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Abstract: The paper addresses a simple and fast new approach to implement Artificial Neural 
Networks (ANN) models for the MOS transistor into SPICE. The proposed approach involves two 
steps, the modeling phase of the device by NN providing its input/output patterns, and the SPICE 
implementation process of the resulting model. Using the Taylor series expansion, a neural based 
small-signal model is derived. The reliability of our approach is validated through simulations of some 
circuits in DC and small-signal analyses.  
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INTRODUCTION 
 
 Although the MOS (Metal Oxide Semi-conductor) 
transistor [1-2] is not a recent semi-conductor device, it 
remains of a potential interest for large-scale Integrated 
Circuits (IC) due to its electrical properties. 
Owing to the rapid changes in semi -conductor 
technology, development of models to characterize the 
new transistor behaviors has become a continuous 
activity and an essential component of the design cycle. 
Therefore, it is very important for efficient Computer 
Aided Design (CAD) tools to have good modeling 
approaches able to predict the device DC and small-
signal nonlinear behaviors. These models must be 
accurate, reliable, easily extracted and have limited 
computational requirements.  
 Several SPICE models for the MOS transistor have 
been reported [1-3]. However, most of them use more 
than one equation to capture the non-linear MOS 
behavior under the different operating regions. Since 
SPICE was written originally for silicon devices only, 
differences with other material devices, GaAs among 
others, need to be handled. Hermann et al. [4] showed 
how it is complex to adapt SPICE models. Existing 
approaches for transistor modeling are based on lumped 
equivalent circuits. The equivalent circuit approach 
involves determination of an equivalent circuit topology 
and formulation of the circuit elements. Such an 
approach not only requires experience but also a 
difficult trial and process. 
 Recently, ANN have been recognized as a 
powerful tool for modeling and optimization problems 
[5-8]. The  universal approximation property of ANN [9-

10] provides them the ability to learn any arbitrarily 

nonlinear input-output relationships [11-14] from 
corresponding measured or simulated data.   
Moreover, researches started investigating NN 
approaches to model transistor DC [15-19], small signal 
[20-21], and large-signal [22-27] behaviors. Xiuping et al.  
[28] have proposed an improved microwave active 
device modeling technique based on the combination of 
the equivalent circuit and ANN approaches. NN 
transistor models can be developed even if the device 
theory/equations are unavailable. Works dealing with 
the implementation of NN models into SPICE are rare. 
We mention the reference [29-30] describing the 
implementation of NN in SPICE as electrical circuits.  
 We present a NN model for the MOS transistor 
given by a single mapping function. As the drain 
current depends of the drain-to-source, Vd and gate-to-
source, Vg, bias voltages, it was implemented into 
SPICE as a voltage-controlled current source. Using the 
Taylor series expansion, a small signal MOS model is 
derived. 
 

MATERIALS AND METHODS 

Problem statement: DC model: Commonly used NNs 
structures for black box modelling are Multi-Layer 
Perceptron (MLP). A MLP with one hidden sigmoid 
layer is able to model almost any physical function 
accurately provided that a sufficient number of hidden 
neurons are available  [31-32]. 
 In our study, in the simplest situation, we may 
consider the MOS transistor as a three-terminal device. 
The drain current Id is the predominant nonlinear 
element in the transistor, which depends, on DC 
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behavior, on the drain-to-source, Vd and gate-to-source, 
Vg, bias voltages. So the terminal voltages Vd and Vg 
are the neural network input parameters and the drain 
current Id is the NN output. One hidden sigmoid layer is 
introduced (Fig.  1). So the DC current Id can be easily 
provided once an MLP network is trained from the DC 
measurements. 
 D 
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Fig. 1: The neural MOS transistor model and symbol 
 
Small-signal model: The general problem of modeling 
a MOS transistor in small-signal function can be stated 
as follows [33]. The nonlinear small-signal drain 
current Id

SS depends on both the drain-to-source and 
gate-to-source bias point (Vd0,  Vg0) and the drain-to-
source and gate-to-source dynamic voltages over the 
bias point (vd,vg). The instantaneous voltages would be 
the sum of both voltages, that is, Vd=Vd0+ vd and 
Vg=Vg0+vg. With these premises, our modeling problem 
consists in finding a function Id=f(Vd0, Vg0, vd, vg) that 
provides the estimate of the drain current as a function 
of the bias and the dynamic voltages. 
If the input excitation is small enough, we deal with a 
so-called small-signal function. In this case, Id

SS can be 
represented in a small interval around the bias point by 
the following two dimensional truncated Taylor series 
expansion: 
Id

SS= Id0 + Gmvg+ Gdvd + Gm
2 Vg

2+ Gmd vdvg + Gd
2

 vd
2 

+ Gm
3vg

3+ Gm2dvdvg
2+ Gmd2vd

2vg+ Gd3vd
3               (1)  

where Id0 is the DC current and (Gm, …, Gd3) are 
coefficients related to the nth-order derivatives of the 
I(V) characteristic with respect to the instantaneous 
voltages evaluated at the bias point. Therefore, our 
small-signal modeling problem consists of fitting a 

function (model) 102 RR:g → , which approximates 
the nonlinear mapping from the input space of bias 
voltages V=(Vd0, Vg0) to the output space of 
coefficients of Taylor expansion g(V)=(Id0, Gm, Gd, 
Gm2, Gmd, Gd2, Gm3, Gm2d, Gmd2, Gd3). Once this model is 
available, the drain current will be reconstructed by 
using the truncated Taylor series expansion (6).  
So, to be able to model the Id

SS behavior our model 
must accurately fit not only the nonlinear function but 

also its n th derivatives. The DC current Id0 can be easily 
obtained from the NN once trained. The Taylor series 
coefficients should be extracted from DC Id model by 
differentiating the NN expression as it is n times 
derivable. For instance, Gm is given by: 

g

d
m V

IG
∂
∂=                  (2) 

Consequently, the parameters (Gm, …, Gd3) as well as 
the DC current Id0 are the output targets of our unified 
model. On the other hand, the input patterns are the 
drain-to-source and gate-to-source, bias voltages. 
Once the neural network is trained, it provides, for each 
input bias point, a set of ten parameters which could be 
used to reconstruct a small-signal MOSFET model by 
using the truncated Taylor series expansion. Its block 
schematic is shown in Fig. 2, the NN to predict the 
drain current forms the heart of this model.  
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Fig. 2: The block schematic of MOS small-signal 
model 

 
The modeling process: DC characteristics of 
transistors can be obtained either from simulations or 
measurements. The MLP can be trained using such data 
to produce fast and accurate DC neuromodels. For this 
work, the training samples are collected by T-SPICE 
simulations using BSIM3 according to 0.35µm-5V 
AMS technology. The n transistor length and width are 
1µm and 2µm respectively. The device is fully 
characterized from gathered data with Vg and Vd 
ranging from 0 to 5V each. DC simulations were taken 
for the drain current Id. A training set of 1300 points 
was used. 
 The magnitude order of the output parameter Id is 
very different, so output scaling is necessary to improve 
the NN training process. Applying logarithm scale to 
outputs with large variations balances large and small 
magnitudes of the output in different regions of the 
model. Lets )Iln(I dd = be the scaled drain current 

that will be the output target of the NN. The inverse 
transformation is exponential. 
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 Series of neural networks with different numbers of 
hidden neurons are trained using Levenberg Marquardt 
algorithm [34]. The MLP with 15 hidden neurons was 
found to provide the best trade-off between the desired 
accuracy and the model complexity. A training Mean 
Squared Error (MSE) of 2.3e-4 was obtained after 1000 
iterations.  
 The same modeling process is valid to approximate 
the n and p transistors as having analogous behaviors. A 
NN with 11 hidden neurons is obtained for a 1µm 
length and 8µm width p channel transistor. 
 
Model validation: In order to evaluate their 
generalization capabilities, during the test phase, the 
neuromodels are used to predict the drain current for 
gate-source voltage values that are not included in the 
training set. An example of such result is shown in Fig. 
3 where the n model responses are compared with 
original data. A good agreement of the approximated 
(neural) and the original (SPICE) characteristics may be 
noticed.  
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Fig. 3:  A comparison of predicted (NN) and original 

(SPICE) Id(Vd) characteristics of the n MOS 
transistor 

 
Fig. 4 shows the Gm parameter curve as an instance of 
the behavior of the neural model in a small-signal 
situation. 

 
Fig. 4: Gm Parameter provided by the proposed neural 

model 
 

Implementation into SPICE: As mentioned 
previously, the main element contributing to the non-
linear behavior of the MOS device is the drain current 
Id, that is function of the two bias voltages Vd and Vg. 
So, in SPICE implementation, the MOS may be 
considered as a voltage-controlled current source. The 
voltage-controlled current source is a two-terminal DC 
current supply function of one or more controlling 
voltages. Its general syntax is given as follows [35]: 
gname node1 node2 [cur=’expression’] 
 This statement creates a current source according 
to the expression given between quotes. In our case this 
expression is determined by the NN function. Indeed, 
the results of the training process are weights and 
thresholds associated with the neurons. Besides, a NN 
is in essence a mathematical equation that evaluates the 
output variable given input ones. In our case, the NN 
evaluates the scaled drain current dI  in function of the 
terminal voltages Vd and Vg. Equation 3 corresponds to 
the expression of the output of the neural model of the 
MOS type n. 
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where { }gdi V,VV = , 15 is the number of the hidden 
neurons and tansig is their activation function. wki and 
θk are the neurons weights and thresholds respectively. 
We used the logarithm scaling to reduce the dynamic of 
the drain current, so, for the descaling, we apply the 
exponential function. Therefore, the final expression of 
the drain current is given by the equation 4. 
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The gate current of the MOS transistor is always 
neglected and could be modeled by a null current 
source. So, in SPICE simulations, the implemented 
MOS model is a subcircuit constituted of a null current 
source Ig and a voltage-controlled current source gd 
which expression is given by the neural function. The 
equivalent circuit of the MOS is depicted on Fig. 5. 
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Fig. 5: The new SPICE MOS model 
 
 Implementation approach takes advantage of the 
subcircuit definition option in SPICE. The general form 
is: 
.SUBCKT SubName Node1 Node2 Node3 ... 
circuit element lines 
.ENDS 
 A subcircuit definition begins with the .SUBCKT 
line. SubName is  the subcircuit's name. Node1, Node2, 
etc. are the external nodes. Only these nodes connect 
outside the subcircuit. The circuit element lines which 
immediately follow the .SUBCKT line define the 
subcircuit. The last line in a subcircuit definition is the 
.ENDS line. 
 After the implementation of the MOS model into 
SPICE, it can be used in simulation. This involves two 
procedures: initializing the model definition within a T-
SPICE input file by means of the .subckt statement and 
instancing the device by means of the instance (x) 
statement.. 
 The expression of the .subckt of the MOS neural 
model is given by: 
.subckt  nmos Nd Ng Ns 
Ig Ng Ns 0  
gd Nd Ns 
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.ends 
where Nd is the drain-node, Ns is the source-node and 
Ng is the gate-node of the device. nmos is the device 
name. 
The device is instanced by: 
Xn Nd Ng Ns nmos   
 

RESULTS AND DISCUSSION 
 
 In order to demonstrate the merit of our proposal, 
we simulate with the implemented transistor models 
some frequently used circuits in DC function, and in 

small-signal analyses. A comparison with the 
corresponding SPICE responses will be given.  
 
Neural CMOS inverter simulation: A CMOS inverter 
is realized by the series connection of a p and n devices 
[36] as shown in Fig.  6. The nMOS and the pMOS 
transistors have their gates connected together as the 
input and their drains connected together as the output. 
 
a)                                   b) 

 Vin 

 Vdd 

 Vout 
 Vout  Vin 

 Vdd 

 
Fig. 6: (a) CMOS inverter, (b) Neural CMOS inverter 
 
 The static behavior of the CMOS inverter is 
simulated using the n and p implemented neural 
transistor models. Fig. 7 depicts the neural CMOS 
transfer characteristic. The comparison between the 
result predicted by the neural CMOS and the SPICE 
curve (solid lines) can easily be made through the same 
graphic. Herein, a good agreement may be noticed in 
the whole domain of interest.  
 

 
Fig. 7: Comparison of the Neural CMOS transfer 

characteristic to the SPICE one 
 
MOS Cascode Current Mirror simulation: One of 
the fundamental analog blocs is the cascode current 
mirror shown on Fig. 8. Its main function is to duplicate 
the input current Iin. R1 and Vdc are not part of the 
current mirror circuit; they are the load of the circuit. 
Vdc will be swept from 0 to 5V in order to vary the 
output voltage from 0 to 5V. Iin will be swept from 
0µA to 100µA. 
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Fig. 8: MOS Cascode current Mirror 
  
 SPICE simulation of the cascode current mirror 
based on the implemented neural models leads to the 
characteristics depicted in Fig. 9 superposed to the 
corresponding original curves. The figure shows 
Iout(Vout) characteristics for different Iin values. Good 
agreement between the original and the neural curves is 
noticed. 
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Fig. 9: Simulated performance of the cascode current 

mirror 
 
Validation on small-signal function: In order to 
illustrate the small-signal model, an NMOS inverter is 
used to predict its small-signal current and output 
voltage and to be compared to the SPICE response. An 
inverter is constituted of an nMOS transistor in serial 
with a resistor placed on its drain (Fig.  10). We apply 
as input a sinusoidal signal of 0.1V amplitude with a 
DC offset of 1.5V at frequency of 100 Khz. 
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Fig. 10: Neural NMOS inverter 

Fig. 11 shows a plot comparing SPICE responses 
(dashed lines) and the neuromodel results (solid lines) 
from our approach for the small-signal current and the 
output of the NMOS inverter. 
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Fig. 11: Response of the neural-based model in small-

signal simulation  
 

CONCLUSION  
 
 Using the artificial neural networks, we developed 
a simple, accurate, and fast model for the MOS 
transistor. The drain current Id is the main parameter 
contributing to the non-linear behavior of the device. 
Being function of the drain-to-source, Vd and gate-to-
source, Vg, bias voltages the Id current was 
approximated as a voltage-controlled current source and 
implemented into SPICE simulator. Using the Taylor 
series expansion, a small-signal model for the MOS 
device was derived. The extracted small-signal 
parameters of a device can be used to perform a manual 
approximated study for any electrical structure. 
 Comparing simulation results to the SPICE ones, 
good accuracy and validity were obtained by the 
proposed approach. The fact, that the outlined approach 
is versatile and technology independent, makes it a 
suitable tool for rapid modeling of new devices, and 
potentially utilized for large-scale circuit simulation. 
The obtained models may be integrated to SPICE 
without any additional optimization constraint or 
compatibility problems. A more generic model for the 
MOS device is prospected including geometric  
parameters mainly the transistor length and width 
dimensions. 
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