
American Journal of Applied Sciences 6 (8): 1596-1603, 2009
ISSN 1546-9239
© 2009 Science Publications

Corresponding Author: Mohamed Abdelkader Bencherif, Saad Dahlab University, Blida, Algeria
1596

Reconfigurable Elliptic Curve Crypto-Hardware Over the Galois Field GF(2163)

1Mohamed Abdelkader Bencherif, 2Hamid Bessalah and 1Abderrezak Guessoum

1Department of Electronic, Saad Dahlab University, Road of Soumaa, Blida
2Advanced Technologies Development Center, Baba Hassen, Algeria

Abstract: Problem statement: In the last decade, many hardware designs of elliptic curves
cryptography have been developed, aiming to accelerate the scalar multiplication process, mainly
those based on the Field Programmable Gate Arrays (FPGA), the major issue concerned the ability of
embedding this strategic and strong algorithm in a very few hardware. That is, finding an optimal
solution to the one to many problem: Portability against power consumption, speed against area and
maintaining security at its highest level. Our strategy is to hardware execute the ECC algorithm that
reposes on the ability of making the scalar multiplication over the GF(2163) in a restricted number of
clock cycles, targeting the acceleration of the basic field operations, mainly the multiplication and the
inverse process, under the constraint of hardware optimization. Approach: The research was based on
using the efficient Montgomery add and double algorithm, the Karatsuba-Offman multiplier and the Itoh-
Tsjuii algorithm for the inverse component. The hardware implementation was based upon an optimized
Finite State Machine (FSM), with a single cycle 163 bits multiplier and a script generated field squarer.
The main characteristics of the design concerned the elimination of the different internal component to
component delays, the minimization of the global clocking resources and a strategic separation of the
data path from the control part. Results: The working frequency of our design attained the 561 MHz,
allowing 161786 scalar multiplications per second, outperforming one of the best state of the art
implementations (555 MHz); the other contribution concerns the acceleration of the field inverse scheme
with a frequency of 777.341 MHz. Conclusion: The results indicated that using different optimizations
at the hardware level improve efficiently the acceleration of the ECC scalar multiplication and the choice
of the target circuit gratefully enhances propagation delays and increases frequency.

Key words: Elliptic curves cryptography, ECC, FPGA, Montgomery, Galois field operations

INTRODUCTION

 In the last decade, the approach of hardware
implementing Elliptic Curve Cryptography algorithms
(ECC) knew a very intensive race, due essentially to the
requirements of security, speed and area constraints. In
fact, security deals mainly with the ability to face
counter-attacks[1], while speed and area which represent
the eternal trade-off, that concern the ability to make
intensive cryptographic processes, while keeping used
hardware as low as possible. In other words, it is the
ability of embedding a strategic and strong algorithm in
a very few hardware. That is, finding an optimal
solution to the one to many problem: Portability against
power consumption, speed against area, but the main
issue in cryptography is security.
 Cryptography has become one of the most
important fields in our life, due essentially to two
factors, increase in secrecy and increase in breaking
code or hackers in the other side. It is no more safe to

use its birth date or the name of its child, as a common
password in some banking or even mailing accounts.
 Organizations tend to increase their benefits by
keeping their information system as transparent as
possible. On the other hand hackers and code or key
breakers are being organized in a kind of unofficial
groups; this leads to being a step ahead before getting
the codes breakdown.
 Scientists are tending to complicate the reverse
engineering process of the encryption system, at the
same time, keeping encryption keys as low as possible.
This issue is being tackled by many mathematics,
mainly those working on elliptic curves[2].
 The beauty of this new field is potentially related to
the simplicity of the operators used in the encryption
process, to the non-secure transmission constraints used
in the exchange of the keys and to the enhanced
complexity that might face hackers when unwanted
information goes out of the organization.

Am. J. Applied Sci., 6 (8): 1596-1603, 2009

 1597

Table 1: Comparable strengths of different cryptographic issues[3]
Bits of Symmetric
Security key algorithms IFC (e.g., RSA) ECC (e.g., ECDSA)
80 2TDEA k = 1024 f = 160-223
112 3TDEA k = 2048 f = 224-255
128 AES-128 k = 3072 f = 256-383
192 AES-192 k = 7680 f = 384-511
256 AES-256 k = 15360 f = 512+
f and k: Represent the equivalent key sizes

Why elliptic curve cryptography? : In 1985, Koblitz
and Miller introduced the use of elliptic curves in
public key cryptography. called Elliptic Curve
Cryptography (ECC), Basically, the main operation of
elliptic curves consists of multiplying a point by a
scalar in order to get a second point, the complexity
arises from the fact that given the initial point and the
final point, the scalar could not be deduced, leading to a
very difficult problem of reversibility, or crypto
analysis, called also the elliptic curve discrete logarithm
problem.
 The ECC algorithms with their small key sizes
present nowadays the best challenge for cryptanalysis
problems compared to RSA or AES, thus dealing with
ECC will lead to smaller area hardware, less bandwidth
use and more secure transactions, as shown in
(Table 1).
 The attractiveness of ECC algorithms is that they
operate on a Galois Field (GF), by means of two simple
operations, known as the field addition and field
multiplication, which define a ring over GF(pm) where
p and m are primes. In the particular case, where we
deal with hardware implementations, a binary field is
preferred, where the couple (p, m), defines the set of
elliptic curves. In our case, p = 2 and m = 163.
 In this research, we present an FPGA hardware
implementation of the elliptic curve cryptography
scheme, using the Montgomery scalar multiplication
based on the "add and double" algorithm, targeting as a
primary goal an increase in the speed of the hardware
implementation and an optimization in the ensuing
inverse component.

MATERIALS AND METHODS

Hardware implementation : The strategy of hardware
executing the ECC algorithms reposes on the ability of
making the scalar multiplication in the GF(2m) in a very
few clock cycles. While increasing m, implementations
become very time and resource consuming.
 Most of the known architectures concern the
acceleration of the multiplication process by modifying
the elliptic equations by changing the Z coordinate
term[4], or by multiplication scalability[5],or by using

many serial and parallel Arithmetic units[6], or using
High parallel Karatsuba Multipliers[7], those based on
the Massy-Omura multipliers[8], or the work based on a
hybrid multipliers approach[9], also some parallel
approaches[10], or the New word level structure[11], or
through the systolic architecture of[12], or by using the
half and add method of[13], or by parallelizing both the
add and double Montgomery algorithms[14].
 The second problem concerns the inversion which
has been tackled by[15], based on the Fermat little
theorem of[16], or the almost inverse algorithm based on
Kaliski’s research[17].
 In order to concentrate on one of the problems,
some modifications have been done on the ECC
equations[18] in order to postpone inversion to the last
stage, while dealing only with the multiplication
process.
 In the next part we present the mathematical
background of ECC, while in the material and methods
section, we present the FPGA hardware proposed
implementation, followed by the simulation results, at
last we complete this study by a discussion and a final
conclusion.

Elliptic curve mathematical background: ECC is
based on the discrete logarithm problem applied to
elliptic curves over a finite field. In particular, for an
elliptic curve E that relies on the fact that it is
computationally easy to find:

Q = k × P (1)

Where:
P and Q = Points of the elliptic curve E and their

coordinates belong to the underlying GF
(2m)

k = A scalar that belongs to the set of numbers
{1…#G-1}, G being the order of the curve E

 Nowadays, there is no known algorithm able to
compute k given P and Q in a sub exponential time[18].
 The equation of a non-super singular elliptic curve
with the underlying field GF(2m) is presented in Eq. 2.
It is formed by choosing the elements "a" and "b"
within GF(2m) with:

2 3 2y x.y x a.x b+ = + + (2)

 In the affine-coordinate representation, a finite
field point on E(GF(2m)) is specified by two
coordinates x and y both belonging to GF(2m) satisfying
Eq. 2 The point at infinity has no affine coordinates.

Am. J. Applied Sci., 6 (8): 1596-1603, 2009

 1598

 In most ECC hardware designs the choice of using
three coordinates reposed on avoiding the periodic
division of Eq. 3, which consumes a lot of resources in
terms of execution cycles, as well as memory and
power consumption:

2

1 2 1 2
1 2

1 2 1 2

2
1 2

1

y y y y
x x a, P Q

x x x x
x3

b
x P Q

x

   + +
 + + + + ≠   + +   = 

  + = 
 

 (3)

()1 2
1 3 3 1

1 2

3

2 1
1 1 3

1

y y
x x x y P Q

x x
y

y
x x .x P Q

x

 + + + + ≠ + = 
  + + = 
 

 A point is converted from a couple of coordinates
to a triple system of coordinates using one of the
transforms of (Table 2).
 In our implementation, the Lopez-Dahab mapping
is applied, because the set of operations is reduced
compared to the other mappings[13] as presented in
(Table 3).
 Thus a point P(x, y) is mapped into P(X,Y,Z), that
is a third projective coordinate is introduced in order to
“flatten” the equations and avoid the division.
 The startup transformation required for the
implementation is simply done by initializing X, Y and
Z as in Eq. 4[20]:

{ }X x , Y y, Z 1= = = (4)

 Introducing the new tri-coordinates into Eq. 2
becomes:

2 3 2 3Y Z X Y Z X a X b Z× + × × = + × + × (5)

 The VHDL implementation will be based now on
Eq. 5.

Table 2: Types of projective mappings
Representation Mapping to affine coordinates
Projective x = X/Z, y = Y/Z
Jacobian x = X/Z2, y = Y/Z3
Lopez-Dahab x = X/Z, y = Y/Z2

Table 3: Multiplication and division costs of the add and double

Montgomery algorithms[19]
Projective Point Point
Representation addition* doubling
Affine 2M+1S+8A+1I 3M+2S+4A+1I
Standard 13M+1S+7A 7M+5S+4A
Jacobian 11M+4S+7A 5M+5S+4A
Lopez-Dahab 10M+4S+8A 5M+5S+4A
*: Field Operations: M: Multiplication, S: Squaring, A: Addition, I:
Inverse

 After completion of the successive operations of
addition and multiplication, back to two affine
coordinates as follows:

{ }2
X Yx , yZ Z

= = (6)

 In order to make the different computations, the
Montgomery Point doubling and Montgomery Point
addition algorithms are used, mainly through the
ingenious observation of Montgomery, which states
that the Y coordinate does not participate into the
computations and can be delayed to the final stage[20].
Thus, back to working with only two projective
coordinates.
 Let us consider the points P(X1,Y1,Z1),
R(X2,Y2,Z2), Q(X3,Y3,Z3), belonging to the curve
E(GF(2163)), where R = 2× P and Q = P+R, the
computations become, through the use of Montgomery
method respectively as follows:

• The Montgomery point doubling algorithm:

(MontgDouble):

2

2

4 4
1 1
2 2

1 1

X X b Z

Z X Z

 = + ×
 = ×

 (7)

Requiring, 4 field squaring operations, 2 field
multiplications and one simple field addition

• The Montgomery Point addition algorithm:
(MontgAdd):

 ()
() ()

3

3

2

1 2 2 1

3 1 2 2 1

Z X Z X Z

X x Z X Z X Z

 = × + ×


= × + × × ×
 (8)

 Requiring, 1 field squaring operations, 4 field

multiplications and two simple field additions

 For the hardware implementation issue, k is
represented on an m bits register, as:

m 1 m 2 1 0k [1,k ,k ,...,k ,k]− −= (9)

 Both Eq. 7 and 8 are used in the Eq. 1 using the
scalar Montgomery multiplication algorithm as shown
in Fig. 1.
 The inversion in GF(2163), required at the final
stage, could be realized in one of the two known
methods, either via the Extended Euclidean algorithm,
or by the Fermat’s theorem which states that knowing

after proof that:
m2 1A 1− = , leads to consider that

m1 2 2A A− −= is also factual.

Am. J. Applied Sci., 6 (8): 1596-1603, 2009

 1599

Fig. 1: Montgomery scalar multiplication algorithm

 Thus, in order to compute the inverse of one
element in GF(2163), one needs to take the power of this
element (2163-2) times.
 By Using the Itoh-Tsjuii algorithm based on the
add and multiply method leads to realize the inverse as
presented in (Table 3)[21].

FPGA implementation: The 163 bits ECC component
has been developed using the VHDL language. The
different components forming the design are as follows:

• A 163 bits adder which is a simple 163 ‘2 bits’

Xors
• A 163 bits modulo which is a xor-array evaluated

through a Matlab script as an input-output matrix,
through polynomial reduction using the National
Institute of Standards and Technology (NIST)
proposed polynomial P(x) = x163+x7+x6+x3+1[22]

• A 163 bits squarer that has also been generated
from a Matlab script

• A 163 bits modified version of the Karatsuba-
Offman multiplier circuit that is a based on
splitting the operands into 3 identical operands
[High (H), Middle (M) and Low(L) bits], the ‘L-
M-H’ multiplier starts with a basic a 7 bits
multiplier, leading to the following tree:
7→19→57→163 bits multipliers

• A Galois inverter circuit requiring 21 power
squaring and 9 field multiplications within only 32
cycles

 The ECC block diagram implementation is shown
in Fig. 2.

Fig. 2: ECC components implementation

Table 3: Sequence of multiplications and squaring for the inversion

component in GF(2163) of the element A**
1

2

3

5

10

20

40

80

160

162

163

2 1

1
2 1

21
2 1 1

2 122
3 2 2

2 121
4 3 1

2 125
5 4 4

210 2 1
6 5 5

220 2 1
7 6 6

240 2 1
8 7 7

21 2 1
9 8 1

281
2 110 9 9

1 2
1 2 210

Ab A
Ab b b
Ab b b

Ab b b

Ab b b

b b b A

b b b A

b b b A

b b b A
b b b A
A b A A

−

−

−

−

−

−

−

−

−

−

−
− −

==
== ×
== ×
== ×
== ×

= × =

= × =
= × =
= × =
= × =
= = =

**A and b1 to b10 are elements of GF(2163)

RESULTS

 In (Table 4), we present the respective estimated
number of cycles, required for each part of the
algorithm of Fig. 1, at each stage of the FSM controller.
 The occurrences of the different basic operations
required in all the FSM stages are listed in (Table 5).
 Our main contribution concerned the execution of
any basic field operation in just one cycle, taking into
account, that lost cycles may occur, when the input of
any component is back-propagated into the itself in the
next iteration; and the use of non-clocked components,
reducing the overall amount of clock driving and
registered inputs/outputs.
 The total number of cycles is equal to:

{Total # cycles} = {#cycles startup} + {#cycles affine to

projective} + {#cycles initial point
doubling} + (m-1) × [{#cycles counter
Increase} + {#cycles Counter Compare}
+ {#cycles Point Addition} + {#cycles
Point Double}] + {#cycles Affine to
Projective}.

 = 1+1+2+(162) × [1+1+10+9]+62

Am. J. Applied Sci., 6 (8): 1596-1603, 2009

 1600

 =3468 cycles
The total duration = {Total # cycles} × (Minimum Period)
 = 3468*1.782ns = 6.1799 µs, equivalent

to realize approximately: 161786 ECC
scalar multiplications per sec

 The speed of the implementation is based on the
target device family, mainly those having enough slices
and Input/Output pads. Our design is implemented on
the xc5vsx95t-3f1136, with the following parameters:

• Goals of optimization set to speed
• Optimization effort set to high
• Global Optimization Goal set to AllClockNets

 The partition design summary is presented in
(Table 6), while (Table 7) shows the inverse circuit
design summary, which shares with the full design the
field multiplier, the field squarer and the field adder.
 Our architecture has out-performed one of the best
architectures[6], as shown in (Table 8), the performance
(column 2) represents the required time for one
complete scalar multiplication (over all the 163 bits of
the scalar k), as per Eq. 1.

Table 4: Estimation of the FSM stages and their respective execution

number of cycles
FSM Steps #* stages # execution cycles
 Startup 1 1
 Affine to projective 1 1
 Initial point doubling 2 2
 Counter increase 1 1
 Counter compare 1 1
 Montgomery point addition 9 162
 Montgomery point doubling 10 162
 Project to affine 62 1
*: The symbol #: Stands for: “Number of”

Table 5: Field operations required through the ECC implementation
 # Occurrences in one
Field operations # cycles cycle of the FSM
 Field multiplication (163 bits) 1 24

 Field squaring
12A 1 15

 Field squaring
52A 1 7

 Field squaring
152A 1 8

 Field addition 1 11
 Field reduction (modulo) 1 24

Table 6: Partition design summary of the ECC circuit
No. of slice registers 6376
No. of slice LUTs 21013
No. of fully used bit slices 4928

Table 7: Partition design summary of the inverse circuit
No. of slice registers 1962
No. of slice LUTs 15302
No. of fully used bit slices 1147

Benchmark tests: Working with 163 bits and 2163
order numbers or more, is not a direct way
implementation, even checking of the results is very
cumbersome, in this matter, different Matlab scripts
with similar input/output behavior to the VHDL
programming have been written, in order to compare
the execution steps, as well the final results, timing is
not taken into consideration in this specific stage
(Emulation style process).
 The benchmark tests have been done with the
inputs of (Table 9) (in hexadecimal format)[22].
 Fig. 3 and 4 show the intermediate results, obtained
from the hardware simulator Modelsim, through
different steps of the scalar multiplication as indicated
by the “k_counter” value (5th line of the Fig. 3 and 4).

Table 8: Performance comparison of ECC (GF(2163)) implementations

 Performance Frequency
Design [µs] [MHz] (Max)

Chelton et al.[23] 19.5500 153.900
Smyth et al.[24] 3720.0000 166.000
Sozzani et al.[25] 30.0000 416.700
Satoh and Takano[26] 190.0000 510.200
Sakiyama et al.[6] 12.0000 555.600
Present study (Fastest) 6.1799 561.136

Table 9: Benchmark input test vectors of the NIST proposed curve B-

163[18]
Px = ’3F0EBA16286A2D57EA0991168D4994637E8343E36’
Py = '0D51FBC6C71A0094FA2CDD545B11C5C0C797324F1’
b = '20A601907B8C953CA1481EB10512F78744A3205FD'

Fig. 3: Startup of the simulation under Modelsim

Fig. 4: Stepping through the bits of the scalar k

Am. J. Applied Sci., 6 (8): 1596-1603, 2009

 1601

Fig. 5: Final result of the scalar multiplication k×P

Table 10: The x and y output coordinates of the result point Q=kxP,

for an arbitrary value of k

k = ’6950A0A0301E34580600180404020158200020657’
Q.x = ’39FBE940C15F355289DEF938ABF2512FEA36EC7BE’
Q.y = ’356A9D7CDCD59E95546B385E77566EF4B4DD81D3’

 Fig. 5 and Table 10 show the output results of the
ECC scalar multiplication for a "163 bits" arbitrary
value of k.
 The implementation was intensively tested for
different inputs of k and the obtained results were
compared each time with the outputs of the different
scripts written within Matlab. Both, hardware
implementation and software emulation generated the
same results over the 163 bits.

DISCUSSION

 The main contribution of present research
concerned three major points:

• An optimal Finite State Machine (FSM) controlling

the whole components, minimizing empty cycles.
• Optimization of the hardware inversion process, by

reducing the number of different squaring from
162-21, leading to an inversion in just 32 cycles

• Separation of the data path routing from the control
part, in order to modify only the multiplier, the
squarer, the adder as well as the modulo
component for the different curves of (Table 1)

 The introduction of additional multipliers and
squarer’s can speed up the design at the expense of
hardware spreading inside the FPGA. In embedded
processes, this choice “speed/space” is crucial,
depending mainly on the type of application, the
targeted space, the possible addition of extra future
functions and finally the cost allocated to the project.
 The results, we obtained are very encouraging and
will impact our decision on the embedding of larger
encryption schemes, mainly the extension to the NIST
proposed curves (193, 233, 283, 409 and 571) in a

single FPGA, taking into account: The use of two or
more multipliers (tuned parallel design), the use of
internal memories such as Block RAMs (optimized
timing memory accesses), the speed up of the FSM, as
well as using different ECC hardware algorithms…;
these optimization schemes are constrained to minimize
the parallel inputs of the design and reduce routing
circuitry, that dramatically decrease efficiency, lower
speed and increase power consumption.

CONCLUSION

 We have presented a fast version of an ECC
crypto-hardware based on a finite state machine,
implemented on a XILINX FPGA xc5vsx95t-1136
device. We attained a frequency of 561.136 MHz,
which allows the execution of 161786 scalar
multiplications per sec. Compared to the remarkable
research of[6], with its 555.6 MHz, allowing 80000
scalar multiplications.
 Our implementation can be still more competitive
while introducing more optimization at the level of the
multiplier and the squaring components.
 The second main optimization, in present research,
concerned the modular inverse circuit; which attained
the frequency of 777.341 MHz; that is 13 times faster
than the implementation of[27], against an increase, from
our side, of 1:2 in the number of slices, for the 163 bits
operands.

ACKNOWLEDGEMENT

 This research is part of the research protocol of the
Arithmetic, Architecture, Algorithms Serial and Parallel
Team, (A3SP), Systems Architecture and Multimedia
Department. (Centre de Développement des
Technologies Avancées), CDTA, Algeria, for the
period 2007-2009. (www.cdta.dz).

REFERENCES

1. Wollinger, T., J. Guajardo and C. Paar, 2004.

Security on FPGAs: State of the art
implementations and attacks. ACM. Trans.
Embedd. Comput. Syst., 3: 534-574.
http://portal.acm.org/citation.cfm?id=1015052

2. Husemöller, D., 2002. Elliptic Curves. 2nd Edn.,
Springer-Verlag, New York, ISBN: 0-387-95490-
2, pp: 510.

3. Barker, E., W. Barker, W. Burr, W. Polk and M. Smid,
2007. NIST SP 800-57: Recommendation for key
management-part 1: General.
http://www.citeulike.org/user/dhein1030/article/37
30728

Am. J. Applied Sci., 6 (8): 1596-1603, 2009

 1602

4. Lee, Y.K., L. Batina, K. Sakiyama and I. Verbauwhede,
2008. Elliptic curve based security processor for
RFID. IEEE. Trans. Comput., 57: 1514-1527. DOI:
10.1109/TC.2008.148.

5. Chelton, W.N. and M. Benaissa, 2004. A scalable
GF(2m) arithmetic unit for application in an ECC
processor. Proceeding of the IEEE Workshop on
Signal Processing Systems, Oct. 13-15, Crowne
Plaza Hotel, Austin Texas, USA., pp: 355-360.
DOI: 10.1109/SIPS.2004.1363076

6. Sakiyama, K., L. Batina, B. Preneel and I. Verbauwhede,
2007. High-performance public-key cryptoprocessor
for wireless mobile applications. Mobile Network
Appli., 12: 245-258. DOI 10.1007/s11036-007-
0020-6.

7. Grabbe, C., M. Bednara, J. Tech, G.J. Von Zur and
J. Shokrollahi, 2003. FPGA designs of parallel
high performance GF(2233) multipliers
[cryptographic applications]. Proceedings of the
International Symposium on Circuits and
Systems, May 25-28, IEEE Xplore Press,
Washington DC., USA., pp: 268-271. DOI:
10.1109/ISCAS.2003.1205958

8. Sutikno, S. and A. Surya, 2000. An architecture of
F2^2n multiplier for elliptic. Proceedings of the
2000 IEEE International Symposium on Circuits
and Systems, IEEE Xplore Press, Geneva,
pp: 279-282. DOI: 10.1109/ISCAS.2000.857084

9. Quan, G., J.P. Davis, S. Devarkal and D.A. Buell,
2005. High-level synthesis for large bit-width
multipliers on FPGAs: A case study. Proceedings
of the 3rd IEEE/ACM/IFIP International
Conference on Hardware/Software Co-Design and
System Synthesis, Sept. 2005, IEEE Xplore Press,
Jersey City, New Jersey, USA., pp: 213-218. DOI:
10.1145/1084834.1084890

10. Hinkelmann, H., P. Zipf, J. Li, G. Liu and M. Glesner,
2009. On the design of reconfigurable multipliers
for integer and Galois field multiplication.
Microproc. Microsyst., 33: 2-12. DOI:
10.1016/j.micpro.2008.08.003

11. Benaissa, M. and W.M. Lim, 2006. Design of
flexible GF (2m) elliptic curve cryptography
processors. IEEE. Trans. Very Large Scale
Integrat. Syst., 14: 659-662. DOI:
10.1109/TVLSI.2006.878235

12. Tsai, W.C. and S.J. Wang, 2002. A systolic
architecture for elliptic curve cryptosystems.
Proceedings of the 5th International Conference on
Signal Processing, Aug. 21-25, IEEE Xplore Press,
Beijing, China, pp: 591-597. DOI:
10.1109/ICOSP.2000.894560

13. Rodriguez, S.M.H. and F.R. Henriquez, 2005.
An FPGA arithmetic logic unit for computing
scalar multiplication using the half-and-add
method. Proceedings of the International
Conference on Reconfigurable Computing and
FPGAs, Sept. 21-28, IEEE Xplore Press,
Washington DC., USA., pp: 1-7. DOI:
10.1109/RECONFIG.2005.8

14. Cheung, R.C.C., N.J. Telle, W. Luk and
P.Y.K. Cheung, 2005. Customizable elliptic curve
cryptosystems. IEEE. Trans. Very Large Scale
Integrat. Syst., 13: 1048-1059. DOI:
10.1109/TVLSI.2005.857179

15. Crowe, F., A. Daly and W. Marnane, 2005.
Optimized Montgomery domain inversion on
FPGA. Proceedings of the European Conference
on Circuit Theory and Design, Aug. 28-Sept. 2,
IEEE Xplore Press, Washington DC., USA.,
pp: I/277-I/280. DOI:
10.1109/ECCTD.2005.1522964

16. McIvor, C.J., M. McLoone and J.V. McCanny,
2006. Hardware Elliptic Curve Cryptographic
Processor Over GF(p). IEEE. Trans. Circ. Syst.,
53: 1946-1957. DOI: 10.1109/TCSI.2006.880184

17. Daly, A., W. Marnane, T. Kerins and E. Popovici,
2006. An FPGA implementation of a GF(p)
ALU for encryption processors. Appli. Des.,
28: 253-260. DOI:
10.1016/J.MICPRO.2004.03.006

18. Henkerson, D., A. Menezes and S. Vanstone, 2004.
Guide to Elliptic Curve Cryptography. Springer-
Verlag, ISBN: 038795273X, pp: 102,264.

19. Shokrollahi, J., 2006. Efficient Implementation of
Elliptic Curve Cryptography on FPGAs. Doctorate
thesis, Bohn University. http://deposit.ddb.de/cgi-
bin/dokserv?idn=983089183&dok_var=d1&dok_e
xt=pdf&filename=983089183.pdf

20. Rodriguez-Henriquez, F., N.A. Saqib, A. Diaz-Perez
and C. Kaya Koc, 2006. Cryptographic Algorithms
on Reconfigurable Hardware. Springer, ISBN:
0387338837, pp: 299.

21. Guajardo, J. and C. Paar, 2002. Itoh-tsujii inversion
in standard basis and its application in
cryptography and codes. Des. Code. Cryptograph.,
25: 207-216. DOI: 10.1023/A:1013860532636

22. National Institute of Standards and Technology,
2000. FIPS PUB 186-2: Digital Signature Standard
(DSS). http://xml.coverpages.org/FIPS-186-2.pdf

23. Chelton, W.N. and M. Benaissa, 2008. Fast elliptic
curve cryptography on FPGA. IEEE. Trans. Very
Large Scale Integrat. Syst., 16: 198-205. DOI:
10.1109/TVLSI.2007.912228

Am. J. Applied Sci., 6 (8): 1596-1603, 2009

 1603

24. Smyth, N., M. McLoone and J.V. McCanny, 2006.
An adaptable and scalable asymmetric
cryptographic processor. Proceedings of the IEEE
International Conference on Application-Specific
Systems, Architectures and Processors (ASAP),
Sept. 2006, IEEE Computer Society,
Washington DC., USA., pp: 341-346. DOI:
10.1109/ASAP.2006.8

25. Sozzani, F., G. Bertoni, S. Turcato, L. Breveglieri,
2005. A parallelized design for an elliptic curve
cryptosystem coprocessor. Proceedings of the
International Symposium on Information
Technology: Coding and Computing (ITCC),
Oct. 4-6, IEEE Xplore Press, USA., pp: 626-630.
DOI: 10.1109/ITCC.2005.25

26. Satoh, A. and K. Takano, 2003. A scalable dual-
field elliptic curve cryptographic processor. IEEE
Trans. Comput., 52: 449-460. DOI:
10.1109/TC.2003.1190586

27. De Dormale, G.M., P. Bulens and J.J. Quisquater,
2004. An improved montgomery modular
inversion targeted for efficient implementation on
FPGA. Proceedings of the IEEE International
Conference on Field-Programmable Technology,
Oct. 6-8, IEEE Computer Society, Washington
DC., USA., pp: 441-444. DOI:
10.1109/FPT.2004.1393320

