existence of two or more optimization problems in
which the constraint region of each level problem is
implicitly determined by another optimization problem.
Due to its complexity, the bilevel case has been
considered mainly. It can be formulated as follows:

maxxfl(x,, X,) (1a)
Where, x, solves

maxf, (x,, X, ) (1b)
subjectto (x,, X, )€ S (1c)

Where, x, € R™ and x,eR™ are the variables

controlled by the first-level decision maker and the
second-level decision maker, respectively

f,, f, :R" > R, n=n,+n, and
S={x=(x,,x,)eR":1g;(x)<0, j=1,..,m}.

This is a non convex optimization problem that has
received increasing attention in the literature. Most
results in this field have been obtained assuming that all
functions are linear. In this case, it is proved, that the
solution to the problem must occur at an extreme point
of the region S, which is a polyhedron [1, 2]. Based on
this fact, several algorithms have been proposed which
find the optimal solution using enumerative schemes
[3]. Omar Ben-Ayed [4] provides a survey on the linear
bilevel problem. In the nonlinear case, it is usually
assumed that the second-level objective function f, and
g; functions involved are convex. Bialas [3] and
Fortuny-Amat [5] replace the second-level problem
with its Kuhn-Tucker conditions as a solution technique
for the problem. Calvete and Gale [6] focus on a special
case of (1) in which functions f; and f, are quasi
concave and the feasible region, given by the common
constraints to both problems, is a polyhedron and prove
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that there is an extreme point of the feasible region S
which solves the problem, thus extending the result
obtained for the linear bilevel problem.

The concept of E-convexity were introduced by
Youness [7, 8], which has some important applications
in various branches of mathematical sciences, is
introduced to extend quasiconvex bilevel programming
problem to quasi E-convex bilevel programming
problem.

In this study we prove some properties of E-convex sets
and quasi E-convex functions and discuss the solution
of a special case of problem (1) in which functions f;
and f, are quasi E-convex and the feasible region, given
by the common constraints to both problems, is a
polyhedron. We prove that there is an extreme point of
the feasible region S which solves the problem. This
result is considered a generalization to the result in
Calvete and Gate [6].

Quasi E-Convex Function

Definition: A set ymcre is said to be E-convex
set with respect to an operator E:R* -»R" if and
only if AE(x)+(1-A)E(y)eM for each x,yeM
and Ae[0,1] [7].

Definition: A function f:R* - R is said to be quasi E-
convex function, with respect to an operator E:R* »R",
on an E-convex set McR" if and only if
fIAE(x)+(1-A)E(y)]<max{ foE(x), foE(y)} for any
x,yeM, Ae[0,1] [9].

The function f is said to be quasi E-concave if and only
if, fIAE(x)+(1-A)E(y)]2min{foE(x), foE(y)}for
any x,ye M, aefo0,17.

Definition: Let X be a vector space. A linear operator
E:X — X is called a projection in X if E* =E,

ie.,if E(E(x))=E(x) forevery xe X [10].
Definition: Let X be a vector space, E:X =X be a
linear operator and f:X — R be a functional. The
operator E is said to preserve the order of f in the sense
that foE(x,)2foE(x,) whenever
f(x))2f(x,;), x,, x,€ X.
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Definition: Let X be a real vector space and Proof: Actually, by definition, a set M is an E-convex
E:X—>X be an operator. A vector sum if and only if ME(x)+A,E(x,)eM  whenever
ME(x))+A, E(x,)+..+A, E(x,) is called an E- X, €M, x,eM, A, 20,1, 20 and A, +A, =1. In other,
convex combination of X, X,,..,X,€X if the the E-convexity of M means that M is closed under
taking E-convex combinations with m=2. We must
show that this implies M is also closed under taking E-
It i 1 o convex combination with m>2. Take any m>2 and
E (xls) E?xso) czgl:,i ) convex  combination  of make the induction hypothesis that M is closed under
L taking all E-convex combination of fewer than m
_ vectors. Given an E-convex combination
Proposition: Let E:R" — R" be a projection map in x=NE(x)+A, E(x,)+..+A, E(x,) of elements of M,
R a:1d M l?e a nonempty E-convex. subset of R™If ¢ 1east one of the scalars A; differs from 1; let it be A
f:R" >R is a quasi E-convex function on M, then an {4 convenience.

- E= To i - ’ .
Ea -level set KE={xe M:feE(x)<a,aeR} isan E Now, put 7~-'=—;V'T’ we have A/ >0 for i=2, 3, ... m
Yl

coefficients A; are all non-negative and Z A =1.
i=1

convex set. -

Proof: Assume x, ye KE, then we have x, ye M and and

mx{foE(x).feE(y)}sa. S0 AE(X)+(I-ME(Y)EM  yr 30y g0 _ A oA A
for all Ae[0,1]. Since f is quasi E-convex, then 1=, 1-A -}

fIVE(x)+(1-A)E(y)]<max{ foE(x), fsE(y)} <at. Thus A, E(x,)+A;E(x,)+...4+A, E(x,) is E-convex
combination of m-1 elements of M and so belongs to M
by induction, i.e.

y=AE(x,)+A E(x,)+...+A, E(x,)e M and so

Since E is a projection in
R%f[AE? (x)+(1-AM)E*(y)]<a and

H 1
so(feE)[AE(x)+(1-AM)E(y)]<a. encetheresu: E(y)=A,E?(x,)+ A E2 (x,)+...+ A, E? ()
Lemma: Let E:R" - R" be a projection map in R" and , , ,

n . =AM E(x)+AE(x;)+...+A  E(x,).

M be a nonempty E-convex subset of R". If f : R* - R
is a quasi E-convex function on M, then NoW» X=X E(x)+(1-2)E(y),y,x,€M and so
KEcK,={xeM:f(x)<a}. xeM.
Theorem: Let M be a nonempty compact polyhedral
set in R" and let f:R" - R be quasi E-convex and
continuous on M, E:R" - R" be a projection map in R"
X=AE(x)+(1-L)E(y), for some aefo,1]. Since f is and preserve the order of f.

Proof: Let xex:. From the E-convexity of K&, there

are  two  points x, ye K¢ such  that

quasi E-convex, then  Consider the problem to maximize f(x) subject to
f(X)=f[AE(x)+(1-A)E(y)]Smax{foE(x), foB(y) }<a X€ M. Then an optimal solution X to the problem
. Therefore, Xxe M and f(X)<a.Hence Xe K . exists, where X is an extreme point of M.

Theorem: Let E:R" - R" be a projection map in R"
n
and M be a nonempty E-convex subset of R'. attains a maximum, say at x’e M. If there is an

function f:R" —R is a quasi E-convex on M if and  extreme point whose objective is equal to f(x"), then the
only if Kt is an E-convex set for each real number a. result is at hand.

Proof: Suppose that f is quasi E-convex, we will get,an  Otherwise, let Xy, X, ..., Xx be the extreme points of M
E-convexity of g=. Conversely, suppose that K& is an and assume that f(x")>f(x;) for j=1, 2, ..., k. By theorem
E-convex set for each real number a. For each (111, X' can be represented as , -Z A, Zl: A =1
X, yeM, Ae[0,1] such that A.20,j=1,2, ..k !
z=AE(x)+(1-1M)E(y)e M, let

5 _ Since E preserves the order of f, then
o=max{feE(x), f<E(y)}, thus x€ K, , ye Ky, since ¢ ,p ()5 faE(x,) foreachj, or,

Proof: Note that f is continuous on M and, hence,

KE is E-convex set, then K
z=AE(x)+(1-A\)E(y)e KEcK,, it follows that f°E("')=f°E[§7~jxjj
f(2)=f[AE(x)+(1-A)E(y)]So=max{foE(x),foE(y)} X

Which shows that f is quasi E-convex. =f [ § AE(x)) J =f(X)>feE(x))

Theorem: Let E:R" — R" be a projection map in R™. A .
subset M of R" is an E-convex if and only if it contains  for each j, where X = Z LE(x).
all the E-convex combinations of its elements. = !
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€3

Hence f(x)>maxfoE(x;)=a
1j<k

Now consider the set K§={x:foE(x)Sor.}. Note
that x;e€ K for j=I, 2, ..., k and by the quasi E-

k
convexity of f, KE is E-convex. Hence 3 = 27‘1 E(x;)
=1

belongs to Kt and so feE(X)<a 3)
But f(X)<foE(X) 4)
because if f(X)>foE(X), then we have

foE(X)>foE(X) which is impossible. From (3) and
(4) we get f (X)<foE(X)<a, which contradicts (2).
This contradiction shows that f (x")=f(x j) for some

extreme point X j and the proof is complete.

Quasi E-Convex Bilevel Programming Problem: We
assume that the common constraint region to both level
in (1) is a polyhedron, i.e.

S={(x,x,):A'x, +A%x,<b, x, 20, x, 20
1 2 1 2 1 2

&)

Where, Al is an mxn; matrix, A?is an mxn; matrix and
b is an m-vector.

We also assume that S is a nonempty and bounded, so it
is a compact polyhedron, which from now on will be
called the feasible region.

Moreover, we assume that f, is a quasi E-convex and
continuous function and f, is a quasi E-convex and

continuous function, given x;. Where E:R” - R" bea
projection map in R" and preserve the order of f; and f,.
Finally, in order to assure that the bilevel programming
problem is well posed [3, 6], we assume that, for each
value of the first-level variables x;, there will be a
unique solution x, to the second-level problem.
Throughout the remainder of this paper, we restrict our
attention to the bilevel programming problem (1) with
the preceding assumptions. From now on, this problem
will be called the quasi E-convex bilevel programming
(QECBP) problem.

Recall that a face of a convex set T is a convex subset
T’ of T such that every closed line segment in T with a
relative interior point in T has both end points in T".
Since S is a polyhedron, it has a finite number of faces
[12]. Let §,, ..., S, denote the non empty faces of S.
Moreover, we will denote by § 4 (S % ) the projection

of S onto g™ (g™). Notice that Sy» Sy, and §,,
j€ (1, ..., r} are nonempty compact polyhedra.

Let the point-to-set map £ from § o S, be

*2
defined as:
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Q(x1)={xze R™:A’x, <b-A'x, x, 20},

Notice that, for each x,€S_, Q(x,) is a nonempt
1 X 1 pty

compact polyhedron, which in fact is the feasible region
of the second-level decision maker.
Let the point-to-set map @ from Sx, to Sx, be defined

. |

Note that, due to the uniqueness of the solution to the
second-level problem, ®(x,) is a single-valued at x;,

X, € Q(x,):f, (X, X,)

[+ =
(x;) {: max{f,(x,,y,):y,€Q(x,)}

for each x, €S, .

The feasible region of the first-level decision maker,
called inducible or induced region, will be denoted by:

|

The following lemmas give some properties on the
geometry of the feasibility region of the first-level
decision maker. In fact these lemmas allow us to show
that the inducible region of the QECBP problem is
comprised of the union of connected faces of S.

IR={(x,, x,):x,€8, ,x,=®(x,)}
(%, X,):%,20, x,

{=argmax{ f, (X ¥,):A'x, +A%y, <b, y, 20}

Lemma: The inducible region of the QECBP problem
lies on the boundary of S.

Proof: As noted above, for each x, €8, » the resulting

feasible region Q(x,) to the second-level problem is a

nonempty compact polyhedron. Taking into account
that f, is a quasi E-convex and continuous function on

Q(x,), where, E:R" -5 R" be a projection in R" and

preserve the order of f,, an optimal solution to the
second-level problem,

maxf, (x;, x,)

subject to x, € Q(x,)

exists and occurs at an extreme point of Q(x,).
Hence, ®(x,) is an extreme point of the polyhedron
Q(x,) . Therefore, ®(x,)e dQ(x,), where IQ(x,)
denotes the boundary of Q(x,), (x,,®(x,))edS

and so the proof is complete.

As a consequence of the previous lemma and taking
into account that the collection of all relative interiors
of nonempty faces of S is a partition of S [12], for each
(x;, @(x,))e IR, there exists a face S; #8S, such that
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(x,, ®(x,))eriS,, where riS; denotes the relative
interior of ;.
The proofs of the following lemmas appear in {6].

Lemma: The inducible region of the QECBP problem
is continuous,

Lemma: Let
s;NV={x.exN}
V={(x,x,):x,€ Q(x;)}.

Then
where

(x], ®(x;))edS;NIR .

Lemma: Let S; be a nonempty face of S and let
(xj, P(x;))elR. If (x;,P(x;))e riSj, then
S,cIR.

Lemma: The inducible region of the QECBP problem
is piecewise linear. As we see in the previous lemmas,
the inducible region of the QECBP problem is
comprised of the union of connected faces of S. This
allows us to prove the main result of the paper
regarding the optimal solution to the QECBP problem.

Theorem: There is an extreme point of the feasible
region S which is an optimal solution to the QECBP
problem.

Proof: The
equivalently as:

QECBP problem can be written

max f; (x,, X,)
subject to (x,, x,)e IR

Where, IR =Us,,Jc{l, .., 1} and S; is a face of S.
el

Firstly, notice that the first-level decision maker
maximizes a continuous function over a compact set.
Hence, there exists a maximizing solution to the

QECBP problem [11]. Let this be (x;, ®(x;)). Then,
that
(x;, @(x7))eS; and (x;, P(x])) is a maximizing
solution to the problem.

there exists at least one jeJ such

maxf, (x,, x,) (3a)

(3b)
Since f; is a quasi E-convex and continuous function on
Sj, where E:R" -5 R" be a projection map in R" and
preserve the order of f; and S; is a nonempty compact
polyhedron, it can be concluded that there exists an

extreme point of S; (therefore an extreme point of S)
which is an optimal solution to (3), thus giving the

same value of the objective function as (x;, P(x7)).

subjectto (x,, X, )€ Sj
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Therefore, this extreme point of S is an optimal solution
to QECBP problem and the proof is complete.

CONCLUSION

In this study we proved some properties of E-convex
sets and quasi E-convex functions and discuss the
solution of quasi E-convex bilevel programming
problem. This problem assumes that the objective
functions of both levels are quasi E-convex, where E is
a projection map in R" preserves the order of f; and f,
and the feasible region is a polyhedron. For this
problem, we have proved that it is possible to extend
the result concerning the linear bilevel problem which
assures that there is an extreme point of the feasible
region that solves the problem. This property allows us
to consider enumerative methods of searching for
extreme points in order to solve the problem.
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