
American Journal of Applied Sciences 5 (11): 1543-1546, 2008
ISSN 1546-9239
© 2008 Science Publications

Corresponding Author: Zuhaimy Ismail, Department of Mathematics, Faculty of Science, Universiti Teknologi Malaysia,
Skudai 81310, Johor, Malaysia

1543

Traveling Salesman Approach for Solving Petrol Distribution

Using Simulated Annealing

Zuhaimy Ismail and Wan Rohaizad Wan Ibrahim
Department of Mathematics, Faculty of Science, Universiti Teknologi Malaysia,

Skudai 81310, Johor, Malaysia

Abstract: This research presents an attempt to solve a logistic company’s problem of delivering petrol
to petrol station in the state of Johor. This delivery system is formulated as a travelling salesman
problem (TSP). TSP involves finding an optimal route for visiting stations and returning to point of
origin, where the inter-station distance is symmetric and known. This real world application is a
deceptive simple combinatorial problem and our approach is to develop solutions based on the idea of
local search and meta-heuristics. As a standard problem, we have chosen a solution is a deceptively
simple combinatorial problem and we defined it simply as the time spends or distance travelled by
salesman visiting n cities (or nodes) cyclically. In one tour the vehicle visits each station just once and
finishes up where he started. As standard problems, we have chosen TSP with different stations visited
once. This research presents the development of solution engine based on local search method known
as Greedy Method and with the result generated as the initial solution, Simulated Annealing (SA) and
Tabu Search (TS) further used to improve the search and provide the best solution. A user friendly
optimization program developed using Microsoft C++ to solve the TSP and provides solutions to
future TSP which may be classified into daily or advanced management and engineering problems.

Key words: Heuristic method, tabu search, simulated annealing, travelling salesman problem and

greedy search

INTRODUCTION

 The present society are built on infrastructure of
information technology (IT) comprised of computers
and systems of communication. Nowadays, societies
worldwide are fed with terms such information society
is referred to as the knowledge society. Achieving the
level of information society as a knowledge society,
further progress of IT infrastructure and software are
needed to support higher level of demands (Bodin et. al,
1983). Malaysia is a developing country which is
progressing towards developing an IT society. In such a
society, the software development consists of the
development of algorithms, which are targets of our
study. In many real life problems we do not know their
solutions yet and we have to develop algorithms to
search for such solutions (Gaskell, T.J., 1967; Zuhaimy
Ismail and Irhamah 2007). Area of algorithms is vast
and in this research, we are interested in developing
algorithms for solving the problems formulated as
combinatorial optimization (or discrete optimization).
One such combinatorial optimization problem is the
distribution of petrol from the depot to various petrol

stations. This type of distribution problem may be
modeled as a Travelling Salesman Problems (TSP).
 In TSP, the salesman (say) must make a complete
tour of a given set of stations in the order to minimize
the total distances travelled. Suppose that the delivery
vehicle is to visit N stations and need to determine the
shortest path that he must make to cover all the
identified stations, passing each station only once and
finishing his track at the station of origin. If there are N
stations to visit, the salesman has N! numbers of order
to visits. Figure 1 gives a sample of the possible
combination of the journey of the salesman.
 For example, the path 01234 in Fig. 1 indicates that
the path goes from station 0 - station 1- station 2 -
station 3 - station 4 - station 0. The aim of TSP is to
determine the path that gives the shortest distance and it
is a deceptively simple combinatorial problem and
many real-world scheduling or sequencing problem can
be formulated in a similar fashion. These problems are
usually very difficult if we want to compute exact
optimal solutions and we have to resort to approximate
(or heuristic) algorithms to obtain good suboptimal
solutions. In order to develop a satisfactory algorithm

Am. J. Applied Sci., 5 (11): 1543-1546, 2008

 1544

for a given problem, it is necessary to exploit special
mathematical structures of the problem and it requires a

Fig. 1: Travelling salesman problem

large amount of time and man power. Furthermore, it is
often the case that one algorithm specially tailored to a
particular problem is no longer useful if some
additional constraints are added or the objective
function is slightly modified. To cope with such
situation, it would be very useful if we could realize a
general solver that works for all types of combinatorial
optimization problems to give reasonably good
suboptimal solutions. However, after considering the
implication of complexity theory, we conclude that no
single engine can do such job, but we need multiple
search engines developed for appropriate standard
problems. In this research we proposed the
development of a petrol delivery system as a TSP and
solved it using Simulated Annealing and Tabu Search.
Our sets of solution engines appear successfully when
applied to real-world industrial problems. However we
have to admit that it is still far from being complete and
further efforts are necessary to make them more
effective.

TSP AS NP-HARDNESS PROBLEM

 An important theoretical achievement in
complexity theory is the concept of NP-completeness
and NP-hardness. The NP is a class of problems that
includes most of the combinatorial problems
encountered in many applications. Some problems in
NP class can be shown to be NP-complete or NP-hard.
(We are not going to expand the differences in the
definitions of NP-completeness and NP-hardness, but
we use only terminology NP-hard hereafter for
simplicity sake.) NP-hard problems are
computationally intractable (not solvable in polynomial
time). Therefore, it is not possible to build a general

solver that works efficiently for all problems.
(Gendreau, M. et. al. 1994). An approach to overcome
this difficulty may be using an efficient approximate
algorithm for an appropriate NP-hard problem. As
good approximate solutions are sufficient for most of
the practical purposes, this approach is quite appealing.
 As described earlier that TSP is deceptively simple
combinatorial problem, it is in fact an NP-hard problem
or NP-completeness. This has been shown to be the
case for all the different cases described earlier and
certainly this is also true for a wider TSP is also NP-
complete. Here we briefly recall the TSP and we
introduce the notation used to describe our heuristic.
Let V be the set of all stations to be visited and n = |V |,
the number of stations in this set. Let also d (with m =
|d|) be the distance travel between two selected stations.
With each such feature, the station vector may be
described as V = (v1 , . . . , vm), where vr is the
coordinate of each station in the set. TSP consists of
finding a minimum cost of travelling such that all the
station is visited once and must be visited twice. The
objective function considered in this research is the
ordinary Euclidean distance between two stations as

2 2
ij i j i jd (x x) (y y)= − + − i,j=0,1,2,3,…,n where (xI,yi)

is the coordinate for station number one and (xI,yi) is
the coordinate for another station and n is the total
number of the stations in the system Fig. 2. The number
of possible solution for Euclidean TSP with fix starting

and ending point is given by (n 1)!
2
− .

A (4, 2)

O (0, 5)

D (6, 10)

B (9, 5)

C (15, 7)

D=5.00 D=5.83

D=9.00

D=5.83

D=7.81
D=9.49

D=6.32

D - Distance
Fig. 2: TSP with Euclidean distance as a cost

LOCAL SEARCH AND METAHEURISTICS

 A powerful tool to obtain good approximate
solutions is local search (LS), which works as follows.
Starting from an initial solution x, it repeats replacing it
with a better solution in its neighborhood N(x) until no
better solution is found in N(x), where N(x) is a set of
solutions obtainable from x by slight perturbations. The
resulting solution x, which cannot be improved by any
solution in N(x), is called locally optimal (with respect
to N). In designing an LS algorithm, we first fixed the
search space, which is the set of solutions potentially

Am. J. Applied Sci., 5 (11): 1543-1546, 2008

 1545

visited during search. Specify the generation of an
initial solution x. In many cases, it is generated
randomly, but more sophisticated approaches such as
greedy search heuristics are also possible. In greedy
search, it reads the coordinate of each station and set
the initial solution. Following this, it creates a new
solution by randomly swapping two paths and
compares the new solution with the previous one. If the
new solution is better than the previous one, accept the
new solution or else reject the solution and restore the
previous solution. The search ends once the stopping
criteria or maximum number of iteration reached and
set the current solution as the final solution.
 Metaheuristics are a framework considered for this
purpose. It includes the following well-known
approaches as special cases: iterated local search (ILS),
tabu search (TS), simulated annealing (SA), genetic
algorithm (GA) and others. All of these algorithms
repeat the local search in an attempt of finding better
solutions than those obtained in the previous rounds of
local search (Bodin, et al 1983; Canen, A.G. and N.D.
Pizzolato 1994). Algorithms in metaheuristics repeat
the processes of generating an initial solution and its
improvement by LS in the following manner. Generate
an initial solution x; Improve x by applying
(generalized) LS then if the stopping criterion holds,
halt after outputting the best solution found so far.
Otherwise, return to the beginning and generate new
initial solution. To generate initial solutions, it is
common that the computational history by then is taken
into consideration. For example, a certain number of
good solutions are maintained during computation and
initial solutions are generated by combining them in
some manner.
 In SA, the probability is controlled by a parameter
called temperature to diversify the search in the initial
phase and then concentrate the search to the promising
area found in the initial phase. In TS, the move in the
search for a better solution is always done to the best
solution in N(x) even if it is worse than x. In this case,
to prevent cycling of solutions, a tabu list of solutions is
prepared and the moves to tabu solutions are prohibited,
where tabu list usually contains a certain number of
most recently visited solutions or a set of features of
such solutions. The stopping criterion in the final scan
be very simple, e.g., it stops if a specified time limit of
computation is over. Some description on
metaheuristics can be found for example in (Zuhaimy
and Irhamah, 2007). We now describe some details of
the engines for TSP together with some computational
results.

COMPUTATIONAL EXPERIMENTS

 We have tested our heuristics on a set of data
provided by our local logistic company for delivery of
petrol to several stations. We took three sets of possible
number of stations namely 25 stations, 50 stations and
100 stations. For analysis purposes, we only present a
case with 25 stations. All experiments were performed
on a 2.13 GHz Intel Core 2 Duo computer and, unless
otherwise indicated, ten minutes of CPU time were
allotted to the solution of each instance.

Fig. 3: Greedy Method…

 The experiment begins with the presentation of the
outcome of a single run to search for the simplest
solution. The initial solution generated will be used for
all different runs. Using the initial solution provided in
Greedy Method, the Simulated Annealing has generated
a better solution with the cost of 469.344. It has
improved by 1.49% from the solution generated by
Greedy method. Further runs using the same initial
solution will give the same result. It also shows that
four out of five runs does give the same solution (Fig.
4).

Fig 4: Reheating points

 The temperature parameter in SA plays an
important role in the search for an optimum solution. It
is a parameter that determines the acceptability of a
move. Its gradual reduction of temperature gives the
best solution. It is found that after a prolong
temperature reduction; it will eventually come to the
same position as a greedy method where upon reaching
the local optimum, no further improvement can be
made. We introduced a new technique where heat is
induced and the temperature is increased after a certain
number of iteration. Result shows that it does give a

���������	
��

�����

Am. J. Applied Sci., 5 (11): 1543-1546, 2008

 1546

better solution.Another heuristic method known as
Tabu Search was introduced. Using the initial solution
provided in Greedy Method, the Tabu Search has
generated a better solution with the cost of 467.09. It
has improved by 1.49% from the solution generated by
Greedy method. Further runs using the same initial
solution will give the same result. The solution
generated using Tabu Search is the same as the solution
obtained using simulated annealing.
 Tabu Search is a search procedure with the
properties of preventing the move from returning the
previous moves. The previous moves are listed in the
tabu list. In some cases, these forbidden moves are
allowed using an aspiration function where it is used
with the hope of getting a better solution. In our study,
it is found that the search keep accepting a non-
improving move. To avoid unending search, we
introduce the restore procedure of the optimal solution
after a certain number of iteration. This is a new
heuristic that we developed that is suitable for reaching
the optimum solution. The result obtained using Tabu
Search is 469.344 the same as the result using
Simulated Annealing. Further experiments were
conducted. The experiment was conducted several
times and we called it a multiple run experiment. In this
experiment, we run the search and upon reaching a
solution, we continue to run the system using the final
solution as the initial solution for the second and third
runs. Table 1 above shows that Greedy Method is
incapable of improving the final solution after several
runs. Tabu Search and Simulated Annealing managed
to improve the optimal solution after the second runs.
Among the three heuristic searches, Simulated
Annealing gives the best result. The final schedule
route is as follows: DEPOT - 13 - 12 - 14 - 22 - 7 - 16 -
15 - 10 - 23 - 18 - 4 - 1 - 11 - 25 - 3 - 24 - 17 - 6 - 8 - 5 -
21 - 9 - 19 - 2 - 20 – DEPOT
 There is a huge improvement in term of cost and
number of iterations from the greedy method. It reduces
the number of iteration by 59.6% for Simulated
Annealing and 32.4% for Tabu Search. This experiment
demonstrates that both Tabu Search and Simulated
Annealing are capable of escaping from the local
optimum and arrived at the global optimum.
 Several experiments carried out to test the
feasibility of three methods for solving TSP. The
experiment with 25 cities shows that Tabu Search and
Simulated Annealing produced the best solution. This
demonstrates the supremacy of SA when compared to
other search methods. The optimal solution to TSP is
469.344. The optimal solution and the optimal route as
in Fig. 5.

Fig. 5: Graph of current and optimum solution with

number of iterations (Tabu Search)

CONCLUSION

 We presented some of our developments of
problem solving for solving petrol delivery system as a
TSP and may be applied to other combinatorial
optimization problems, all of which are based on meta-
heuristics. Each of these approaches can handle various
TSP problems within its scope and is reasonably
efficient as evidenced by the computational results.
Putting these heuristic approaches together, we found
that quite a wide range of problems of practical
importance can now be accessed and useful solutions
can be obtained.

ACKNOWLEDGEMENT

 We gratefully acknowledge the Ministry of
Science, Technology and Innovation (MOSTI) of
Malaysia for the IRPA RMK-8 grant funding (09-02-
06-144 EAR) and UTM for their financial and
administration support.

REFERENCES

1. Bodin, L., B. Golden, A. Assad and Bull, D., 1983.
Routing and scheduling of vehicles and scheduling
of vehicles and crews: The State of Art. Comput.
Operat. Res., 10: 63-111.

2. Canen, A.G. and N.D. Pizzolato, 1994. The vehicle
routeing problem. Logistics Inform. Manag., 7 (1):
11-13.

3. Gaskell, T.J., 1967. Bases for vehicle fleet
scheduling. Operat. Res. Quaterly 18: 218.

4. Gendreau, M., A. Hertz and G. Laporte, 1994. A
tabu search heuristic for the vehicle routing
problem. Manag. Sci. 40: 1276-1290.

5. Golden, B.L., T.L. Magnanti and H.Q. Nguyen,
1977. Implementing vehicle routing algorithms.
Networks 7: 113-148.

6. Zuhaimy Ismail and Irhamah, 2007. Vehicle
Routing Problem in Optimizing Waste Collection.
Proceeding AFSS2007, 77-84.

7. Dang Vu Tung, Anulark Pinnoi, 2000. Vehicle
routing - scheduling for waste collection in Hanoi,
pp: 449-468

