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Abstract: This research presents an attempt to solve a logistic company’s problem of delivering petrol 
to petrol station in the state of Johor. This delivery system is formulated as a travelling salesman 
problem (TSP). TSP involves finding an optimal route for visiting stations and returning to point of 
origin, where the inter-station distance is symmetric and known. This real world application is a 
deceptive simple combinatorial problem and our approach is to develop solutions based on the idea of 
local search and meta-heuristics. As a standard problem, we have chosen a solution is a deceptively 
simple combinatorial problem and we defined it simply as the time spends or distance travelled by 
salesman visiting n cities (or nodes) cyclically. In one tour the vehicle visits each station just once and 
finishes up where he started. As standard problems, we have chosen TSP with different stations visited 
once. This research presents the development of solution engine based on local search method known 
as Greedy Method and with the result generated as the initial solution, Simulated Annealing (SA) and 
Tabu Search (TS) further used to improve the search and provide the best solution. A user friendly 
optimization program developed using Microsoft C++ to solve the TSP and provides solutions to 
future TSP which may be classified into daily or advanced management and engineering problems. 
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INTRODUCTION 
 

 The present society are built on infrastructure of 
information technology (IT) comprised of computers 
and systems of communication. Nowadays, societies 
worldwide are fed with terms such information society 
is referred to as the knowledge society. Achieving the 
level of information society as a knowledge society, 
further progress of IT infrastructure and software are 
needed to support higher level of demands (Bodin et. al, 
1983). Malaysia is a developing country which is 
progressing towards developing an IT society. In such a 
society, the software development consists of the 
development of algorithms, which are targets of our 
study. In many real life problems we do not know their 
solutions yet and we have to develop algorithms to 
search for such solutions (Gaskell, T.J., 1967; Zuhaimy 
Ismail and Irhamah 2007). Area of algorithms is vast 
and in this research, we are interested in developing 
algorithms for solving the problems formulated as 
combinatorial optimization (or discrete optimization). 
One such combinatorial optimization problem is the 
distribution of petrol from the depot to various petrol 

stations. This type of distribution problem may be 
modeled as a Travelling Salesman Problems (TSP).  
 In TSP, the salesman (say) must make a complete 
tour of a given set of stations in the order to minimize 
the total distances travelled. Suppose that the delivery 
vehicle is to visit N stations and need to determine the 
shortest path that he must make to cover all the 
identified stations, passing each station only once and 
finishing his track at the station of origin. If there are N 
stations to visit, the salesman has N! numbers of order 
to visits. Figure 1 gives a sample of the possible 
combination of the journey of the salesman. 
 For example, the path 01234 in Fig. 1 indicates that 
the path goes from station 0 - station 1- station 2 - 
station 3 - station 4 - station 0. The aim of TSP is to 
determine the path that gives the shortest distance and it 
is a deceptively simple combinatorial problem and 
many real-world scheduling or sequencing problem can 
be formulated in a similar fashion. These problems are 
usually very difficult if we want to compute exact 
optimal solutions and we have to resort to approximate 
(or heuristic) algorithms to obtain good suboptimal 
solutions. In order to develop a satisfactory algorithm 
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for a given problem, it is necessary to exploit special 
mathematical structures of the problem and it requires a  
 

  
 

 
 

Fig. 1: Travelling salesman problem 
 
large amount of time and man power. Furthermore, it is 
often the case that one algorithm specially tailored to a 
particular problem is no longer useful if some 
additional constraints are added or the objective 
function is slightly modified. To cope with such 
situation, it would be very useful if we could realize a 
general solver that works for all types of combinatorial 
optimization problems to give reasonably good 
suboptimal solutions. However, after considering the 
implication of complexity theory, we conclude that no 
single engine can do such job, but we need multiple 
search engines developed for appropriate standard 
problems. In this research we proposed the 
development of a petrol delivery system as a TSP and 
solved it using Simulated Annealing and Tabu Search. 
Our sets of solution engines appear successfully when 
applied to real-world industrial problems. However we 
have to admit that it is still far from being complete and 
further efforts are necessary to make them more 
effective. 
 

TSP AS NP-HARDNESS PROBLEM 
 

 An important theoretical achievement in 
complexity theory is the concept of NP-completeness 
and NP-hardness. The NP is a class of problems that 
includes most of the combinatorial problems 
encountered in many applications. Some problems in 
NP class can be shown to be NP-complete or NP-hard. 
(We are not going to expand the differences in the 
definitions of NP-completeness and NP-hardness, but 
we use only terminology NP-hard hereafter for 
simplicity sake.)  NP-hard problems are 
computationally intractable (not solvable in polynomial 
time). Therefore, it is not possible to build a general 

solver that works efficiently for all problems. 
(Gendreau, M. et. al. 1994). An approach to overcome 
this difficulty may be using an efficient approximate    
algorithm   for   an  appropriate  NP-hard problem. As 
good approximate solutions are sufficient for most of 
the practical purposes, this approach is quite appealing.  
 As described earlier that TSP is deceptively simple 
combinatorial problem, it is in fact an NP-hard problem 
or NP-completeness. This has been shown to be the 
case for all the different cases described earlier and 
certainly this is also true for a wider TSP is also NP-
complete. Here we briefly recall the TSP and we 
introduce the notation used to describe our heuristic. 
Let V be the set of all stations to be visited and n = |V |, 
the number of stations in this set. Let also d (with m = 
|d|) be the distance travel between two selected stations. 
With each such feature, the station vector may be 
described as V = (v1 , . . . , vm), where vr is the 
coordinate of each station in the set. TSP consists of 
finding a minimum cost of travelling such that all the 
station is visited once and must be visited twice. The 
objective function considered in this research is the 
ordinary Euclidean distance between two stations as 

2 2
ij i j i jd (x x ) (y y )= − + −  i,j=0,1,2,3,…,n where (xI,yi) 

is the coordinate for station number one and (xI,yi) is 
the coordinate for another station and n is the total 
number of the stations in the system Fig. 2. The number 
of possible solution for Euclidean TSP with fix starting 

and ending point is given by (n 1)!
2
− . 

A (4, 2)

O (0, 5)

D (6, 10)

B (9, 5)

C (15, 7)

D=5.00 D=5.83

D=9.00

D=5.83

D=7.81
D=9.49

D=6.32

D - Distance 
Fig. 2: TSP with Euclidean distance as a cost 

 
LOCAL SEARCH AND METAHEURISTICS 

 
 A powerful tool to obtain good approximate 
solutions is local search (LS), which works as follows. 
Starting from an initial solution x, it repeats replacing it 
with a better solution in its neighborhood N(x) until no 
better solution is found in N(x), where N(x) is a set of 
solutions obtainable from x by slight perturbations. The 
resulting solution x, which cannot be improved by any 
solution in N(x), is called locally optimal (with respect 
to N). In designing an LS algorithm, we first fixed the 
search space, which is the set of solutions potentially 
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visited during search. Specify the generation of an 
initial solution x. In many cases, it is generated 
randomly, but more sophisticated approaches such as 
greedy search heuristics are also possible. In greedy 
search, it reads the coordinate of each station and set 
the initial solution. Following this, it creates a new 
solution by randomly swapping two paths and 
compares the new solution with the previous one. If the 
new solution is better than the previous one, accept the 
new solution or else reject the solution and restore the 
previous solution. The search ends once the stopping 
criteria or maximum number of iteration reached and 
set the current solution as the final solution.  
 Metaheuristics are a framework considered for this 
purpose. It includes the following well-known 
approaches as special cases: iterated local search (ILS), 
tabu search (TS), simulated annealing (SA), genetic 
algorithm (GA) and others. All of these algorithms 
repeat the local search in an attempt of finding better 
solutions than those obtained in the previous rounds of 
local search (Bodin, et al 1983; Canen, A.G. and N.D. 
Pizzolato 1994). Algorithms in metaheuristics repeat 
the processes of generating an initial solution and its 
improvement by LS in the following manner. Generate 
an initial solution x; Improve x by applying 
(generalized) LS then if the stopping criterion holds, 
halt after outputting the best solution found so far. 
Otherwise, return to the beginning and generate new 
initial solution. To generate initial solutions, it is 
common that the computational history by then is taken 
into consideration. For example, a certain number of 
good solutions are maintained during computation and 
initial solutions are generated by combining them in 
some manner.  
 In SA, the probability is controlled by a parameter 
called temperature to diversify the search in the initial 
phase and then concentrate the search to the promising 
area found in the initial phase. In TS, the move in the 
search for a better solution is always done to the best 
solution in N(x) even if it is worse than x. In this case, 
to prevent cycling of solutions, a tabu list of solutions is 
prepared and the moves to tabu solutions are prohibited, 
where tabu list usually contains a certain number of 
most recently visited solutions or a set of features of 
such solutions. The stopping criterion in the final scan 
be very simple, e.g., it stops if a specified time limit of 
computation is over. Some description on 
metaheuristics can be found for example in (Zuhaimy 
and Irhamah, 2007). We now describe some details of 
the engines for TSP together with some computational 
results. 

COMPUTATIONAL EXPERIMENTS 
 
 We have tested our heuristics on a set of data 
provided by our local logistic company for delivery of 
petrol to several stations. We took three sets of possible 
number of stations namely 25 stations, 50 stations and 
100 stations. For analysis purposes, we only present a 
case with 25 stations. All experiments were performed 
on a 2.13 GHz Intel Core 2 Duo computer and, unless 
otherwise indicated, ten minutes of CPU time were 
allotted to the solution of each instance. 
  

 
Fig. 3: Greedy Method… 

 
 The experiment begins with the presentation of the 
outcome of a single run to search for the simplest 
solution. The initial solution generated will be used for 
all different runs. Using the initial solution provided in 
Greedy Method, the Simulated Annealing has generated 
a better solution with the cost of 469.344. It has 
improved by 1.49% from the solution generated by 
Greedy method. Further runs using the same initial 
solution will give the same result. It also shows that 
four out of five runs does give the same solution (Fig. 
4).   

 
Fig 4: Reheating points 

 
 The temperature parameter in SA plays an 
important role in the search for an optimum solution. It 
is a parameter that determines the acceptability of a 
move. Its gradual reduction of temperature gives the 
best solution. It is found that after a prolong 
temperature reduction; it will eventually come to the 
same position as a greedy method where upon reaching 
the local optimum, no further improvement can be 
made. We introduced a new technique where heat is 
induced and the temperature is increased after a certain 
number of iteration. Result shows that it does give a 

���������	
��

�����



Am. J. Applied Sci., 5 (11): 1543-1546, 2008 
 

 1546

better solution.Another heuristic method known as 
Tabu Search was introduced. Using the initial solution 
provided in Greedy Method, the Tabu Search has 
generated a better solution with the cost of 467.09. It 
has improved by 1.49% from the solution generated by 
Greedy method. Further runs using the same initial 
solution will give the same result. The solution 
generated using Tabu Search is the same as the solution 
obtained using simulated annealing. 
 Tabu Search is a search procedure with the 
properties of preventing the move from returning the 
previous moves. The previous moves are listed in the 
tabu list. In some cases, these forbidden moves are 
allowed using an aspiration function where it is used 
with the hope of getting a better solution. In our study, 
it is found that the search keep accepting a non-
improving move. To avoid unending search, we 
introduce the restore procedure of the optimal solution 
after a certain number of iteration. This is a new 
heuristic that we developed that is suitable for reaching 
the optimum solution. The result obtained using Tabu 
Search is 469.344 the same as the result using 
Simulated Annealing. Further experiments were 
conducted. The experiment was conducted several 
times and we called it a multiple run experiment. In this 
experiment, we run the search and upon reaching a 
solution, we continue to run the system using the final 
solution as the initial solution for the second and third 
runs. Table 1 above shows that Greedy Method is 
incapable of improving the final solution after several 
runs. Tabu Search and Simulated Annealing managed 
to improve the optimal solution after the second runs. 
Among the three heuristic searches, Simulated 
Annealing gives the best result. The final schedule 
route is as follows: DEPOT - 13 - 12 - 14 - 22 - 7 - 16 - 
15 - 10 - 23 - 18 - 4 - 1 - 11 - 25 - 3 - 24 - 17 - 6 - 8 - 5 - 
21 - 9 - 19 - 2 - 20 – DEPOT  
 There is a huge improvement in term of cost and 
number of iterations from the greedy method. It reduces 
the number of iteration by 59.6% for Simulated 
Annealing and 32.4% for Tabu Search. This experiment 
demonstrates that both Tabu Search and Simulated 
Annealing are capable of escaping from the local 
optimum and arrived at the global optimum.  
 Several experiments carried out to test the 
feasibility of three methods for solving TSP. The 
experiment with 25 cities shows that Tabu Search and 
Simulated Annealing produced the best solution. This 
demonstrates the supremacy of SA when compared to 
other search methods. The optimal solution to TSP is 
469.344. The optimal solution and the optimal route as 
in Fig. 5.  
 

 
 
Fig. 5: Graph of current and optimum solution with 

number of iterations (Tabu Search) 
 

CONCLUSION 
 
 We presented some of our developments of 
problem solving for solving petrol delivery system as a 
TSP and may be applied to other combinatorial 
optimization problems, all of which are based on meta-
heuristics. Each of these approaches can handle various 
TSP problems within its scope and is reasonably 
efficient as evidenced by the computational results. 
Putting these heuristic approaches together, we found 
that quite a wide range of problems of practical 
importance can now be accessed and useful solutions 
can be obtained. 
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