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Abstract: In this research, an athlete’s body on sagittal plane in tension phase of snatch weightlifting 
has been modeled in two dimensions for calculating the generated torques in joints. The error back 
propagation multi-layer perceptrons has been used for modeling the torque through changing the 
angular velocity, angular acceleration and absolute angle of each segment. Finally, the torque in joints 
has been minimized by particle swarm optimization technique and the power of athlete has been 
maximized. The method of weightlifting has been captured by high speed camera and the films have 
been analyzed through motion analysis software. Consequently, the required kinematic data for 
mathematical model of weightlifter has been produced. Unlike previous research reports, the technique 
of weightlifting has been modified with the aid of artificial neural network modeling to enhance 
athlete’s power, instead of optimizing the effect of body parameters and sport facilities. In addition, 
this study focuses on computational intelligent techniques for optimization instead of classical 
methods. 
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INTRODUCTION 

 
 Study of athletic movement from biomechanical 
view is one of the important research fields. Majority of 
research in this field is for recognition and optimization 
of movement. The recognition requires a true definition 
of a dynamic model of athlete’s body with respect to 
biomechanical limitations. In order to find out the 
optimized athletic movement, various optimization 
methods have been applied. In this research, a new 
application of artificial intelligence in the scope of sport 
biomechanics has been introduced which has a wide 
application for optimization of athlete’s movement in 
various sports. The findings of this research 
significantly improve the recognition and optimization 
of athlete’s movement and prompt the rank of athlete’s 
in global championships. Previous studies on the 
dynamic model of weightlifting are being briefly 
mentioned in the following part. A mathematical model 
on the sagittal plane was defined by five links. Through 
received information from camera and Newton-Euler 
formula, the values of force and torque were 
determined during snatch movement in the tension 
phase[1]. The bar trajectory and joint angles of athletes 
with different anthropometric factors were analyzed[2]. 
A new procedure for calculating the power production 

during Olympic lifting movements was developed[3]. 
Data obtained from 16-mm film of weightlifters were 
analyzed to study energy changes during body segment 
and barbell movements, energy transfer to the barbell 
and energy transfer between segments during the lifting 
movements contested. The results provided a detailed 
understanding of the magnitude and temporal input of 
energy from dominant muscle groups during a lift[4]. A 
multi segment model of the lifters' movement in the 
sagittal plane was developed by using equations of 
motion, force and moments from applied data film. 
Analysis was limited to body segment orientations, 
vertical bar accelerations, vertical joint reaction forces, 
segmental angular accelerations, horizontal moment 
arms of the bar to selected joints and inter-segmental 
resultant moments. Maximum vertical bar acceleration 
and angular acceleration of the trunk tended to occur 
near lift-off in the skilled lifters. Within each subject, 
the hip joint experienced the greatest torque because of 
the relatively large horizontal moment arm of the bar to 
this joint[5]. Escamilla conducted a research to quantify 
biomechanical parameters employing two-dimensional 
and three-dimensional analyses while performing the 
squat with varying stance widths[6]. Ankle plantar flexor 
(10-51 N.m), knee extensor (359-573 N.m) and hip 
extensor (275-577 N.m) net muscle moments were 
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generated for the narrow stance squat, whereas ankle 
dorsiflexor (34-284 N.m), knee extensor (447-756 N.m) 
and hip extensor (382-628 N.m) net muscle moments 
were generated for the medium stance squat and wide 
stance squat. Later, the snatch movements of two 
female athletes were examined in junior world 
weightlifting competition by means of camera 
techniques and through motion analysis software, speed 
versus time and bar trajectory were determined[7].  
 In previous research studies, we minimized the 
generated torque during snatch movement by neural 
networks and fuzzy logic[8,9]. In majority of pervious 
works, the focus was on studying and modeling of 
movement in order to recognize and calculate kinematic 
parameters of weightlifter but there was less 
consideration given to power enhancement of 
weightlifter. It seems that the work on power 
enhancement can be divided in two branches: the first 
one focused on optimizing the effect of body 
parameters  and  sport  facilities  like weightlifters 
belt[10-14]   and   the   second   focused    on   the 
technique modification of weightlifter through 
mathematical modeling and various optimization 
methods[8,9,15-19]. 
 There are two approaches for optimization. The 
first approach is artificial intelligent. The other one is 
the optimal control and classical numerical method. 
Application of neural networks in the optimization of 
sport technique is a new discussion. The finding of this 
research will help the trainers to improve the technique 
of Olympic weightlifter. 
 

MATERIALS AND METHODS 
 
Mechanical modeling of body: Until now, various 
dynamic models with different inputs and outputs for 
simulation of human movement have been developed. 
Since internal forces and torques in joints could not be 
measured directly in a biological system, the 
kinematical and anthropometric parameters have been 
used because they were calculated indirectly. The mass 
of body segments have been determined through the 
Zatsirosky approach[20]. In order to estimate the length 
of each segment, Muftic et al. formulattions have been 
used[21]. The mass calculation table of each segment 
have been computed based on Zatsirosky formulation in 
Matlab 7.0 in which the input variables are mass and 
height of the athlete. In order to estimate the moment of 
inertia around the center of mass, Chaffin et al. formula 
has been used[22].  
 
   I = 0.09ML2 (1) 

Table 1: Estimating the mass, length, center of mass and moment of 
inertia of segments 

Moment of Center of Length Mass Segment 
inertia (kg cm−2) Mass (m) (m) (kg) name 
0.041875 0.2342 0.3934 3.3699 Shank 
0.272330 0.2836 0.5202 11.182 Thigh 
0.589120 0.2965 0.6065 17.761 Trunk 
0.021777 0.1971 0.3318 2.1979 Upper arm 
0.066405 0.1074 0.2513 1.2796 Lower arm 

 
where, M is mass of segment and L is the length of the 
segment. The results  of computation are shown in 
Table 1. The athlete of this research has 80 (kg) weight 
and 171 (cm) height. A 90 (kg) weight was lifted by the 
athlete.  
 
Momentum  calculation from dynamic model: In 
Fig. 1, the free force diagram of the athlete’s body is 
shown. In this research, the athlete’s body on sagittal 
plane  with  5  segments  has  been  considered.  These 
5 segments are ankle, knee, hip, shoulder and elbow. 
Foot joint has been considered as a reference segment. 
The body's mass, moment of inertia tensor and 
coordinates for the body's center of gravity and 
kinematic data are required for modeling and 
simulation of each segment.  
 These data have been used as inputs for our 
SimMechanic model. Through putting sensors on 
SimMechanic model and using the following equations, 
the desirable outputs including matrices of torque in 
joints have been calculated during a continuous 
modeling. It has been assumed that body is symmetric 
across the sagittal, the segments are considered as rigid 
links, the length of each segment is constant during the 
simulation, the friction in joints has been ignored and 
every joint has been considered as a revolute joint. The 
required kinematics data that were obtained from the 
film of weightlifters on sagittal plane were captured by 
a high speed camera that set at frame rate of 60 Hz. 
Finally, the recorded data were analyzed by motion 
analysis software[23]. 
 In Fig. 2, the obtained kinematic data are 
presented. Dynamic Model has been solved by inverse 
kinematics method. A five link model on the sagittal 
plan, which has been designed for simulation of snatch 
movement by SimMechanic, has is shown in Fig.  3[24]. 
The next step is the modeling of the torque by artificial 
neural networks technique through changing the 
angular velocity, angular acceleration and absolute 
angle of each segment. 
 
Artificial neural networks modeling: Neural 
networks have emerged as a very popular area of 
research, both  from  the  design and the usage points of 
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Fig. 1: Six-segment diagram of human’s body[20] 
 

 
 
Fig. 2: Absolute angle variations of each joint 
 
view[26]. There is a great amount of academic interest in 
the applications of neural networks in engineering but 
there is a lack in sports fields. The network used in this 
research is the error back propagation multi-layer 
perceptrons network which has a high ability to solve 
nonlinear problems because of its nonlinear transfer 
function but the weakness of this algorithm is trapping 
of network in a local minimum. In order to prevent this, 
Haffman and Carpenter`s formula has been used to 
estimate the number of neurons. 

 
 
Fig. 3: A five-link model on the sagittal plan has been 

designed for an athlete by SimMechanics for 
Weightlifting (Snatch) 

 
  s h i o hn = �{n (n +1) + n (n +1)}  (2) 
 
where, ns is the number of the pairs which need to be 
trained, nh is the number of hidden layer neurons, ni is 
the number of input layer neurons and no is the number 
of output layer neurons. The constant of β is related to 
the degree of over-determination. This formula has 
been used for determining limit of the neurons in each 
layer[25]. 
 
Levenberg-marquardt algorithm[25]: The Levenberg-
Marquardt algorithm was designed to approach second-
order training speed computing the Hessian matrix. 
When the performance function has the form of a sum 
of squares, then the Hessian matrix can be 
approximated as:  
 
    TH = J J  (3) 
 
and the gradient can be computed as:  
 
    Tg = J e  (4) 
 
where, j is the Jacobian matrix that contains first 
derivatives of the network errors with respect to the 
weights and biases and e is a vector of network errors. 
The Jacobian matrix can be computed through a 
standard back propagation technique that is much less 
complex   than   computing   the   Hessian   matrix.  The 
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Fig. 4: Test plan in mbcmodel of GUI 
 
Lavender Marquardt algorithm uses this approximation 
for the Hessian matrix in the following Newton-like 
update: 
 

   T T
k 1 kX X J J I J e+ = + µ  (5) 

 
 When the scalar µ is zero, this is just the Newton’s 
method, using the approximate Hessian matrix. When µ 
is large, this becomes gradient descent with a small step 
size. The Newton’s method is faster and more accurate 
near an error minimum, so the aim is to shift towards 
the Newton’s method as quickly as possible. Thus µ is 
decreased after each successful step (reduction in 
performance function) and is increased only when a 
tentative step would increase the performance function. 
In this way, the performance function will always be 
reduced in each iteration of the algorithm.  
 
Implementation neural network modeling: Model-
based Calibration software (mbcmodel) of Matlab 7.0.4 
has been used to obtain the model of neural 
networks[25]. Test plan in mbcmodel of GUI for 
estimation is shown in Fig. 4. The input block is 
kinematics data, b is the model block (the determination 
of the type of model is performed in this research) and c 
is the output block. Our output is the created torque in 
the joints. The input data of this model are kinematics 
data which are related to ankle, knee, hip, shoulder and 
elbow. These data included absolute joint angles of 
each segment to the horizon, absolute angular velocity 
and absolute angular acceleration. Outputs are torque 
on joints.  
 There are two stages for creating the network. 
Stage one is for training the network and the second 
stage is for testing the accuracy of previous stage. First, 
a group of input vectors are divided in two parts. One 
part is for training the networks and the other one 
applies for testing the accuracy and training until the 
error of test has been minimized. This approach has two 
advantages: one is prevention of the network from over-
fit. Second is enabling the network for accurate 
estimation by adding new input and output data. The 

model has been used in neural network with Levenberg-
Marquardt algorithm and has two hidden layers. The 
number of neurons of each hidden layer is, respectively, 
10 and 5. Each vector input has 113 elements and the 
output is a vector with the same quantity of elements 
including joint torque. The train data are 90 and the test 
data are assumed to be 23. The value of Epochs is 3000. 
The stages of training are 12. The hierarchical Epochs 
for Levenberg-Marquardt algorithm are 1000. Finally, β 
is about 1.2.  
 
Optimization: Particle Swarm Optimization (PSO) is a 
population based stochastic optimization technique 
developed by Dr. Eberhart and Dr. Kennedy in 1995, 
inspired by social behavior of bird flocking or fish 
schooling. PSO is initialized with a group of random 
particles (solutions) and then searches for optima by 
updating generations. In every iteration, each particle is 
updated by following two best values. The first one is 
the best solution (fitness) it has achieved so far. The 
fitness value is also stored. This value is called pbest. 
Another best value that is tracked by the particle swarm 
optimizer is the best value, obtained so far by any 
particle in the population. This best value is a global 
best and called gbest. When a particle takes part in the 
population as its topological neighbors, the best value is 
a local best and is called lbest. After finding the two 
best values, the particle updates its velocity and 
positions with following equations: 
 

 
v[] = v[] + c1 * rand() * (pbest[] - present[])
 + c2 * rand() * (gbest[] - present[]) 

 (6) 

 
   present[] = persent[] + v[]  (7) 
 
v[] is the particle velocity, persent[] is the current 
particle (solution). pbest[] and gbest[] are defined as 
stated before. rand () is a random number between 
(0,1). c1, c2 are learning factors. Usually c1 = c2 = 2[27] 
 The next step after modeling by artificial neural 
networks technique is optimization of torques by pso 
method through changing the angular velocity and 
angular acceleration of each segment. The training 
targets are the weighting factors which are extracted 
from the model.  
 The aim is changing the angular velocity, i.e., 
angular acceleration of each segment for minimizing 
the generated torques on joints. The value of Vmax and 
Epochs are 2.1 and 150, respectivly. Our criterion for 
estimation of goodness is gbest. Original error is 
criterion for starting the optimization algorithm and 
gbest for optimization algorithm started from this point. 
The  numbers  of   optimization   particles  are  between 
24 to 30. 
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RESULTS AND DISCUSSION 
 
 As shown in Fig. 5 the torque has been declined 
through Particle swarm optimization method. In fact, 
the reduction of torques in all joints of athlete leads to 
lift a heavier weight. Figure 6 illustrates the 
experimental angular velocity of each joint. Also, Fig. 7 
shows the optimized angular velocity. A comparison 
between Fig. 6 and 7 reveals that there are limited 
variations between optimal and experimental angular 
velocity.  
 

 
 
Fig. 5: Comparison between calculated torque by 

Vorobyev and calculated and optimized torque 
in our model 

 

 
 
Fig. 6: Angular velocity until the start of catch 
 

 
 
Fig. 7: Optimized angular velocity until the start of 

catch 

CONCLUSION 
 
 The result of this research indicates that a little 
change in angular velocity in joints leads to 
considerable power enhancement of weightlifter. The 
finding of this research can help Olympic weightlifters 
to modify their techniques and enhance their power by 
defining the optimum angular velocity. It is 
recommended to extend the presented model by adding 
muscular models through combinations of springs and 
dampers which their coefficients can be obtained from 
electromyography. 
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