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Abstract: This article studies the attitude motion of a satellite in a circular orbit under the influence of 
central body of mass M and its moon of mass m, whose orbit is assumed to be circular and coplanar 
with the orbit of the satellite. The body is assumed to be tri-axial body with principal moments of 
inertia A < B < C at its centre of mass, C is the moment of inertia about the spin axis which is 
perpendicular to the orbital plane. These principal axes are taken as the co-ordinate axes x, y, z; the z 
axis being perpendicular to the orbital plane. We have studied the rotational motion of satellite in the 
circular orbit under the influence of aerodynamic torque. Using BKM method, it is observed that the 
amplitude of the oscillation remains constant upto the second order of approximation. The main and 
the parametric resonance have been shown to exist and have been studied by BKM method. The 
analysis regarding the stability of the stationary planar oscillation of a satellite near the resonance 
frequency shows that the discontinuity occurs in the amplitude of the oscillation at a frequency of the 
external periodic force which is less than the frequency of the natural oscillation. 
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INTRODUCTION 

 
 The determination and prediction of the orbit of a 
satellite in the near-earth environment is complicated 
by the fact that the satellite is influenced by the 
dissipative effects of the earth’s atmosphere. For many 
artificial satellites, this fluctuation in the drag is a 
fundamental source of error in the orbital predictions. 
The study of dynamics of rotating bodies has been 
studied by Inarrea and Lanchares[1] under the influence 
of aerodynamic drag. Abd. et al.[2] have constructed a 
second order atmospheric drag theory based on the 
usage of TD88 model. Maciejewski & Przybylska[3] 
analyzed the integrability of a dynamical system under 
the influence of gravitational and magnetic fields. 
Barkin, Ferrandiz[4] discussed Resonant Rotation of 
Two-layer Moon and Mercury. Callegari, Ferraz-
Mello, Michtchenko[5], discussed the Dynamics of Two 
Planets in the 3/2 Mean-motion Resonance in 
Application to the Planetary System of the Pulsar PSR 
B1257+12. Beaugé et al.[6,7] studied Planetary 
migration and extra solar planets in the 2/1 mean-
motion resonance. They reviewed recent results on the 
dynamics of multiple-planet extra-solar systems, 
including main sequence stars and the pulsar PSR 
B1257+12 and comparatively, our own Solar System. 
They discussed Resonances and stability of extra-solar 
planetary systems. Massimiliano[8,9], numerically 
detected the web of three-planet resonances (i.e., 
resonances among mean anomalies, nodes and perihelia 
of three planets) with respect to the variation of the 
semi-major axis of Saturn and Jupiter, in a model 

including the planets from Jupiter to Neptune. Zhou et 
al.[10,11] showed that the occurrence of apsidal secular 
resonance depends only on the mass ratio semi-major 
rate and eccentricity rate between the two planets. 
Yokoyama et al.[12] have shown that once captured in 
the resonance, the inclination of the satellite reaches 
very high values. But none of them have studied the 
effect of aerodynamic torque on the attitude motion of a 
satellite in circular orbit. Using BKM method, we have 
discussed that the amplitude of the oscillation remains 
constant upto the second order of approximation.  
 
Equation of motion: Let r be the instantaneous radius 
vector of the centre of mass of the satellite, θ  be the 
angle that the long axis of the satellite makes with a 
fixed line EF lying in the orbital plane and �/2 the angle 
between the radius vector r  and the long axis. 
 Euler’s equation of motion about z-axis, taking v  
(true anomaly as an independent variable) is obtained 
as: 
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Non –resonant planar oscillation of a satellite: In the 
equation (1), the non linearity [ ]sinη− η  is taken 
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sufficiently weak and therefore it can also be taken of 
the order of ε . Therefore by taking 2 cω = ε  and using 
BKM method to solve 

( )
2

2
2

d
f v ,

dv

η + ω η = ε η  (2) 

where ( ) [ ] 2f v, c sin (v b v d)sin vη = η− η + − −  , the 
solution is obtained as 

( ) ( )2
1 2a cos u a, v, u a, v,η = ψ + ε ψ + ε ψ +  (3) 

where the amplitude a and the phase ψ  are determined 
by differential equations 

( ) ( )2
1 2

da
A a A a

dv
= ε + ε +  (4) 

( ) ( )2
1 2

d
B a B a

dv
ψ = ω + ε + ε +  (5) 

In our problem 
( )1A a 0=  

( ) ( )1 1
c

B a 2J a a
2a

= −� �� �ω
 

( )
( )

( )

( ) ( ) ( )

2
2

1 2 2 22

2 2

ki
2k 12 2

k 1

2 11 4 vcos v
u a , v, v sin v sin v

1 11

b 2cos v
vsin v

1 1

cos 2k 1dsin v c
1 J a

k(k 1)1 2

∞

+
=

� �ω +� �ψ = − −� �ω − ω −ω −� �� �

� �
− −� �

ω − ω −� �

+ ψ
− + −

+ω − ω �

 (6) 

( )2A a 0=  

[ ]
2 2

22k 1 2k 1
2 13 2 3

k 1

J (a) J (a)c c
B (a) 2J (a) a

k (k 1)2a 8a

∞
+ +

=

′
= − −

+ω ω�  

[ ]2k 1 2k 2k 2
1

J (a) J (a) J (a)
2+ +′ = −  where kJ (a)  stands 

Bessel’s function of order k. 
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Fig. 1: Satellite planar oscillation in circular orbit 
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 Thus in the first approximation, the solution is 
given by 

ψη cosa=   
where the amplitude a and the phase ψ are given by 

da
0 a
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= � = constant, 
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and in the second approximation , the solution is 
obtained as 
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where the amplitude a and the phase ψ are given by 
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 From the equations (8) & (10), we observe that the 
amplitude of the oscillation remains constant even upto 
the second order of approximation of the aerodynamic 
torque parameter ε  and the equation (7) gives us the 
main resonance at 1ω = ±  and the parametric 

resonance at 
1

,k I
2k 1

ω = ± ∈
+

. 

Resonant planar oscillation of a satellite: We proceed 
to construct the asymptotic solution of the system in the 
general case, which is valid at and near the resonance 

k≅ω  exploiting the well known BKM method.  
For ε  = 0 the generating solution is given by  
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where the amplitude a and the phase θ are determined 
by differential equations 
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in the equation (12) and equating the coefficients of ε , 
we get 
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where kJ (a)  stands Bessel’s function of order k, In the 
equation (13) and then comparing the coefficients of 

ψcos  and ψsin , we get  
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Solving the equation (14) taking k = 1, we get 
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Thus the solution in the first approximation is given by 
a cos(v )η = + θ  

where the amplitude ‘ a ’ and the phase’ θ ’are the 
solutions of the system 
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 The equations (16) cannot be integrated in a closed 
form due to the dependence of the right hand side on 
‘a’ and “ θ ’. The stationary state of the oscillation is 
defined by 
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0
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 However equation (16), may be represented, 
correct to the second order in the form: 
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 Let us, now examine the relation existing between 
the parameters of the system for the occurrence of the 
effect under consideration. The necessary condition for 

instability (Jump and Fall) is 
d

0
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δ = . Proceeding with 

equation (20), we get 
2 2 28 16 3 0+ + =aδ ω δ ω  (21) 

 Since values of δ are both negative, so that the 
effect occurs only at a frequency of external periodic 
force which is less than the frequency of the natural 
oscillation of the system. Now, maximum value of the 

amplitude is obtained by the condition
da

0
d

=
δ

, which 

gives 16a ( ) 0ω + δ = , since a 0>  � δ = − ω . 
Substituting this value in equation (21) and 
putting 1ω = , the maximum value of a is obtained for 
different values of ε  from equation  
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Fig.  2:  Resonance curves in  case of main resonance for  e=0.0001,  0 .01  0.1,  0 .4  at  1ω =  

  

  
Fig. 3:  3D plot of Resonance curve for e=0.0001, 0.01, 0.1, 0.4 at  1=ω  
 
Table 1: Critical values of A 
e d Ad Ad' Jump 
0.0000001 0.01 4.98E-06 -2.49E-06 7.46E-06 
0.0001 0.01 4.97E-03 -2.49E-03 7.46E-03 
0.01 -0.02 0.661603 -0.3308 9.92E-01 
0.1 -0.1 1.440599 -0.7203 2.16E+00 
0.4 -0.3 2.334662 -1.16733 3.50E+00 
0.7 -0.4 2.68442 -1.34221 4.03E+00 
0.9 -0.5 2.868936 -1.43447 4.30E+00 

3 8 8 0− − =a a ε , which is tabulated in Table 1 and 
the jump was shown with 2D and 3D resonance curves. 
 

CONCLUSION 
 
 The attitude motion of a satellite in circular orbit 
under aerodynamic torque is obtained. Using BKM 
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method, we have observed that the amplitude of the 
oscillation remains constant upto the second order of 
approximation. The main resonance occurs at 1ω = ±  
and the parametric resonance at  

Ik
k

∈
+

±= ,
12

1ω  

At main resonance the stability of the stationary planar 
oscillation of the satellite show that the discontinuity 
occurs in the amplitude of the oscillation at a frequency 
of the external periodic force which is less than the 
frequency of the natural oscillation. 
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