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Abstract: In the recent years, neural networks are considered as the best candidate for fast 
approximation with arbitrary accuracy in the time consuming problems. Dynamic analysis of structures 
against earthquake has the time consuming process. We employed two kinds of neural networks: 
Generalized Regression neural network (GR) and Back-Propagation Wavenet neural network (BPW), 
for approximating of dynamic time history response of frame structures. GR is a traditional radial basis 
function neural network while BPW categorized as a wavelet neural network. In BPW, sigmoid 
activation functions of hidden layer neurons are substituted with wavelets and weights training are 
achieved using Scaled Conjugate Gradient (SCG) algorithm. Comparison the results of BPW with 
those of GR in the dynamic analysis of eight story steel frame indicates that accuracy of the properly 
trained BPW was better than that of GR and therefore, BPW can be efficiently used for approximate 
dynamic analysis of structures.  
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INTRODUCTION 

 
 As modern digital computers are developed, neural 
network techniques are considered to use effectively for 
simplification of complex problems with large number 
of computations. Dynamic time history analysis of 
large-scale structures is one of the time consuming 
problems with complex calculations. In the present 
study, generalized regression neural networks (GR) and 
back-propagation wavenet neural networks (BPW) have 
been employed for approximating of dynamic time 
history response of an eight stories steel frame 
structure. Approximating of structural dynamic analysis 
is very useful in some applications such as 
optimization. In the neural networks context, two types 
of activation functions are commonly used: global and 
local. Global activation functions are active over a large 
range of input values and provide a global 
approximation to the empirical data. Local activation 
functions are active only in the immediate vicinity of 
the given input value. It is well known that functions 
can be represented as a weighted sum of orthogonal 
basis functions. Such expansions can be easily 
represented as neural networks by having the selected 
basis functions as activation functions in each hidden 
neuron and the coefficients of the expansion as the 
weights on each output neuron. Several classical 
orthogonal   functions,   such   as  sinusoids,   sigmoidal 

functions, etc., but most of them are global 
approximators and suffer, therefore, from the 
disadvantages of approximation using global functions. 
A special class of functions, known as wavelets, 
possesses good localization properties. Thus, they may 
be employed as the activation functions of a neural 
network known as the Wavelet Neural Network or 
wavenet. Wavenets possess a unique attribute: In 
addition to forming an orthogonal basis are also capable 
of explicitly representing the behavior of a function at 
various resolutions of input variables. The pivotal 
concept, in the formulation and design of neural 
networks with wavelets as basis functions, is the 
multiresolution representation of functions using 
wavelets. It provides the essential framework for the 
completely localized and hierarchical training afforded 
by wavelet neural networks. To create back-
propagation wavenet we substitute sigmoidal activation 
function of hidden layer neurons with a wavelet 
function. To train GR and BPW a unique training set 
have been used. Testing of these neural networks 
indicates that accuracy of BPW is higher than GR and it 
can be substitute effectively with exact dynamic 
analysis of structures.  
 

NEURAL NETWORKS 
 
 In the last decade, artificial intelligence techniques 
have emerged as a powerful tool that could be used to 
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replace time-consuming procedures in many scientific 
or engineering applications. The interest showed to 
neural networks[1,2] is mainly due to their ability to 
process external data and information basing on past 
experiences. In a neural network the transmission and 
the processing of the input data are assigned to a 
network of simple computing units, called neurons. 
Each neuron returns an output signal when the weighed 
sum of the inputs exceeds an activation value. The 
output value is computed by defining a transfer or 
activation function. The principal advantage of a 
properly trained neural network is that it requires a 
trivial computational burden to produce an approximate 
solution. Such approximations appear to be valuable in 
situations where the actual response computations are 
intensive in terms of computing time and a quick 
estimation is required. For each problem a neural 
network is trained utilizing information generated from 
a number of properly selected analyses. The data from 
these analyses are processed in order to obtain the 
necessary input and output pairs, which are 
subsequently used to produce a trained neural network. 
One of the most important characteristics of neural 
networks is learning. Learning may be supervised or 
unsupervised depending on the topology of networks. 
Therefore, topology, training or learning method and 
kind of activation function of neurons are its basic 
characteristics. Neural networks have two operation 
modes, training mode and normal mode. In the training 
mode, adjustable parameters of the networks are 
modified. In the normal mode, the trained networks are 
applied for simulating of outputs. In various 
engineering problems, many neural networks[3,4] are 
widely used.  
 
Generalized regression neural network: Generalized 
Regression neural network (GR) are powerful and 
interesting networks due to their rapid training, 
generality and simplicity. GR that is developed by 
Specht[5] subsumes the basis function methods. GR is 
two layers feed forward network. The hidden layer 
consists of radial basis function neurons with Gaussian 
activation functions. The response function of neurons 
of output layer is linear.  
 First layer of GR has as many neurons as there are 
input-target vectors in the training set. Weighted input 
of hidden layer neurons is the distance between the 
input vector and its weight vector. Output of Each 
hidden neurons is its input passed through radial basis 
activation function. The sec layer also has as many 
neurons as target vectors. The neurons in sec layer act 
on hidden layer neurons using linear performance 
function. 

 This network does not require iterative training 
therefore training of these networks is very fast. The 
structure of GR is such designated that transpose of 
input matrix and transpose of desired output (target) 
matrix are chosen as first layer and sec layer weight 
matrixes, respectively. GR algorithm is based on 
nonlinear regression theory, a well-established 
statistical technique for function estimation[6]. GR 
network is very good at interpolation.  
 
Back-propagation neural network: Back-Propagation 
was created by generalizing the Widrow-Hoff learning 
rule to multiple layer networks and nonlinear 
differentiable transfer functions. Input vectors and the 
corresponding target vectors are used to train a network 
until it can approximate a function, associate input 
vectors with specific output vectors. Networks with a 
sigmoid layer and a linear output layer are capable of 
approximating any function with a finite number of 
discontinuities. 
 Standard back-propagation is a gradient descent 
algorithm, as is the Widrow-Hoff learning rule, in 
which the network weights are moved along the 
negative of the gradient of the performance function. 
The term back-propagation refers to the manner in 
which the gradient is computed for nonlinear multilayer 
networks. There are a number of variations on the basic 
algorithm that are based on other standard optimization 
techniques, such as conjugate gradient and Newton 
methods. In this study we have employed Scaled 
Conjugate Gradient (SCG) algorithm was developed by 
Moller[7].  
 The basic back-propagation algorithm adjusts the 
weights in the steepest descent direction (negative of 
the gradient). This is the direction in which the 
performance function is decreasing most rapidly. It 
turns out that, although the function decreases most 
rapidly along the negative of the gradient, this does not 
necessarily produce the fastest convergence. In the 
conjugate gradient algorithms a search is performed 
along conjugate directions, which produces generally 
faster convergence than steepest descent directions. 
Each of the conjugate gradient algorithms requires a 
line search at any iteration. This line search is 
computationally expensive, since it requires that the 
network response to all training inputs be computed 
several times for each search. The scaled conjugate 
gradient algorithm (SCG) was designed to avoid the 
time-consuming line search.  
 

WAVENETS 
 
 The term wavelet as it implies means a little wave. 
This little wave must have at least a minimum 
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oscillation and a fast decay to zero, in both the positive 
and negative directions, of its amplitude. This property 
is analogous to an admissibility condition of a function 
that is required for the wavelet transform[8].  
 Sets of wavelets are employed to approximate a 
signal and the goal is to find a set of daughter wavelets 
constructed by a dilated and translated original wavelets 
or mother wavelets that best represent the signal. The 
daughter wavelets are generated from a single mother 
wavelet h(t) by dilation and translation: 
 

  a,b
c t b

h (t) h
aa
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� �
 (1) 

 
where, a > 0 is the dilation factor, b is the translation 
factor and c is correction factor[9]. 
 Wavelet neural networks employing wavelets as 
the activation functions recently have been researched 
as an alternative approach to the neural networks with 
sigmoidal activation functions.  
 The combination of wavelet theory and neural 
networks has lead to the development of wavelet 
networks. Wavelet networks are feed-forward neural 
networks using wavelets as activation function. In 
wavelet networks, both the position and the dilation of 
the wavelets are optimized besides the weights.  
 Wavenet is another term to describe wavelet 
networks. Originally, wavenets did refer to neural 
networks using wavelets. In wavenets, the position and 
dilation of the wavelets are fixed and the weights are 
optimized[10].  
 
Back-propagation wavenet: Back-Propagation (BP) 
neural network is now the most popular mapping neural 
network. But BP neural network has few problems such 
as trapping into local minima and slow convergence. 
Wavelets are a powerful tool for signal analysis. They 
can approximately realize the time-frequency analysis 
using a mother wavelet. The mother wavelet has a 
square window in the time-frequency space. The size of 
the window can be freely variable by two parameters. 
Thus, wavelets can identify the localization of unknown 
signals at any level. Activation function of hidden layer 
neurons in back-propagation network is a sigmoidal 
function shown in Fig. 1a. This type of activation 
function provides a global approximation on the search 
space. 
 In this study we have substituted hidden layer 
sigmoidal activation function of back-propagation 
neural network with POLYWOG1 wavelet[9]:  
 

  
2( (t) ) / 2

POLYWOG1h (t) e.(t).e −=  (2) 

 
(a) 
 

 
(b) 

 
Fig. 1: (a): Sigmoidal function, (b): POLYWOG 

mother wavelet 
 
 Diagram of POLYWOG1 with a = 1 and b = 0 is 
shown in Fig. 1b. 
 This type of activation function provides a local 
approximation to the experimental data. In back-
propagation wavenets (BPW), the position and dilation 
of the wavelets as activation function of hidden layer 
neurons are fixed and the weights of network are 
optimized using scaled conjugate gradient (SCG) 
algorithm. In this study we suppose a = 2 and b = 0. 
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 Therefore, BPW is a modified back-propagation 
neural network with local approximation property and 
POLYWOG1 hidden layer neurons activation function. 
And adjusting the weights of network are done Using 
Scaled Conjugate Gradient (SCG) algorithm. Structure 
of BPW is shown in Fig. 2. 
 

NUMERICAL RESULTS 
 
Methodology: The eight story steel frame structure that 
shown in Fig. 3, has been considered as this study 
model. In this model, rigid diaphragms are assigned to 
the  roofs.  Cross  sections  of  columns  and  beams  are 
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Fig. 2: Structure of BPW 
 

 
 
Fig. 3: Eight story steel frame structure 
 

 
 
Fig. 4: Naghan earthquake 1977 (Iran) 
 
selected from the wide flange sections available in 
european profile list. The model was subjected to 
seismic load. This seismic loading that consists of 
Naghan earthquake 1977 (IRAN), shown in Fig. 4, is 
effectively   used  in  x  direction.  Spans  in   x   and   y 

Table 1: Cross sections 
Code Columns Beams 
1 HE 500-M 
2 HE 600-M 2IPE 500 
3 HE 700-M 
4 HE 800-M 

 
Table 2: Grouping of elements 
Group Elements 
1 Story 1, 2 columns 
2 Story 3, 4 columns 
3 Story 5, 6 columns 
4 Story 7, 8 columns 

 
Table 3: Test vectors 
 Cross section 
 ------------------------------------------------------------------------- 
No. Group 1 Group 2 Group 3 Group 4 
1 HE 600-M HE 600-M HE 600-M HE 500-M 
2 HE 700-M HE 600-M HE 500-M HE 500-M 
3 HE 700-M HE 700-M HE 600-M HE 500-M 
4 HE 700-M HE 600-M HE 600-M HE 600-M 
5 HE 800-M HE 600-M HE 600-M HE 500-M 
6 HE 800-M HE 700-M HE 600-M HE 600-M 
7 HE 800-M HE 700-M HE 700-M HE 600-M 
8 HE 800-M HE 800-M HE 700-M HE 700-M 
9 HE 800-M HE 800-M HE 800-M HE 600-M 

 
directions are 4 m. Height of each story is 3 m. the sum 
of dead load and live load is 500 kg m−2 and masses are 
calculated from loads. Analysis is performed using 
SAP2000 developed by Wilson[11].  
 
 In order to simplify the analysis, 4 types of cross 
sections are considered for the columns and a unique 
one  is  considered for all beams that are shown in 
Table 1. Due to practical demands the columns are 
divided into 4 groups, shown in Table 2, having the 
same cross-sections. In the present study, we train GR 
and BPW neural networks for approximating the last 
story time history response in x direction, using 
MATLAB[12]. To approximae the time history 
responses of the other stories, the same procedure can 
be used. A total number of 39 structures are generated 
and analyzed from which 30 structures are used for 
training and 9 pairs are employed for testing the 
networks which are shown in Table 3.  
 
Dynamic analysis using neural networks: Trained 
GR and BPW neural networks are employed for 
approximating of the last story time history response. 
The  results  of   testing   the   networks  are  shown  in 
Fig. 5-10 for three test samples. Similar results exist for 
the other test samples. As shown in these Fig. accuracy 
of BPW is much better than that of GR, furthermore, 
the accuracy of GR results in the case of some test 
vectors,  such  as 5  to 9th  test  vectors,  are  very  poor. 
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Fig. 5: 7th approximate response by GR 

 
 

Fig. 6: 7th approximate response by BPW 
 

 
 
Fig. 7: 8th approximate response by GR 
 
Therefore, GR cannot be effectively employed for 
approximating the time history response of frame 
structures. 
 To present the BPW network results, the 
approximate responses of last story of the frame 
structure are divided to five intervals. These intervals 
are  considered  as  the  first  to fifth sec of the response 

 
 
Fig. 8: 8th approximate response by BPW 

 
 

Fig. 9: 9th approximate response by GR 
 

 
 
Fig. 10: 9th approximate response by BPW 
 
curves.  Average error in each interval is shown in 
Table 4. 
 As shown in Table 4, the average of error in the 
first to fourth sec of all approximate time history 
response is less than 5%. While the average error in the 
fifth sec experiments its maximum values.  
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Table 4: Average error of BPW approximate results 
 Average error (%) 
 ------------------------------------------------------------------------- 
No. Second 1 Second 2 Second 3 Second 4 Second 5 
1 4.799 0.082 0.585 4.087 10.34 
2 1.703 0.151 0.957 2.449 9.546 
3 2.476 0.524 3.254 3.196 8.904 
4 3.180 0.545 3.833 3.798 8.650 
5 2.439 0.237 4.465 3.586 8.613 
6 1.586 0.643 1.284 4.492 9.429 
7 1.247 0.605 1.028 4.241 6.146 
8 0.662 0.275 0.103 2.702 5.251 
9 0.441 0.326 0.473 3.514 5.511 
 
These results indicate that the properly trained BPW 
network has acceptable accuracy and can be effectively 
used for approximating the time history response of 
frame structures.  
 

CONCLUSION 
 
 Computational burden of dynamic analysis of 
frame structures for earthquake loads, is usually very 
high. In order to reduce the computational work, one of 
the best choices is neural networks. We have employed 
two various kinds of neural networks: Generalized 
Regression (GR) networks as a traditional neural 
network and Back-Propagation Wavenet (BPW) 
network as a wavelet neural network for approximating 
the dynamic time history response of frame structures. 
Approximation strategy in GR network is global and in 
BPW network is local. Comparison of GR and BPW 
networks results in the approximation of dynamic time 
history response of frame structures against the 
earthquake indicates that BPW network using local 
approximation strategy is a powerful network with high 
accuracy. While GR network that employ global 
approximation strategy cannot present proper accuracy. 
Therefore, BPW network using wavelets as activation 
function of back-propagation neurons is a powerful tool 
for approximating of dynamic analysis of structures.  
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