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Abstract: An analytical solution for computing the radial and circumferential stresses in a FGM thick 
cylindrical vessel under the influence of internal pressure and temperature is presented in this paper. It 
has been assumed that the modulus of elasticity and thermal coefficient of expansion were varying 
through thickness of the FGM material according to a power law relationship. Nevertheless the value 
of the Poisson ratio was taken as constant throughout the material. In the analysis presented here the 
effect of non-homogeneity in FGM thick cylinder was implemented by choosing a dimensionless 
parameter, named β, which could be assigned an arbitrary value affecting the stresses in the cylinder. 
Using Maple 9.5, distribution of stresses in radial and circumferential directions for FGM cylinders 
under the influence of internal pressure and temperature gradient were obtained. Graphs of variations 
of stress versus radius of the cylinder were plotted for different values of β. Cases of pressure, 
temperature and combined loadings were considered separately. It was concluded that by changing the 
value of �, the properties of FGM could be so modified that the lowest stress levels were reached. The 
stresses which were produced in FGM and homogeneous material with the same boundary conditions 
were compared to obtain the optimum value of β. 
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INTRODUCTION 

 
 Functionally Graded Materials (FGM) are 
composite materials with varying properties through 
thickness. They have thermo-mechanical properties 
which vary through their thickness and were first 
conceived by a group of researchers in Japan[1, 2]. The 
main advantage of such materials which are unique to 
themselves is the possibility of tailoring the desired 
properties. Obviously FGM’s could be used in a variety 
of applications which have made them very attractive. 
 FGMs are fabricated by continuously changing the 
volume fraction of two basic materials, usually ceramic 
and metal, in one or more directions.  The FGMs that 
are thus formed exhibit isotropic yet non-homogenous 
thermal and mechanical properties.  These kinds of 
materials are treated as non-homogenous with material 
contents that vary continuously along one spatial 
direction. 
 Accounts of thermo-elastic and thermo-inelastic 
problems are given in an extensive review by Noda[3]. 
Shen[4] has studied the thermal post buckling of 
functionally graded plates and shells. Solutions to the 
problem of the uniform heating of a circular cylinder by 

the Frobenius series method was presented by 
Zimmerman and Lutz[5]. Obata and Nodo[6] applied the 
perturbation approach to investigate the thermal stresses 
in a FGM hollow sphere and in hollow circular 
cylinder. Ootao and Tanigawa[7] conducted an 
optimization of the material composition of FGM 
hollow circular cylinders under thermal loading. A 
thermo-mechanical analysis, including the coupling 
effect, for FGM plates and cylinders was presented by 
Ready and Chin[8]. Tanaka et al,[9] gave an improved 
solution to thermo-elastic materials designed in 
functionally gradient materials in order to reduce the 
thermal stresses.  They designed FGM property profiles 
using a sensitivity and optimization method. 
 Wetherhold et al.[10] presented their work for the 
estimation and control of deformation of FGMs under 
thermal loadings. Distribution of thermal stress and 
deformation in functionally graded material shells of 
revolution under thermal loading due to fluid were 
investigated by Takezono et al.[11]. Zhang et al.[12] 
presented an analytical solution for thermal stresses of 
axial symmetry functionally gradient materials under 
steady temperature field. Fukui, Y. and Yamanaka,              
N[13]   considered   the   analysis  of  FGM  thick-walled 
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tubes. Salazar[14] also used finite element method to 
obtain solutions for functionally graded metal matrix 
composite tubes. 
 The problems in solid mechanics involving 
inhomogeneous media are relatively straight forward. 
Such problems can be formulated in terms of partial 
differential equations with variable coefficients by 
using the basic conservations laws. There has always 
been difficulty in developing general methods for 
solving specific boundary value problems.  In fact, for 
the most general second-order partial differential 
equations with variable coefficients, such general 
methods do not exist. Because of this difficulty, all 
existing treatments dealing with the mechanics of 
inhomogeneous solids are based on a simple function 
representing material inhomogeneity. For example, in 
the half-plane elasticity problems considered in[15]              
and[16], it is assumed that the shear modulus is a power 
function of the depth coordinate of the form                      
µ(y) = µ0 y

m and the passion’s ratio v is constant. It is 
assumed that the material is isotropic with constant 
passion’s ratio and radially varying elastic modulus is 
approximated by E(r) = E0rβ. Since r is away from zero 
and ranges in (a, R), by adjusting the constants E0 and 
β, it is possible to obtain physically meaningful results. 
The range  −2�2β�2 to be used in the present study 
covers all the values of coordinate exponent 
encountered in the references cited earlier[19].  However, 
these values for β do not necessarily represent a certain 
material. Various β values are used to demonstrate the 
effect of inhomogeneity on the stress distribution. 
 Liew et al.[17] presented an analysis of the             
thermo-mechanical behavior of hollow circular cylinder 
of functionally graded material. They introduced a 
novel limiting process that employed the solutions of 
homogenous hollow circular cylinders. Cylindrical 
vessels are often used as basic structural components in 
engineering applications. 
 Much research has been conducted on isotropic or 
laminated composite plates and shells[10],[11]. However it 
seems that very little has been done on FGM thick 
vessels. Analytical solutions have been given by 
Johnson and Mellor[18] for thick cylindrical vessels 
under pressure and temperature loading. Exact solutions 
for stresses in functionally graded pressure vessels were 
presented by Tutuncu and Ozturk[19]. They used a 
material stiffness obeying a simple power law, and 
determined the inhomogeneity constant which included 
continuously varying volume fraction of the 
constituents. Eslami et al.[20] gave accounts of their 
work on the mechanical and thermal stresses in a FGM 
hollow cylinder due to  radially  symmetric  loads. They 

assumed the temperature distribution being a function 
of radius and used a direct method to solve the heat 
conduction and Navier equations. In a similar work, 
Eslami, Babaei and Poultangari[21] investigated the 
thermal and mechanical stresses in a FGM sphere using 
the same method as in[20]. Hence this paper will develop 
an analytical model to give solutions for FGM hollow 
cylindrical vessels that are subject to the action of an 
arbitrary steady state temperature field, considering 
pressure effects. This analysis uses the basic equation 
suggested by references[18], [19] and extends them to 
include the effect of temperature as well. 
  

THEORY 
 
 The stress distribution in a thick-walled cylinder 
under the influence of internal pressure and temperature 
loading for homogenous materials, have been 
formulated by reference[18]. Here the same kind of 
procedure has been used except that the material is  
non-homogenous and therefore the properties change as 
one moves along the radius of the cylinder.  
 Consider the cross section of a cylindrical pressure 
vessel as shown in Fig. 1, with the internal radius “a” 
and    external      radius      “b”     and     “r”   which   is 
normalized as                      where “R” having a value 

between  a  and  b. Then  in  order  to   account   for  the 

changing material properties along the radius, a power 
law relationship[19] is used as follows:   
  
 
 (1) 
 
 
Substituting r = 1 in above equation could draw that           
E0, α0 are the modulus of elasticity and thermal 
coefficient of expansion of outer surface. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1: Cross section of a cylindrical pressure vessel 

with internal radius “a” and external radius “b” 
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 Note that the value of Poisson’s ratio has been 
taken as constant because although the material is not 
homogenous but considering that all materials almost 
have a constant Poisson’s ratio value in the elastic 
range, this is a reasonable assumption.   
 Now the formulation begins with the expressions 
for the strain and stress distributions through the 
thickness of the cylinder using the equilibrium equation 
as follows:    
 
 (2) 
 
 As this is a plane strain problem and hence the 
longitudinal strain is zero, the radial and circumferential 
strains are given in terms of displacements, as: 
 
 
 (3) 
 
 
 
 It could easily be shown that the stresses in the 
radial and hoop directions are given by: 
 
 
 
  (4) 
 
 
 
 However if in Eq. (2) we substitute for stresses 
from Eq. (4), and also substitute for strain from (3), the 
following equation could be obtained for displacement: 
 
 
 (5) 
                                                                           
Where 
 
 
 
 This is a non homogenous form of Euler-Cauchy 
equation. By using the variation of parameters method 
(Lagrange) we have the following solution: 
 Considering the solutions of homogeneous form of 
this equation which was presented in[19], we know that 
general solution of homogenous form of above            
Euler-Cauchy equation is: 
 
 
 
 
Where S1 and S2 are given by: 

 
 
 
 
 
  
 Variation of parameters method was used for 
achieving the particular solution which is presented as 
flows: 
 
 (6) 
 
Where 
 

 
Also the temperature gradient is given by: 
 
 
 (7) 
 
 
 Note  that  above  relation  is   normalized  form  of 
temperature gradient which was presented in[18] and 

“w” equals to     . 

 Substituting (7) into (6) and using Eq. (5) after 
simplifying, particular solution was obtained: 
 
 
 (8) 
 
Where m1 and m2 are given by: 
 
 
 
 
 
 
 
 
 Solution for the problem in fact should be sum of 
general and particular solutions and could be given for 
the displacements in terms of which strains and stresses 
are defined: 
 
 
 (9) 
 
 In above equation G and H are unknown constants 
which were obtained by applying boundary condition 
and following the below process: 
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The boundary conditions are also given by: 
 
 
 
 
 Now using the boundary conditions and 
substituting for u from (9) into (3) and subsequently (3) 
into (4), we arrive at a set of equations with some 
unknown constants which were called G and H and 
after solving these equations they are given as follows: 
 
 
 
 
 (10) 
 
 
 
 
Where again n1 and n2 are given by: 
 
 
 
 
 
 
 Therefore substituting G, H back in the 
displacement Eq. (9) and substituting the obtained 
equation of displacement back in strain and 
subsequently stress equations, the final relationship for 
the distribution of stresses could be obtained as follows: 
 
 
 
 
 
 
 
 
 (11) 
 
 
 
                                                                        
      
 Stresses for the cylindrical FGM pressure which 
obtained above will be compared with those for the 
homogenous ones. The stress expressions for 
homogenous cylinder are presented below. Note that 
these are normalized form of what were mentioned              
in[18]. 

 
 
                                                                         (12) 
 
 
 
 Above expressions can also easily be obtained by 
setting β = 0 in the FGM case (of course considering 
computational errors, we choose 10−10for β instead            
of zero). 
 

RESULTS AND DISCUSSION 
 

 The analytical solution presented in the previous 
section was applied to a thick hollow cylinder of inner 
radius a = 0.75m and outer radius of b = 1m. The 
modulus of elasticity and the thermal coefficient of 
expansion at the outer surface of the cylinder were 
taken as E0 = 200Gpa and α0 = 1.2 �10�6/°C 
respectively. Poisson ratio assumed to be constant              
(v = 0.3). The internal pressure was taken to be equal to 
400Mpa and the external pressure was assumed to be 
zero. The values of temperature at the inner and outer 
surfaces were assumed to be ta = 1000°C and tb = 0°C 
respectively. 
 
Pressure only: The results for internal pressure loading 
were normalized with respect to the homogenous 
cylinder to study the impact of the inhomogeneity on 
the results for the FG cylinder. The distribution of 
radial stress for different values of β is seen in Fig. 2. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2: variations of normalized radial stress in a 

cylindrical vessel under the loading of pressure 
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Fig. 3: Distribution of circumferential stress in 

cylindrical vessel under the loading of 
pressure 

 
 Here a higher value of β means increasing stiffness 
(see Eq. (1)). It could be seen from Fig. 2. that for 
higher positive β values the stress in the radial direction 
increases while for a negative value of β it decreases. In 
Fig. 3 for positive values of � the maximum hoop stress 
occurs at the outer surface of the cylinder while for 
negative values of β the maximum happens at the inner 
surface. At a radial distance of r = 0.87 the stress values 
for all values of β converge towards the stress values in 
the homogenous material (β = 0). 
 
Temperature only: The effect of thermal loading as 
seen in Fig. 4 and 5, indicates the fact that just like the 
behaviour of homogenous cylinder, in FG cylinder too, 
the stress distribution trend for the thermal loading is 
opposite to that due to internal pressure. However for 
positive values of β the distribution of radial stress as 
seen in Fig. 4. indicates a fairly uniform trend as 
compared to that obtained for the negative values of β. 
Also for negative values of β much higher values are 
observed at the inner surface of the cylinder. As                
shown in Fig. 5. the circumferential stress in                 
general increases and becomes a maximum at the             
outer surface of the cylinder. For larger values                   
of β lower stress values are observed. It could                    
also be seen form the same figure that  there                        
is     a     sudden    drop    at    about     the    mid-surface 
(r = 0.85 to 0.9) of the cylinder wall depending on the β 
values. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4: Variations of normalized radial stress in a 

cylindrical vessel under the loading of 
temperature 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 5: variations of circumferential stress in a 

cylindrical vessel under the loading of 
temperature 

 
Combined loading (pressure + temperature): Since 
both pressure and temperature loadings are in the elastic 
range, the principle of superposition was applied for the 
combined loading and the following results were 
obtained. 
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Fig. 6: variations of normalized radial stress in a 

cylindrical vessel under the combined loading 
of pressure and temperature 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 7: variations of normalized circumferential stress 

in a cylindrical vessel under the combined 
loading of pressure and temperature 

 
 
 In Figure 6, normalised values of radial stresses 
were plotted against radial positions in the cylinder 
walls.   However  for  higher  values  of  β  larger  stress 
values are observed at the outer surface of the cylinder 
while for the lower values of β smaller stress values are 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 8: Displacement in a cylindrical vessel under the 

combined loading of pressure and temperature 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 9: Distribution of relative radial stress in a 

cylindrical vessel under the combined loading 
of pressure and temperature 

 
obtained. This could be interpreted physically meaning 
that the outer surface of the cylinder is biased to bear 
the stress due to its higher stiffness. 
 In Figure 7, it could be noted that the combined 
effect of temperature and pressure loading on the hoop 
stress also produces the same stress values at about              
r = 0.88. Here again higher β values give higher stresses 
at the outer surface of the cylinder  while  they  produce 
lower stresses at the inner surface. The radial 
displacement could be observed in Fig. 8 to have 
reduced at the outer surface of the cylinder with respect 
to   the   inner  surface  but  for  higher  β  values  larger 
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Fig. 10: Distribution of relative hoop stress in a 

cylindrical vessel under the combined loading 
of pressure and temperature 

 
displacements are possible. Figure (9) shows the 
normalised values of radial stress with regard to the 
internal pressure increase from inner to outer surface 
and not showing much difference for different values of 
�. Similar results for the relative hoop stress with 
respect to internal pressure are also shown in Fig. 10. 
Higher positive β values give higher stresses at the 
outer surface and negative values give lower stresses at 
the same position. 
 From above results it could be said that the FGM 
exponent of Eq. (1) could be used as a very useful 
design parameter for tailoring the stress distributions to 
fit to the specific applications. 
 

CONCLUSION 
 
 The following conclusions could be drawn from 
the work presented in this paper: 
 
1) A closed form exact analytical solution was 

obtained for the combined pressure and 
temperature loading of FGM circular cylinder. 

2) Depending on applied boundary condition, by 
selecting optimum value of β, desirable level of 
radial and circumferential stresses could be 
obtained in FGM cylinders with respect to those in 
homogenous ones. 

3) By setting β = 0 in Eq. (11), radial and 
circumferential stresses expressions turned to 
homogenous ones which could assent the validity 
of formulation. 

4) For further work the present formulation could be 
extended and developed for the yield region so that 
an elastic plastic solution could be obtained. 

5) Another possible line for further research is the 
assumed power law for the FGM properties which 
could perhaps be replaced by a more realistic form 
with regard to the manufacturing problems of FGM 
cylinders. 
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