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Abstract: Nonlinearities and parametric uncertainties are unavoidable problems faced in controlling 
robot manipulator. A single link manipulator driven by a permanent magnet brushed dc motor is a 
nonlinear dynamics due to effects of gravitational force, mass of the payload, posture of the 
manipulator and viscous friction coefficient. Furthermore, uncertainties arise because of changes of the 
rotor resistance with temperature and random variation of friction while operating. Due to this fact, 
classical PID controller can not be used effectively since it is developed based on linear system theory. 
In order to overcome this problem, in this research, a neural network control scheme, NARMA-L2 
Control is adopted and implemented in real time for controlling a DC motor driven single link 
manipulator with unknown dynamics. However, the real time experimentation showed that the 
proposed system results in chattering of the control signal. Hence, the system also chatters within the 
desired trajectory. As a solution, real time Smoothed NARMA-L2 Control scheme is implemented. 
Physical results showed that the improved control scheme has not only reduced the chattering but has 
successfully controlled the single link manipulator for both point-to-point and continuous path motion 
control.  
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INTRODUCTION 

 
 Industrial manipulator robots play an important 
role in the field of flexible automation. A single link 
manipulator is the most basic manipulator, which is 
operated to perform tasks such as moving payloads or 
painting objects. To obtain a high performance single 
link manipulator, position controllers are necessary in 
order that the manipulator follows a preselected 
positional trajectory specified either as point-to-point or 
continuous path tracking motion with minimal 
deviation. 
 Control of DC driven single link manipulator is a 
nonlinear control problem due to gravitational force, 
mass of the payload, posture of the manipulator and 
viscous friction coefficient. Besides, uncertainties arise 
due to changes of the DC motor (actuator) parameters 
such as change of rotor resistance caused by 
temperature change as well as random variation of 
friction while operating. As a consequence, classical 
control algorithm, which is developed based on linear 
system assumption such as PID controller[13] is 
inadequate to deal with this problem. 

 In addition, an overwhelming majority of the 
available controllers are designed based on the 
assumption that the actuator dynamics are 
negligible[12,2,10,25]. This assumption reduces the 
dynamic model of the robot and facilitates the design of 
controllers. As a result of this simplification, 
unmodeled disturbances exist in the robot control 
systems, which affect the tracking and positioning of 
the robot. Although there are several methods to make a 
controller robust, with respect to the unmodeled 
dynamics, the performance of the controller is not as 
expected, meaning that the tracking errors are bounded 
but do not converge to zero[23]. 
 To deal with unknown nonlinearities, various 
control strategies have been proposed in the forms of 
variable structure controller[25], robust control[6] and 
adaptive controller[20]. However, the essential 
characteristic of these controllers is the model 
dependence, i.e., the requirement for explicit a priori 
specified model structure is still a necessity. In case of 
the manipulator robot, it is difficult to obtain some 
parameters such as the inertia matrix and mass centers 
at any joint with sufficient accuracy. It is then 
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considered that these controllers are pertinent in the 
sense that an accurate model of the manipulator is 
demanded prior to controller design stage. 
 Therefore, a viable alternative to achieve an 
efficient control scheme is through the appliance of 
intelligent control. Intelligent control approaches such 
as neural network and fuzzy inference system do not 
require mathematical model of the system under 
controlled and have the ability to approximate nonlinear 
system. The real time applications of fuzzy logic 
control specifically for single link manipulator were 
reported in[8,11]. 
 Many researches have been attempting to use 
neural network intelligent controls for the trajectory 
control of robot manipulators. Among recent works 
carried out in the field of control of robot manipulators 
using neural network based controllers is[9]. They 
proposed a controller for robust backstepping control of 
a general nonlinear system using neural networks. One 
of the nonlinear systems considered is robot 
manipulator. Here, the inertia matrix is considered to be 
known. Ahmad et al.[1] proposed a neural network 
controller based on modified Kohonen’s Self 
Organizing Map (SOM) which controls the joint of the 
manipulator. Basically, the proposed controller consists 
of two neural network schemes; the neural network 
controller and the robotic emulator. The neural network 
controller will determine the joint torque after 
introducing the desired end effector’s coordinate. The 
torque value will then become the input to the robotic 
emulator; which output is feedback to the controller to 
form a closed loop control.  
 In addition[19], also reported a direct inverse neural 
network based control scheme to solve the tracking 
control problem for the robot arm. Attempts are made 
in the literature to combine sliding mode and neural 
network to achieve the desired position control[17]. They 
presented a sliding model neural network control 
scheme. Here, a neural network controller is developed 
to estimate the equivalent control in the sliding mode 
control. 
 As a matter of fact, these newly devised neural 
networks based controllers effectiveness is verified 
through simulation studies. On the other hand, actual 
real time applications as well as comparative 
experimental results study are rarely established. 
Illustrating one example is the work of[5], in which the 
author reported an indirect neural network real time 
control for an industrial robot arm. Also[21], described 
experimental results for position control of real 
manipulator using a kind of neural controller that 
operates in parallel with a conventional controller based 
on the feedback error learning architecture. They stated 

that the advantage of this controller is that it does not 
require any modification of the previous conventional 
controller. 
 Therefore, in this research, from an experimental 
point of view, the use of different neural network based 
control strategy, NARMA-L2 Control for trajectory 
control of a DC driven single link manipulator 
prototype is presented. The DC driven single link 
manipulator system is selected since it represents the 
basis of robot manipulator systems and customarily 
used by researches as a benchmark for simulation as 
well as the implemented hardware substituting real 
industrial robot manipulator in order to show the 
effectiveness especially for newly formulated control 
methodologies in manipulator control problem. The 
application of the designed control strategy on a single 
link manipulator system could then be extended to more 
than one link manipulator system with less effort. 
Equally important, the real time control 
implementations are emphasized as we strongly 
believed that the reliability of experimental results of 
any devised control strategy is much more important 
than their abstract qualities.  
 As proposed by K. S Narendra and 
Mukhopadhyay[18], NARMA-L2 control is one of the 
popular neural network architectures for prediction and 
control. This approach has been adopted through 
simulations for process control such as drug dosage 
regimens in cancer chemotherapy[3], Scheibel 
contactors control[16] and magnetic levitation process[24] 
and no real time control application through literature 
studies. Theoretically, this control structure is simple 
and its implementation is not particularly demanding. 
Thus, favorably, NARMA-L2 control has the advantage 
to reduce the amount of memory and computation time. 
Faster and accurate output regulation is expected due to 
its mapping capability.  
 However, the shortcoming of this controller is that 
it results in chattering of the control signal as shown in 
this research. Thus, an improved version of NARMA-
L2 Control has been designed based on[22] technique. 
They suggested an adjunction of a linear feedback to 
the NARMA-L2 controller structure in order to smooth 
the control action. The addition of a linear feedback to 
the NARMA-L2 controller is equivalent to the feedback 
linearization control methodology. As validated in this 
research, this design strategy; named as Smoothed 
NARMA-L2 Control has successfully alleviate the 
chattering in the response signals and improve the 
performance of NARMA-L2 controller.  
 
Description of DC motor driven single link 
manipulator: The real time experiments have been 
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carried out on a DC driven single link manipulator 
prototype. The experiment is performed on a test bench 
consisting of 12 Volt DC motor, a single link 
manipulator with payload attached at the end and a 
rotary encoder to measure the angular position of the 
manipulator. The control algorithm is implemented in 
Matlab/Simulink software package with Real Time 
Workshop and xPC Target Toolbox. Using xPC Target, 
the host and target computers are connected directly via 
a serial cable using RS232 ports. The test rig is 
connected to the target PC using the PCI6024E DAQ 
card interface while the encoder connected to the same 
target PC using PCI QUAD04 Measurement 
Computing encoder card. A servoamplifier Logosol LS-
DY is used to drive the DC motor. For the reference 
signal, voltage signal is sent to the PCI6024E DAQ 
card and later to the servoamplifier. The output signal is 
measured from an encoder connected directly to the end 
of the manipulator’s shaft. The encoder output which 
represents the angular position is sent to the PCI 
QUAD04 which reads the feedback signal. All the 
components were calibrated and tested before 
implementation. Schematically, the whole experimental 
setup is concluded in Fig. 1. 
 
NARMA-L2 Control: NARMA-L2 is one of the 
popular neural network architectures for prediction and 
control. The principle idea of this control scheme is to 
apply the input output linearization method[4] where the 
output becomes a linear function of a new control input.  
 Basically, there are two steps involved when using 
NARMA L2 control: system identification and control 
design. In the system identification stage design, a 
neural network of the plant that needs to be controlled 
is developed using two subnetworks for the model 
approximation. The network is then trained offline in 
batch  form  using  data  collected from the operation of 
 

 
 

Fig. 1: Experimental Setup 

the plant. Next, the controller is simply the 
rearrangement of two subnetworks of the plant 
model.Computation of the next control input to force 
the plant output follows a reference signal is 
materialized through simple mathematical equation 
 
NARMA-L2 plant model identification: In NARMA-
L2 plant identification, the model structure used is the 
standard NARMA[17] model adapted to the feedback 
linearization of affine system. A companion form 
system (control affine) is used as the identification 
model, i.e.: 
 

  

y(k 1)
f[y(k),..., y(k n 1),

u(k 1),...,u(k m 1)]
g[(y(k),..., y(k n 1),

u(k 1),...,u(k m 1)].u(k)

+ =
− +

− − + +
− +

− − +

 (1) 

 
 In essence, the NARMA-L2 approximate model 
will be parameterized by two neural networks f̂ and ĝ  
that will be used to identify the system of Eq. (1), i.e.: 
 

  

ŷ(k 1| )

f̂ [y(k),..., y(k n 1),

u(k 1),...,u(k m 1),w]
g[(y(k),..., y(k n 1),

u(k 1),...,u(k m 1),v].u(k)

+ θ =

− +
− − + +

− +
− − +

�

 (2) 

 
 The two subnetworks are used for the model 
approximation; NN1 and NN2 which are used to 
approximate nonlinear functions f and g respectively. 
The NARMA-L2 system identification structure of the 
single link manipulator is shown in Fig. 2. 
 

 
 

Fig. 2: NARMA-L2 plant model identification 
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 The plant model identification in NARMA-L2 
Control starts off with a dataset of input output data 
pairs collected experimentally. If necessary, the data 
pairs are preprocessed. Again, the collected dataset is 
divided into two parts; one for the training of the neural 
nets and the other for cross validating the resulting 
neural model. Here, the NN1 subnetwork is a 
feedforward neural network with one hidden layer with 
p neurons of hyperbolic tangent (tanh) activation 
function and an output layer of one neuron with linear 
activation function. Also, the NN2 subnetwork is a 
feedforward neural network with q tanh hidden layer 
neurons and one output neuron.  
 For each subnetwork, the number of past output n 
and the past input m; which compose the input vector 
and the number of neurons (p and q) of the hidden layer 
are determined. Subsequently, the selected neural 
network structure is trained using the input pattern and 
the desired output from the dataset. Here, the 
parameters (weights and biases) of the two MLP 
subnetworks that properly approximate the nonlinear 
modeling representing the DC driven single link 
manipulator are estimated. The optimization technique 
that will be used to update the parameters is also 
importantly determined.  
 Finally, to measure the success at approximating 
the dynamical system plant model using the neural 
network model, the prediction error εk should be 
uncorrelated with all linear and nonlinear combination 
of past inputs and outputs. Thus, the validation and 
cross validation tests are carried out to ascertain the 
validity of the obtained neural network model.  
 
NARMA-L2 controller design: The NARMA-L2 
controller design is uncomplicated. The control action 
can be simply implemented using the obtained 
NARMA-L2 model based on Eq. (2) in which the 
functions f̂  and ĝ  are defined. In order for a system 
output, y(k+1), to follow a reference trajectory yr(k+1), 
we set: y(k+1) = yr(k+1). The NARMA-L2 controller is 
designed through substituting y(k+1) with yr(k+1) in 
Eq. 2. Then the resolving controller output would have 
the form of: 
 

r

u(k)
ˆy (k 1) f[y(k),.., y(k n 1),u(k 1),..,u(k m 1)]

ĝ[y(k),..., y(k n 1),u(k 1),..,u(k m 1)]

=

+ − − + − − +
− + − − +

 (3) 

 
 Figure 3 shows the block diagram of NARMA-L2 
controller which clearly a rearrangement of the 
NARMA-L2 plant approximated model. 

 
 

Fig. 3: NARMA-L2 controller 
 
Smoothed narma-L2 control: The control 
performance of NARMA-L2 controller is improved 
using the technique proposed by[22] where they 
suggested an adjunction of a linear feedback to the 
NARMA-L2 controller structure in order to smooth the 
control action. The addition of a linear feedback to the 
NARMA-L2 controller is equivalent to the feedback 
linearization control methodology. 
 Pukrittayakame et al.[22] had proved that the effect 
of chattering in plant response using NARMA-L2 
controller is in fact could be reduced with this 
technique through simulations. Accordingly, the same 
design strategy was carried out in this work to improve 
the performance of NARMA-L2 controller in real time 
on the DC driven single link manipulator test rig. The 
improved version of NARMA-L2 control is named as 
Smoothed NARMA-L2 control.  
 Pukrittayakame et al.[22] also states that although 
NARMA-L2 controller is considered analogous to the 
feedback linearization controller, there is still a major 
difference between these two. The feedback 
linearization controller adds a linear feedback term. 
Thus, if a linear feedback is included to the original 
NARMA-L2 control law, the control signal u(k) is in 
the form of: 
 

  T
0 r n m p

n m

u(k)

c y (k 1) f[y (k),u (k 1)] d y (k)

g[y (k),u (k 1)]

=
+ − − −

−
 (5) 

 
where, T

1 pd [d ,...,d ]= . 

 If f() and g() are accurately approximated, the 
system output will satisfy the following linear 
difference equation: 
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T
o r py(k 1) c y (k 1) d y (k)+ = + −  

or 
 1 p o ry(k) d y(k 1) ... d y(k p) c y (k)+ − + + − =  (6) 
 
Taking the z-transforms, we have: 
 

   0
r

c
Y(z) Y (z)

D(z)
=  (7) 

 
  1 p

1 pD(z) 1 d z ... d z− −= + + +  (8) 

 
 In order to obtain a response y(k) that is a 
smoothed version of yr(k), the roots of D(z) inside the 
unit circle is suitably put. Accordingly, u(k) is 
smoothed and the chattering found in NARMA L2 
control is lessened.  
 

RESULTS AND DISCUSSION 
 
NARMA-L2 plant model identification results: The 
plant model identification is estimated based on 50000 
input output data obtained from the experiment. The 
dataset consists of random input signals ku [ 1,1]∈ −  
used to excite the plant and the angular position signal 
yk is sampled at 100 Hz sampling frequency. The 
dataset is divided into two parts; training data intended 
for training the NARMA-L2 model and testing data for 
cross validating the resulting neural model.  
 In order to train the NN1 and NN2 networks, 
which compose the NARMA-L2 based model, the 
initial weights and biases are randomly selected. The 
error goal of mean squared error (MSE) is set to 10−6. 
The  number  of  past output n and past input mare set 
as 2 each; corresponding to the same values used in 
plant model identification for Neural Network Model 
Reference control. The best neural network structure is 
selected based on heuristics which gives the least mean 
squared error after trying different number of neurons 
in the hidden layer for NN1 and NN2 (p and q). The 
optimization routine applied Levenberg Marquardt[14] 
learning scheme. The number of training epochs is 
1000 iterations. Ultimately, the NARMA-L2 model has 
the following structure, where the cost function is 
minimized to the order of 10−4: 
 
• The NN1 network used to model f̂ (.) has 8 hidden 

hyperbolic tangent neurons with bias and 1 linear 
output neuron 

• The NN2 network used to model ĝ(.) has 2 hidden 
hyperbolic tangent neurons with bias and 1 linear 
output neuron 
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Fig. 4: Validating the neural identification scheme on 

test data 
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Fig. 5: Prediction error on the test data 
 
 The validity of the obtained NARMA-L2 model 
was first validated on the dataset used for training and 
further cross validated on the testing dataset. The cross 
validation test is shown in Fig. 4 while Fig. 5 shows the 
prediction error. It is observed from the histogram that 
the error is close to zero for most of the samples. The 
correlation results are shown in Fig. 6 from which we 
can see that the auto correlation of the residuals lies 
within 95% confidence limits which gives us strong 
indication that the model is acceptable.  
 Furthermore, we can see that the cross correlation 
between the past inputs and the prediction error lies 
between the 95% confidence limits also. The cross 
validation results conclude that the obtained NARMA-
L2 model to represent the affine form model of the DC 
driven single link manipulator is valid. 
 
NARMA-L2 control results: In order to evaluate the 
effectiveness  of the designed NARMA-L2 Control, the 
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Fig. 6: Correlation analysis of the test data 
 
controller is implemented in real time to control the DC 
motor driven single link manipulator. Two different 
control modes are tested namely point-to-point and 
continuous path controls.  
 For the PTP control, 1.5 rad and 3.0 rad step inputs 
are used as reference inputs. Figure 7 and 8 show the 
response to those reference inputs. For CP control, two 
different desired trajectories are used; LSPB (Linear 
Segment Parabolic Blend) and sinewave signals as 
shown in Fig. 9 and 10. Viewing the associating 
figures, it can be concluded that the NARMA L2 
controller is theoretically convincing; yet, in our case, it 
performs poorly in position control of the DC driven 
single link manipulator system although satisfying 
system modeling through the defined NARMA-L2 
neural network architecture is realized. This is 
conforming to the observed chattering of the output 
position. The mean squared error (MSE) for both inputs 
are considered large; 0.0182 and 0.0153 respectively.  
 
Smoothed narma-L2 control results: In this research, 
to design the Smoothed NARMA-L2 control, the order 
of the linear feedback,p, is chosen to be 1. The closed 
loop pole (root of D(z)) is arbitrarily chosen to attain 
the best tracking control performance and is finally set 
to 0.75. Real time experimental results using the 
enhanced confirmed the diminution of chattering in the 
tracking responses.  
 The following Fig. 11-14 show the system 
responses under the Smoothed NARMA-L2 control. 
Those figures confirmed that the proposed Smoothed 
NARMA-L2 controller is considerably good in 
smoothing the oscillating effects (chattering) due to 
original NARMA-L2 control. The control performance 
of  this  controller  is  shown in Table 1. It indicates that 

Table 1: Smoothed NARMA-L2 control performance 
Reference Overshoot Settling Rise Steady 
 (%) time (sec) time (sec) state error 
1.5-rad 0 0.71 0.59 -0.0110 
3.0-rad 0 0.80 0.67 0.0095 
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Fig. 7: 1.5 rad step response under NARMA-L2 scheme 
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Fig. 8: 3.0 rad step response under NARMA-L2 scheme 
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Fig. 9: LSPB reference response under NARMA L2 

scheme 
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Fig. 10: Sine wave reference response under NARMA 

L2 scheme 
 
the control performance is enhanced based on 
elimination of oscillations (chattering), zero overshoot, 
faster settling time and small steady state error.  
 In terms of CP control, the MSE for LSPB input is 
0.0027, a 50% improvement compared to NARMA-L2 
control while the MSE for sinewave input is 0.0092, 
which is an 81% improvement. 
 

CONCLUSION 
 
 Despite the fact that NARMA-L2 controller 
tenders a motivating solution to control nonlinear 
system, this research demonstrates that chattering as 
seen from the experimental single link manipulator 
responses to desired trajectory references is to a great 
extent, inevitable although we manage to control those 
responses to track within the vicinity of the desired 
trajectory. In some measure, NARMA-L2 controller for 
position control of lab scale single link manipulator is 
quite an achievement. Reason is, the neural network 
training in the system identification was carried out to 
arrive at the best solution. 
 As pointed earlier and repeatedly acknowledge in a 
number of NARMA-L2 research papers which enjoyed 
their control simulations success, this controller is 
attractive because it requires less computation either for 
training the neural network and the controller design. 
Strategically, the controller is also simply a 
recomposition of the neural network plant model and 
the neural network training is carried out offline. 
 It appears that the solution recommended by[22] has 
greatly improve the chattering observed in the signal 
responses as seen from the attached figures in relation 
with Smoothed NARMA L2 controller. Yet again, 

using the linear feedback, to position the closed loop 
poles near the unit circle, the system response can be 
smoothed and control chattering is reduced. 
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