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Abstract: This paper deals with dynamic optimization of biped locomotion.  The main focus of this 
research is motion optimization of double support phase.  The optimization problem is dealt by using 
Pontryagins Maximum Principal.  For motion optimization of double support phase, the closed 
kinematic chain has been considered to be opened at appropriate joint and the components of ground 
reaction forces has been applied on the tip of front leg and finally the penalty method has been used to 
tighten the leg to its prescribed location. The feasible sets of motion are taken into consideration by 
using inequality constraint to limit the joint motion. Also the components of ground reaction forces on 
front leg have been introduced as control variables in optimization of double support phase. The 
proposed technique has the ability to generate optimal free motions without specifying joint 
trajectories and minimized the performance criterion based on joint actuating torques.  The two point 
boundary value problem has been solved by implementing a shooting method.  This technique allows 
for specifying a few parameters to characterize gait pattern.  The optimization process has the ability to 
generate a motion with a minimum of postural and kinematics data.  Unlike previous research which 
used computational intelligent techniques for biped gait optimization, this study focuses on 
development of purely dynamic synthesis of biped motion during the double support phase. 
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INTRODUCTION 

 
 In recent years, have been considerable 
attentions to study biped robot. Particularly have been 
increasing enthusiasms to research about the lagged 
locomotion in both areas of robotics and biomechanics 

[1-8].  For this reason, it is promising the use of biped 
robots in human environments as well as the 
development of biped robot's control algorithms [4, 6, 9-

18].  For this reason there are two approaches: one is 
using computational intelligent techniques for control 
and optimization [13, 14] and the other is improving 
classical dynamic solutions for mastering the dynamics 
of a multi-body system with sophisticated kinematics [4, 

6, 9-18].  This research has been focused on the second 
approach.   

From the review of previous literature, it is believed 
that the biped with the simplest kinematics was 
designed by McGeer as a compass link structure which 
is able to perform a purely sagittal gait.  That biped 

robot walk down a slope by gravity induced passive 
motion [19].  Thereafter the dynamics of five link sagittal 
biped has been modeled for designing impulsive control 
in double support phase as a result the energy 
expenditure has been decreased; although the impact 
effect has not been considered due to impulsive motion 
control [20].  Another technique for gait optimization of 
biped robot has been developed, on the basis of 
representation of join trajectories by polynomials which 
coefficients are adjusted for minimizing energy 
expenditure [21].  Further research has been carried by 
defining set of pattern parameters that included the 
specification of kinematic transfer conditions through 
trajectory synthesis during single support phase of a 
seven link anthropomorphic robot [22].  Some 
optimization techniques are similar approach based on 
kinematic specifications [22- 24].  

A piecewise constant inputs method has been 
implemented for energy optimization during gait 
cycle[25, 26].  
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This paper focuses on achieving a pure dynamic 
synthesis of biped robot gait during both single support 
phase [21- 23] and double support phase [25] on sagittal 
plane without considering the impact effect at the end 
of the swing phase [2, 24].  This approach allows for a 
frilly dynamic model of the biped which is based on 
minimizing the integral of quadric joint actuating 
torques.  Gait optimization synthesis is achieved by 
applying the Pontryagins Maximum Principal.  The 
single support phase can be modeled as an open 
kinematic chain although if the tips of this open 
kinematic chain is brought into contact with floor, a 
closed-loop will be created as a multi support phase, 
consequently the differential equations will become 
more complicated.  

For dynamic simulation of multi-body system, the 
closed-loop can be considered as open at constrained 
joints.  These conditions can be used for formulating 
dynamic model with Lagrangian multiplies.  As a 
result, a set of differential equations will be obtained 
which are not suitable for dealing with dynamic 
optimization. The proposed approach is based on 
applying penalty method which releases optimization 
problem from Lagrangian multipliers. In this method, 
all closed loops of the multi-body system have been 
considered as open at appropriate joints. The constraints 
which express the closure condition have been used in 
the performance criterion of the optimization problem 
in order to minimize the optimization criteria; thereby 
the numerical value of the mentioned constraints will be 
reduced.  At the end of this paper, typical result of this 
method of a gait cycle has been simulated. 

 
MATERIALS AND METHODS 

 
 Kinematic Model: A sagittal model of a five 
degree of freedom, anthropomorphic biped has been 
shown in Fig. 1.  This model is contained of five links; 
they are numbered from L1 to L5.  The mass of each link 
is defined by mi and Ii

z represents the moment of inertia 
with respect to the joint axis Oi.  Such a planar system 
comprises of two ankles, two knees and two coaxial hip 
joints.  The biped motion has been considered by the 
five relative joint coordinates which have been adapted 
to generalized coordinates.  The joint coordinates and 
joint velocities have been noted as: 
 

[ ]1 nq q ,...,q=  

[ ]1 nq q ,...,q=� � �  
In this model n is 5. 

 
 
Fig. 1: Biped kinematic model. 
  
Dynamic Model: For formulating the biped dynamics 
in the double support phase, the set of constrains have 
been assumed to be holonomic.  The biped leg must be 
fixed at its prescribed location during the double 
support phase.  The geometrical constrains have been 
written in equation (1) with respect to generalized 
coordinates qi. 

1

2

� (q)
�(q)= =0 ,

� (q)
� �
� �
� �

 m( q ) , m 2Φ ∈ℜ =  (1) 

By using Lagrange formulation, dynamic equation of 
motion in accordance to applying Lagranigain 
multipliers has been written in equation (2). 

a d T
i i q

i i

d L L
Q Q J ,

dt q q
λ

� �∂ ∂− = + +� �� �∂ ∂� ��
 i 1,...,n=   (2) 

As it is illustrated in Fig. 1, Qi
a (resp. Qi

d) represents 
the joint actuating torques (resp. joint dissipative 
torque) exerted by Li-1 on Li at Oi , Jq

T represents the 
Jacobean matrix and λ represents the forces of 
constraint which are vertical and horizontal ground 
reaction forces.  Since Pontryagins Maximum Principal 
has been implemented for motion optimization, the 
main problem in formulating dynamic model of double 
support phase in comparison with single support phase 
is that, we are consorting the Lagrangian multipliers 
which are not suitable to be used in Pontryagins 
Maximum Principal.  As illustrated in Fig. 2, the 
approach to overcome this difficulty is to consider 
closed kinematic chain of the biped to be opened at 
joint O6 and applying the components of ground 
reaction forces on the tip of front leg and finally using 
the penalty method to tighten the tip of the leg on its 
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prescribed location.  In this method the components of 
reaction forces would be considered as control variables 
same as actuating torques.  Using penalty techniques 
holds the fact that firstly the Lagrangian multipliers 
should be replaced by reaction forces in equation (2) 
and secondly motion optimization should be done with 
respect to geometrical constraints which minimizes 
φ(q). 
 

 
 
Fig. 2: Considering closed kinematic chain of biped to 
be opened in double support phase.   
 
By these assumptions the equation (2) can be written as 
equation (3). 

a d T
i i q

i i

d L L
Q Q J F

dt q q

� �∂ ∂− = + +� �� �∂ ∂� ��
 

 (3) 

Where F stands for the ground reaction forces. There is 
a need to underline that it is computationally quite 
efficient to formulate a dynamic model adapted at the 
best to the selected optimization technique.  Since 
Pontryagins Maximum Principal has been used for 
solving the dynamic optimization problem thereby the 
implementation of the Pontryagins Maximum Principal 
requires the formulation of the dynamic model in the 
state space form.  The Hamiltonian dynamic model is 
suitable for fulfilling the requirement and more 
importantly it strengths the robustness of the 
optimization algorithms [2].  The outline of the required 
formulation for defining the conjugate momentum and 
Hamiltonian has been mentioned in equation (4).   

( ) ( )

i
i

T

L
P i 1,...,n

q

H q, p p q L q,q

∂= =
∂

= −

�

� �

 (4) 

Lagrange’s equations can be formulated in Hamiltonian 
form which has been mentioned in equation (5). 

i
i

a d T
i i i q

i

H
q

p

H
p Q Q J F

q

∂=
∂

∂= − + + +
∂

�

�

  (5) 

The expression of p can be written through equation (4) 
as p=Aq� .in which A is the (n×n) mass matrix of 
kinematic chain.  Then equation (3) becomes more 
explicit. 

n
1

i ij i
j 1

T 1 a d T
i ,i ,i i i q

q A p

1
p p A p V Q Q J F

2

−

=

−

=

= − − + + +

��

�

 

(6) 

Where V stands for the gravity potential and: 
1 1

,i iA A / q− −≡ ∂ ∂  ,i ,iV V / q≡ ∂ ∂  (7) 
With this formulation, Hamiltonian equations are 
perfectly structured for applying the Pontryagins 
Maximum Principle.  The state and control variables 
have been defined in equations (8, 9). 

=(  ) ( )T T
1 2n 1 n 1,..., nX x ,..., x q ,...,q , p p≡  (8) 

( ) ( )T a a T
1 n m 1 n n tu u ,...,u Q ,...,Q ,F ,F+= ≡  (9) 

Where u1 to un represent joint actuating torques, Fn 
represents the normal and Ft represents the horizontal 
component of ground reaction force in Fig. 2.  The 
double set of vectorial equation (6) can be reacts as the 
second order differential vector equation. 

( ) ( ( )) ( ( )) ( )x t F x t B x t u t= +�  (10) 
In equation (10) initial and final states have been 
specified as equation (11). 

( )i ix t x ,=  ( )f fx t x=  (11) 
 
Feasible Motions and Constraints: Feasible motions 
of the biped are defined by two types of specific 
conditions. The first type consists of limiting the joint 
actuating torques.  The second type specifies interaction 
conditions between the stances foot and the ground.  
Torqueses produced by actuators have limited values.  
They are considered at the joint level as equation (12). 

[ ]i ft t ,t ,∀ ∈  a a,max
i iQ (t ) Q≤  (12) 

The vertical component of ground reaction forces must 
remain positive during the motion due to unilaterality of 
contact.  This condition means that the foot is not stuck 
on the ground and the ground can only push it.  
Therefore the unilaterality condition is expressed by 
equation (13). 

[ ]i ft t ,t ,∀ ∈  ( )min
n n0 F F t< ≤  (13) 

The latter condition can be expressed by ignoring the 
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slide of the foot on the ground in equation (14). 
 

[ ]i ft t ,t ,∀ ∈  t tF (t) F (t)≤ µ
  (14) 

Equations (12), (13) and (14) define the space of 
control variables U. 
 
Formulating an Optimal Control Problem: An 
optimal motion can be generated in a gait cycle by 
minimizing a performance criterion that represents 
dynamic cost.  In optimization, there are two 
alternatives: minimizing actuating torques or energy 
expenditure.  Since the biped stands and moves in a 
vertical plane, it is submitted to the gravity.  For this 
reason, the first alternative has been supported by 
introducing the integral cost in equation (15). 
 

( ) ( ( ) ( ))

f

i

t

t

J u L x t ,u t dt= �   (15) 

Where the Lagrangian is the quadric function of the 
normalized control variables ui in equation (16). 
 

2( ) ( )
n m

ref
i i i

i 1

1
L x,u u / u

2
ξ

+

=

= �   (16) 

Where ξi are weighting factors and ui/ui
ref represent 

dimensional joint actuating torques and dimensional 
ground reaction force.  The reference value of the 
reaction forces has been assumed as biped's weight.  
The weighting coefficients play an important role.  By 
increasing ξi, the optimal corresponding ui are 
decreased.  Thereby there is possibility to reduce the 
action of actuating torques and master the ground 
reaction forces which are applied on the tip of front leg. 
 

Dealing with the Geometrical Constraints: The 
geometrical constraints which have been defined in 
equation (1) can be dealt by using computational 
techniques such as penalty method which has been 
developed through mathematical programming.  The 
penalty method can minimize the geometrical 
constraints functions.  In this method the geometrical 
constraints must be added to optimization criteria as a 
quadric term which has been defined in equation (17). 

f

i

t
2

r

t

r
J ( u ) J ( u ) ( x ) dt

2
φ= + � � �

 

r > 0 (17) 

The function Jr must be minimized by sufficiently great 
value of the penalty multiplier r. 

Applying Pontryagin’s Maximum Principle: The 
minimization problem can be summarized as: finding a 
phase trajectory t→x(t) and a control vector t→u(t) for 
minimizing Jr, which has been specified in equation 
(18) and satisfying the equation (10) in consideration of 
equation (11).   

u∈U  
 

Min   Jr(u) 
r   great 

(18) 

The Pontryagins function can be defined as equation 
(19) 

w∈R2n H(x,u,w) =wT(F(x)+B(x)u)-Lr(x,u) (19) 

The maximum principle [28] states that if t→ (x(t),u(t)) 
is a solution of equations (18, 19) then there is a costae 
function t→w(t), w∈R2n that satisfies the costae 
equation (20) and maximal condition has been defined 
in equation (21). 

( )  = - H/ xTw t ∂ ∂�  (20) 

v∈U )=  ( )H( x,u,w max H x,v,w  (21) 
A prominent benefit of the Pontryagins Maximum 
Principal lies in equation (21) which allows the 
constraint on u(t) to be completely satisfied and yields 
an explicit expression of the optimal control variables 
through equations (10, 16, 19) [2].  The unknown 
functions x and w appear as a solution of a 4n-order 
differential system of the type in equation (22) 
accompanied by the boundary conditions mentioned in 
equation (11). 

[ ]i ft t ,t ,∀ ∈  
( ) ( ( ), ( ))

( ) ( ( ), ( ))
1

2

x t F x t w t

w t F x t w t

=
=

�

�
 (22) 

Here, there is a problem of a two-point boundary value. 
 

RESULTS AND DISCUSSION 
 
 Numerical Simulations: The two point 
boundary value problem can be solved by 
computational techniques such as finite difference 
algorithms or shooting methods.  The latter approach 
has been selected for its efficiency and simplicity of 
implementation that so-called transition matrix method 
[27].  Due to the intensive non-linearity of dynamic 
equations, the main difficulty is to overcome the 
algorithms in order to converge toward an optimal 
solution, which consist a sufficiently accurate guess.  
The first-order gradient algorithms have been used to 
overcome this difficulty [27].  According to Fig. 1 the 
biped model specification has been defined in Table 1. 
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Table 1: Dimensional characteristics of the biped. 
Link 1 2 3 4 5 

Mass(kg) 6.4 8.6 55.0 8.6 6.4 

Length(m) 0.4 0.41 0.55 0.41 0.4 

Center of 
Gravity 

0.24 0.27 0.33 0.14 0.16 

Iz
i 0.44 0.69 7.0 0.23 0.25 

 
The presented techniques in this study can be used to 
simulate single support and double support phase.  The 
main difference of double support phase in comparison 
with single support phase is that the closed kinematic 
chain has been considered to be opened and applied the 
components of ground reaction forces on tip of the leg.  
Consequently in double support phase, the penalty 
factor has a great numerical value but in single support 
phase this factor is zero.  The simulated optimal motion 
has been shown in Fig. 3.  The step length is equal to 
0.40 (m) and total motion time is 0.43 (s). The average 
horizontal hip velocity in single support phase is equal 
to 0.95 (m/s) and in double support phase is equal to 1.0 
(m/s), which is equal to average speed of human gait.  
The impact phase at the end of single support phase has 
been ignored [2]. 

 

 
Fig. 3: Optimal motion of the biped during a complete 
gait cycle for step length of 0.4 (m). 

 

 
Fig. 4: Joint relative velocities. 

The variation of joint relative velocities and actuating 
torques has been shown in Fig. 4 and 5.  The ankle 
actuating torque of stance leg has been saturated at the 
end of double support phase.  Introducing a sufficiently 
great value of the weighting factor ξi in equation (16) 
weaken the ankle torque of stance leg during double 
support phase.  Fig. 6 shows the components of ground 
reaction forces on both legs during both phases. In 
double support phase the piped weight has been slightly 
transferred to front leg. Since the components of 
reaction forces on front leg in double support phase 
have been considered as control variables, therefore this 
method allows mastering theses components directly.  

 

 
Fig. 5: Time variation of actuating torques. 
 

 
Fig. 6: Time variation of ground reaction forces. 
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Equation (16) has been used for computing energy 
consumption. 

( ) ( )f

i

nt
a

i i
t

i 1

E q t Q t dt

=

= �� �   (23) 

 
The energy expenditure during single support phase is 
200.2 �J� and during the double support phase is 23.5 
�J�. 

 
CONCLUSION 

 
 The optimal motion of a biped robot during a 
complete gait cycle has been presented.  The 
Pontryagins Maximum Principal has been implemented 
for motion optimization of both single support phase 
and double support phase.  The closed kinematic chain 
in double support phase has been considered to be 
opened and geometrical constraints has been dealt by 
means of penalty technique.  The presented technique 
allows generating smooth motions with minimum 
kinematical constraints and mastering the control 
variables directly as interaction forces.  After 
optimization, the step length is 0.40 (m) and total 
motion time is 0.43 (s).  The average horizontal hip 
velocity in single support phase is equal to 0.95 (m/s) 
and in double support phase is equal to 1.0 (m/s), which 
is equal to average speed of human gait; therefore the 
accuracy of our method has been confirmed.  
The focus of the future work would be on the 
development of  computational techniques for gait 
optimization in three dimensions. 
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