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Abstract: Biomolecular computing is the computational method that uses the potential of DNA as a 
parallel computing device. DNA computing can be used to solve NP-complete problems. An 
appropriate application of DNA computation is large-scale evaluation of parallel computation models 
such as Boolean Circuits. In this study, we present a molecular-based algorithm for evaluation of 
Nand-based Boolean Circuits. The contribution of this paper is that the proposed algorithm has been 
implemented using only three molecular operations and the number of passes in each level is decreased 
to less than half of previously addressed in the literature. Thus, the proposed algorithm is much easier 
to implement in the laboratory. 
 
Key words: DNA computing, simulation, Boolean circuit, parallel computation, modeling, complexity 

 
INTRODUCTION 

 
 Molecular computing was emerged in 1994 by 
original paper of Adleman[8]. He proposed an algorithm 
for solving Hamiltonian Path Problem using molecular 
operations. Adleman's experiment ushered in a new 
computational paradigm for several reasons. First it 
showed that it is indeed possible to orchestrate 
individual molecules to perform computational tasks. 
Second, it showed the enormous potential of DNA 
molecules for solving problems beyond the reach of 
conventional computers that have been or may be 
developed in the future based on solid-state electronics. 
 Since Adleman’s pioneering experiment, several 
authors attempted to present efficient DNA algorithms 
to solve hard problems[18] and simulating conventional 
computing models such as Turing machines[15], Finite 
state automata[19], splicing system[3]. 
 Lipton[16] presented on early proposal for Boolean 
Circuit evaluation as a solution to SAT (Boolean 
formula satisfiability). Lipton and Adleman used 
exhaustive search to implement their algorithm. In 
exhaustive search, all the possible solutions are encoded 
by strands. Then the solution can be obtained from the 
exponentially sized initial set, by applying DNA 
operations. This approach is possible because of the 
inherent criteria of DNA strands as computing 
devices[12].  
 These criteria lie, on the one hand, in the potential 
of massive parallelism, which results in a greater 
number of computations per second in the sense that 

billions (or trillions) of DNA strands can be processed 
concurrently. On the other hand, it is because of large 
memory size that DNA molecules can provide for the 
entire computation processes. Nevertheless, 
Hartmanis[6] shows that, although laboratory 
computations should work for the small problem sizes, 
the experiments do not realistically work for even 
modest problem size because of the vast amount of 
DNA molecules required for initialization. For 
example, Hartmanis shows that a mass of DNA greater 
than that of the earth would be required to solve a 200-
city instance of the Hamiltonian path problem. In both 
Adleman's APP and Lipton’s SAT algorithms; the total 
volume of DNA present in a test tube at any time of the 
computation grows exponentially as a function of input 
size. As a result, their algorithms can handle instance 
size of up to 70 which are within the reach of silicon-
based computers. Therefore it is urgent to find 
applications where DNA computers outperform silicon-
based computers. 
 In spite of all efforts has been done to propose 
algorithms with low rate of volume[1,9], It is realized 
that NP-Complete problems may not be best suited for 
DNA computing. But other classes of problems are 
identified in which DNA based computation has real 
advantages. The best subject could be the evaluation of 
parallel computing models and Boolean circuits appears 
to be one of such problems. 
 Boolean circuits embody the notion of massively 
parallel signal processing and are frequently 
encountered in many parallel algorithms. Many 
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important problems such as sorting, integer arithmetic 
and matrix multiplication are known to be computable 
by small size Boolean circuits much faster than by 
ordinary sequential electronic computers[10]. The 
implementation of Boolean circuits would allow 
importing to the world of molecules the vast progress 
that has been made on information processing in 
electronic computers. A successful implementation of 
Boolean Circuits would lead to the construction of 
ordinary computers in bio-molecular, particularly the 
construction of parallel computers. 
 There are numbers of issues to be considered when 
simulating Boolean circuits. The first one is the choice 
of a computational basis. The standards basis consists 
of the and OR and negation. Another basis is the 
NAND gate. The second issue is feasibility of the 
methods and the third issue is the speed of the 
simulation. 
 Ogihara and Ray[10] suggested a DNA algorithm 
for implementing AND-OR basis Boolean Circuits that 
runs in time proportional to the size of the circuit. Their 
proposed algorithm works without exhaustive search. 
Amos et al.[13] described the first DNA based simulation 
of NAND Boolean circuits and improved the 
implementation to have run time that is proportional to 
the depth of the circuit. Ahrabian and Nowzari[4] 
proposed another algorithm for NAND circuits. They 
claimed that their algorithm is easier and the number of 
operation used is less than before. But they used error-
prone techniques such as PCR (Polymerase Chain 
Reaction). 
 Since then, all simulation models of Boolean 
Circuits has been constructed by OR and AND 
gates[12,11,5]. 
 Since it is well-known that the NAND functions 
provide a complete basis by itself and any Boolean 
functions can be implemented only by NAND 
gates[17,14], we restrict our model to the simulation of 
NAND Boolean circuits. 
 The contribution of this research is that the 
proposed approach is much easier for implementing in 
the laboratory, because the number of DNA operation 
used is much less than other models reported in the 
literature. We use only three operations: Annealing, 
Ligation and Denaturing gelelectropherese. 
Furthermore, the number of passes in each level is 
decreased to three passes that is less than half of 
previously reported ones. Therefore, the proposed 
algorithm is much faster in comparison with algorithms 
before proposed. Also, in this simulation, Amplify 
operation is not used because it is one of the most error-
prone operations.  

THE PRIMITIVE OPERATIONS  
IN DNA COMPUTATIONS 

 
 DNA is a linear polymer of four repeating units 
(bases) A, G, C and T that may occur in any order. Two 
linear chains can associate with each other to form 
partial or complete duplex only when two conditions 
are fulfilled: first the two linear chains must have 
complementary base sequences, where A is 
complementary to T and C to G. second, strands must 
have opposite chemical polarities (5′->3′ and 3′->5′). 
Thus, for making a duplex structure the two strands are 
antiparallel and complementary. When the two strands 
of DNA form a partial duplex and at least one of the 
two strands has a recessed 3′-end, then that end can 
grow to extend the duplex structure by laying down 
new portion of complementary antiparallel chain using 
the longer chain as a template. This is primer extension. 
Extension stops when it reaches the end of the template, 
under the condition that there is sufficient supply of 
monomeric precursors of A, T, G and C in the solution. 
This is also the basis of self-propagation of DNA. The 
process of making a duplex molecule from two 
complementary antiparallel single strands of DNA is 
Annealing (or Hybridization, or Renaturation).  
 The reverse process in which a duplex is converted 
into two single strands is Denaturation. Denaturation is 
conveniently accomplished by heating while cooling 
under appropriate conditions causes annealing. The 
melting temperature of a duplex of a particular 
sequence is the temperature in which fifty percent of 
the DNA molecules in a given mixture denature. This 
temperature is a function of DNA length and base 
sequence. When two DNA strands of the same polarity 
are annealed to a template strand such that the two 
shorter strands are adjacent to each other with no gap, 
then it is possible to connect the two shorter strands 
(Ligation) to produce one longer strand. The reverse of 
this process, in which a duplex DNA is converted to at 
least two shorter duplex molecules is “Restriction”. All 
the above processes are accomplished by enzymes that 
have either evolved naturally or can be designed tailor-
made[12].  
 

NAND-BASED BOOLEAN CIRCUIT 
 
 In this study the simulation model has been 
proposed based on a Boolean circuit with the following 
specification[4]: An n-input, m-input Boolean circuit is 
modeled as a directed cyclic graph, S(V, E), in which 
the set of vertices V is formed from three disjoint sets: 
In, the inputs of the circuit which there are exactly n; G, 
the internal gates and Om, the outputs which there are 
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exactly m. Each input vertex of In has in-degree 0 and 
are associated with a single Boolean variable xi from a 
given Boolean function. Each internal gate and output 
gate has in-degree 2 and is associated with the Boolean 
operation NAND. The internal gates will also have out-
degree 1. The m distinguished output gates Om are 
conventionally regarded as having out-degree = 0.  
 A Boolean circuit contains k levels (0…k-1). The 
input gates are appeared in the first level (level zero) 
and the output gates appear in the last level (level k-1), 
all the intermediate gates are presented in between the 
first and the last level (levels 1...k-2). The input s of 
each intermediate and output gates are supported by the 
outputs of the gates in the previous level. An 
assignment of Boolean variables from <0, 1> to the 
input In ultimately induces Boolean values at the output 
gates Om.  
 The n-input, m-output Boolean circuit C is said to 
compute an n-input, m-output Boolean function f,  
f (In): <0,1>n � <0,1>m, on other words, for any input 
we have : 
 f (i) (In): <0,1>n � <0,1> : 1� i �m if �� ∈<0,1>n 
and � 1 � i �m Oi (�) =f (i) (�). 
 There are two criteria for Boolean circuits that are 
considered for standard complexity measures: the size 
of the circuit and the depth of the circuit. The size of 
the circuit C, denoted by size(C), is the number of gates 
in C and the depth of C, denoted by depth (C) is the 
length of the longest directed path in it. 
 

IMPLEMENTING IN LABORATORY 
 
 Molecular computation consists of two phases[2]: 
generating volumes and computation step. In the first 
stage, the needed strand is generated in tubes and in the 
next pass, DNA operations is applied on tubes to get 
result. Therefore our simulation consists of two phases 
too: 
 
• Initial Pass 
• Level implementation 
 
 In this simulation, we try to present an easier and 
faster algorithm. In this method, we focus on inputs 
with value zero and encode them. Output of gates with 
value zero in each level is passed to next level as inputs.  
 In the following we describe each phase in more 
detail. 
 
Initial pass: For initialization, we consider a tube Ti for 
each  level  i,  0�i�  depth  (C).  In  this  method, in 
spite of previous ones, we encode the inputs with value 
0. Therefore we consider a tube T0, consisting unique 

strands of length l, each of which corresponds to only 
those having value 0. Then, for each level 1�k< 
depth(C), we create a tube Tk containing unique strands 
corresponds to each gate in that level. We denote the jth 
gate at level k by gjk . If gate gik takes its input from 
gates m

k 1g − , n
k 1g − and x, y and z be corresponding strands 

to gates m
k 1g − , n

k 1g −  and gik, respectively. Suppose that 
x, y, z  be the complement string of x, y, z. Then, For 
each gate gik we consider two strings: a string of length 
l and a linked-string of length 3l that is in the form of 
x z y . 
 
Level implementation: In this path, for each level k, 
1≤ k ≤ depth(C), we pour tube Tk-1 into tube Tk. After 
decreasing the temperature, the strands are annealed. 
This process is showed for one gate in Fig. 1. Then we 
prepare the condition for melting. After that, we 
separate all strands of length l representing gates with 
output 0. This subset forms the input to tube Tk+1.  
 The Molecular algorithm for Evaluation of 
Boolean Circuit C (MEBC) proceeds as follows for 
each level 1≤ k ≤ depth(C): 
 
• Pour the contents of tube Tk-1 into tube Tk. By 

decreasing temperature, the strands are annealed 
• Add ligase enzyme to Tk in order to seal any nicks 
• Denature the strands and run Tk through a gel, 

retaining only those strands of length l. Retrieve 
the product and place it in an (empty) tube TK. 
This tube forms the input to Tk+1. Now, we can 
proceed the simulation of level k+1  

 
 Eventually, after repeating the above stages for all 
levels, if Tdepth(C); the tube in the last level, does not 
contain any strand with length l, it can be considered 
that the final output for the circuits is one; otherwise is 
zero. 
 

 
 

Fig. 1: Simulation of NAND gate 
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COMPUTER BASED SIMULATION 
 
 We illustrate with a small circuit how the 
simulation works. Consider the circuit in Fig. 2. x1, x2, 
x3 and x4 are inputs and p, q and r are gates. We 
consider the following strands for input variables: 
 
µ1: 5′ -GATTACGAAC- 3′  
µ2: 5′ -CTACCCTGCT- 3′ 
µ3: 5′ -TGCATCTTGG- 3′ 
µ4: 5′ -GCCTACGTCA- 3′ 
 
The gates p, q and r are also represented by 
 
µP: 5′ -ATCGGCTAAG- 3′ 
µq: 5′ -CTGTCGAATG- 3′ 
µr: 5′ -TTAGCGGTAC- 3′ 
 
 We evaluate the circuit with inputs: x1 = 1, x2 = 0, 
x3 = 1 and x4 = 1. Therefore the tube T0 contains µ2 
and T1 contains µp, µq and linked-strands of them. 
Now, the tube T0 is poured into T1. After hybridization 
and ligation, T1 contains: 
 

 
 

 
 

 
 

Fig. 2: Simulation of NAND gate 

 The temperature is increased, then the strands are 
melted. We have: 
 

 
 
and 
 

 
 
 We  eliminate all the strands with length more than 
l. Therefore, the tube T1 containing the strand µq forms 
the input to next level. Now, T1 is poured into T2. The 
strands are annealed. After Ligation, T2 contains: 
 

 
 
 After melting the strands would be as follow: 
 

 
 
 We remove all the strands with length more than l. 
finally, after doing above stages since T2 is not 
contained any strands with length l, we can induce that 
the final output of circuit is one. 
 

ALGORITHM ANALYSIS 
 
 At first, we analyze the proposed algorithm in 
terms of feasibility of its molecular operations. In this 
model, we use standard molecular operations that are 
used by Ogihara and Ray[10] and Amos and E. 
Dunne[13]. 
 There are two standards (criterion) to measure the 
efficient of molecular algorithms: time complexity, 
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which is proportional to the number of molecular 
operations on test tubes and space or volume 
complexity, which is the maximum number of strings in 
all test tubes at any time. The time and volume 
complexity for the proposed algorithm are given by the 
following theorem: 
 
Theorem: Algorithm MEBC for NAND_based 
Boolean circuits of size S and depth D is performed in 
O(D) with volume complexity O(S). 
 
Proof: In this algorithm we use only three standard 
molecular operations in each level: Annealing, Legation 
and Denaturing gelelectropherese. Therefore, for 
evaluating a NAND Boolean circuit of size S and depth 
D, 3D computation steps is needed. Then the time 
complexity of this algorithm is O(D). On the other 
hand, the number of strands used in this simulation are 
bounded by O(S). 
 Based on Gilbert-Varshamov theorem[7], One can 
show that there is a set of 1.6×1012 distinct 40 base 
oligonucleotide sequences such that: 
 
• For any two sequences A and B, A disagrees with 

B and its complement at 10 positions. 
• No sequences contain the pattern that is cleaved by 

the Restriction enzyme. 
 
 Thus, we can handle at least one trillion wires by 
encoding the gates as 40 base oligonucleotide 
sequences. On the other hand, one trillion wires are 
beyond the reach of digital computers[12]. 
 

CONCLUSION 
 
 In this research, we described an abstract model for 
the simulation of NAND-based Boolean circuits using 
DNA. This model is implemented in linear order of 
time and volume complexity and can be considered as a 
“killer” application in DNA computing. 
 The novel of our method is that we only use three 
standard bio-molecular operations. In addition, there are 
three passes in each level, in contrast to previous 
simulation which have five or seven passes. Also, the 
proposed implementation of our model avoids using the 
error-prone techniques, such as PCR. Thus, it 
considerably reduces the degree of physical 
manipulation of tubes of DNA.  
 This minimizes potential problems such as strand 
shear and material loss due to strands sticking to the 
surface of the tubes. Despite of existing algorithms, We 
have implemented the proposed algorithm without 
using restriction operation. 

 Furthermore, our simulation method is much faster 
and easier to implement in laboratory. In this research, 
we consider that the fan-out of each gate and the 
number of output gates, is one. In the future work, we 
will present a DNA-based algorithm for evaluating 
circuits with fan-out greater than one.  
 But, we have not yet attempted to physically 
realize our model in laboratory. We acknowledge the 
substantial practical difficulties in implementing the 
model for even small circuits and we emphasize that 
much more work is needed to be done on establishing 
the error-resistance of basic operations.  
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