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Abstract: Problem statement: In the last decade, many hardware designs of elliptic curves 
cryptography have been developed, aiming to accelerate the scalar multiplication process, mainly 
those based on the Field Programmable Gate Arrays (FPGA), the major issue concerned the ability of 
embedding this strategic and strong algorithm in a very few hardware. That is, finding an optimal 
solution to the one to many problem: Portability against power consumption, speed against area and 
maintaining security at its highest level. Our strategy is to hardware execute the ECC algorithm that 
reposes on the ability of making the scalar multiplication over the GF(2163) in a restricted number of 
clock cycles, targeting the acceleration of the basic field operations, mainly the multiplication and the 
inverse process, under the constraint of hardware optimization. Approach: The research was based on 
using the efficient Montgomery add and double algorithm, the Karatsuba-Offman multiplier and the Itoh-
Tsjuii algorithm for the inverse component. The hardware implementation was based upon an optimized 
Finite State Machine (FSM), with a single cycle 163 bits multiplier and a script generated field squarer. 
The main characteristics of the design concerned the elimination of the different internal component to 
component delays, the minimization of the global clocking resources and a strategic separation of the 
data path from the control part. Results: The working frequency of our design attained the 561 MHz, 
allowing 161786 scalar multiplications per second, outperforming one of the best state of the art 
implementations (555 MHz); the other contribution concerns the acceleration of the field inverse scheme 
with a frequency of 777.341 MHz. Conclusion: The results indicated that using different optimizations 
at the hardware level improve efficiently the acceleration of the ECC scalar multiplication and the choice 
of the target circuit gratefully enhances propagation delays and increases frequency. 
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INTRODUCTION 

 
 In the last decade, the approach of hardware 
implementing Elliptic Curve Cryptography algorithms 
(ECC) knew a very intensive race, due essentially to the 
requirements of security, speed and area constraints. In 
fact, security deals mainly with the ability to face 
counter-attacks[1], while speed and area which represent 
the eternal trade-off, that concern the ability to make 
intensive cryptographic processes, while keeping used 
hardware as low as possible. In other words, it is the 
ability of embedding a strategic and strong algorithm in 
a very few hardware. That is, finding an optimal 
solution to the one to many problem: Portability against 
power consumption, speed against area, but the main 
issue in cryptography is security. 
 Cryptography has become one of the most 
important fields in our life, due essentially to two 
factors, increase in secrecy and increase in breaking 
code or hackers in the other side. It is no more safe to 

use its birth date or the name of its child, as a common 
password in some banking or even mailing accounts. 
 Organizations tend to increase their benefits by 
keeping their information system as transparent as 
possible. On the other hand hackers and code or key 
breakers are being organized in a kind of unofficial 
groups; this leads to being a step ahead before getting 
the codes breakdown. 
 Scientists are tending to complicate the reverse 
engineering process of the encryption system, at the 
same time, keeping encryption keys as low as possible. 
This issue is being tackled by many mathematics, 
mainly those working on elliptic curves[2]. 
 The beauty of this new field is potentially related to 
the simplicity of the operators used in the encryption 
process, to the non-secure transmission constraints used 
in the exchange of the keys and to the enhanced 
complexity that might face hackers when unwanted 
information goes out of the organization. 
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Table 1: Comparable strengths of different cryptographic issues[3] 
Bits of  Symmetric   
Security key algorithms IFC (e.g., RSA) ECC (e.g., ECDSA) 
80  2TDEA k = 1024 f = 160-223 
112 3TDEA k = 2048 f = 224-255 
128 AES-128 k = 3072 f = 256-383 
192  AES-192 k = 7680 f = 384-511 
256  AES-256 k = 15360 f = 512+ 
f and k: Represent the equivalent key sizes 

 
Why elliptic curve cryptography? : In 1985, Koblitz 
and Miller introduced the use of elliptic curves in 
public key cryptography. called Elliptic Curve 
Cryptography (ECC), Basically, the main operation of 
elliptic curves consists of multiplying a point by a 
scalar in order to get a second point, the complexity 
arises from the fact that given the initial point and the 
final point, the scalar could not be deduced, leading to a 
very difficult problem of reversibility, or crypto 
analysis, called also the elliptic curve discrete logarithm 
problem. 
 The ECC algorithms with their small key sizes 
present nowadays the best challenge for cryptanalysis 
problems compared to RSA or AES, thus dealing with 
ECC will lead to smaller area hardware, less bandwidth 
use and  more  secure  transactions,  as  shown  in 
(Table 1). 
 The attractiveness of ECC algorithms is that they 
operate on a Galois Field (GF), by means of two simple 
operations, known as the field addition and field 
multiplication, which define a ring over GF(pm) where 
p and m are primes. In the particular case, where we 
deal with hardware implementations, a binary field is 
preferred, where the couple (p, m), defines the set of 
elliptic curves. In our case, p = 2 and m = 163.  
 In this research, we present an FPGA hardware 
implementation of the elliptic curve cryptography 
scheme, using the Montgomery scalar multiplication 
based on the "add and double" algorithm, targeting as a 
primary goal an increase in the speed of the hardware 
implementation and an optimization in the ensuing 
inverse component. 
 

MATERIALS AND METHODS 
 
Hardware implementation : The strategy of hardware 
executing the ECC algorithms reposes on the ability of 
making the scalar multiplication in the GF(2m) in a very 
few clock cycles. While increasing m, implementations 
become very time and resource consuming. 
 Most of the known architectures concern the 
acceleration of the multiplication process by modifying 
the elliptic equations by changing the Z coordinate 
term[4], or by multiplication scalability[5],or by using 

many serial and parallel Arithmetic units[6], or using 
High parallel Karatsuba Multipliers[7], those based on 
the Massy-Omura multipliers[8], or the work based on a 
hybrid multipliers approach[9], also some parallel 
approaches[10], or the New word level structure[11], or 
through the systolic architecture of[12], or by using the 
half and add method of[13], or by parallelizing both the 
add and double Montgomery algorithms[14]. 
 The second problem concerns the inversion which 
has been tackled by[15], based on the Fermat little 
theorem of[16], or the almost inverse algorithm based on 
Kaliski’s research[17]. 
 In order to concentrate on one of the problems, 
some modifications have been done on the ECC 
equations[18] in order to postpone inversion to the last 
stage, while dealing only with the multiplication 
process.  
 In the next part we present the mathematical 
background of ECC, while in the material and methods 
section, we present the FPGA hardware proposed 
implementation, followed by the simulation results, at 
last we complete this study by a discussion and a final 
conclusion. 
 
Elliptic curve mathematical background: ECC is 
based on the discrete logarithm problem applied to 
elliptic curves over a finite field. In particular, for an 
elliptic curve E that relies on the fact that it is 
computationally easy to find: 
 

Q = k × P (1) 

 
Where: 
P and Q = Points of the elliptic curve E and their 

coordinates belong to the underlying GF 
(2m)  

k  = A scalar that belongs to the set of numbers 
{1…#G-1}, G being the order of the curve E 

 
 Nowadays, there is no known algorithm able to 
compute k given P and Q in a sub exponential time[18]. 
 The equation of a non-super singular elliptic curve 
with the underlying field GF(2m) is presented in Eq. 2. 
It is formed by choosing the elements "a" and "b" 
within GF(2m) with: 
 

2 3 2y x.y x a.x b+ = + +   (2) 
 
 In the affine-coordinate representation, a finite 
field point on E(GF(2m)) is specified by two 
coordinates x and y both belonging to GF(2m) satisfying 
Eq. 2 The point at infinity has no affine coordinates. 
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 In most ECC hardware designs the choice of using 
three coordinates reposed on avoiding the periodic 
division of Eq. 3, which consumes a lot of resources in 
terms of execution cycles, as well as memory and 
power consumption: 
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 A point is converted from a couple of coordinates 
to a triple system of coordinates using one of the 
transforms of (Table 2).  
 In our implementation, the Lopez-Dahab mapping 
is applied, because the set of operations is reduced 
compared to the other mappings[13] as presented in 
(Table 3). 
 Thus a point P(x, y) is mapped into P(X,Y,Z), that 
is a third projective coordinate is introduced in order to 
“flatten” the equations and avoid the division. 
 The startup transformation required for the 
implementation is simply done by initializing X, Y and 
Z as in Eq. 4[20]: 
 
{ }X x , Y y, Z 1= = =  (4) 
 
 Introducing the new tri-coordinates into Eq. 2 
becomes: 
 

2 3 2 3Y Z X Y Z X a X b Z× + × × = + × + ×   (5) 
 
 The VHDL implementation will be based now on 
Eq. 5. 
 
Table 2: Types of projective mappings 
Representation Mapping to affine coordinates 
Projective x = X/Z, y = Y/Z 
Jacobian x = X/Z2, y = Y/Z3 
Lopez-Dahab x = X/Z, y = Y/Z2 

 
Table 3: Multiplication and division costs of the add and double 

Montgomery algorithms[19] 
Projective  Point Point 
Representation addition* doubling 
Affine 2M+1S+8A+1I 3M+2S+4A+1I 
Standard  13M+1S+7A 7M+5S+4A 
Jacobian  11M+4S+7A 5M+5S+4A 
Lopez-Dahab 10M+4S+8A 5M+5S+4A 
*: Field Operations: M: Multiplication, S: Squaring, A: Addition, I: 
Inverse 

 After completion of the successive operations of 
addition and multiplication, back to two affine 
coordinates as follows: 
 

{ }2
X Yx , yZ Z

= =  (6) 

 
 In order to make the different computations, the 
Montgomery Point doubling and Montgomery Point 
addition algorithms are used, mainly through the 
ingenious observation of Montgomery, which states 
that the Y coordinate does not participate into the 
computations and can be delayed to the final stage[20]. 
Thus, back to working with only two projective 
coordinates. 
 Let us consider the points P(X1,Y1,Z1), 
R(X2,Y2,Z2), Q(X3,Y3,Z3), belonging to the curve 
E(GF(2163)), where R = 2× P and Q = P+R, the 
computations become, through the use of Montgomery 
method respectively as follows: 
 
• The Montgomery point doubling algorithm: 

(MontgDouble): 
 

2

2

4 4
1 1
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1 1

X X b Z
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 = + ×
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 (7) 

 
Requiring, 4 field squaring operations, 2 field 
multiplications and one simple field addition 

• The Montgomery Point addition algorithm: 
(MontgAdd): 
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
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 (8) 

 
 Requiring, 1 field squaring operations, 4 field 

multiplications and two simple field additions 
 
 For the hardware implementation issue, k is 
represented on an m bits register, as: 
 

m 1 m 2 1 0k [1,k ,k ,...,k ,k ]− −=  (9) 

 
 Both Eq. 7 and 8 are used in the Eq. 1 using the 
scalar Montgomery multiplication algorithm as shown 
in Fig. 1. 
 The inversion in GF(2163), required at the final 
stage, could be realized in one of the two known 
methods, either via the Extended Euclidean algorithm, 
or by the Fermat’s theorem which states that knowing 

after proof that: 
m2 1A 1− = , leads to consider that 

m1 2 2A A− −=  is also factual.  
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Fig. 1: Montgomery scalar multiplication algorithm 
 
 Thus, in order to compute the inverse of one 
element in GF(2163), one needs to take the power of this 
element (2163-2) times.  
 By Using the Itoh-Tsjuii algorithm based on the 
add and multiply method leads to realize the inverse as 
presented in (Table 3)[21]. 
 
FPGA implementation: The 163 bits ECC component 
has been developed using the VHDL language. The 
different components forming the design are as follows: 
 
• A 163 bits adder which is a simple 163 ‘2 bits’ 

Xors 
• A 163 bits modulo which is a xor-array evaluated 

through a Matlab script as an input-output matrix, 
through polynomial reduction using the National 
Institute of Standards and Technology (NIST) 
proposed polynomial P(x) = x163+x7+x6+x3+1[22] 

• A 163 bits squarer that has also been generated 
from a Matlab script 

• A 163 bits modified version of the Karatsuba-
Offman multiplier circuit that is a based on 
splitting the operands into 3 identical operands 
[High (H), Middle (M) and Low(L) bits], the ‘L-
M-H’ multiplier starts with a basic a 7 bits 
multiplier, leading to the following tree: 
7→19→57→163 bits multipliers 

• A Galois inverter circuit requiring 21 power 
squaring and 9 field multiplications within only 32 
cycles 

 
 The ECC block diagram implementation is shown 
in Fig. 2. 

 
 
Fig. 2: ECC components implementation 
 
Table 3: Sequence of multiplications and squaring for the inversion 

component in GF(2163) of the element A** 
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**A and b1 to b10 are elements of GF(2163)  
 

RESULTS  
 
 In (Table 4), we present the respective estimated 
number of cycles, required for each part of the 
algorithm of Fig. 1, at each stage of the FSM controller.  
 The occurrences of the different basic operations 
required in all the FSM stages are listed in (Table 5).  
 Our main contribution concerned the execution of 
any basic field operation in just one cycle, taking into 
account, that lost cycles may occur, when the input of 
any component is back-propagated into the itself in the 
next iteration; and the use of non-clocked components, 
reducing the overall amount of clock driving and 
registered inputs/outputs. 
 The total number of cycles is equal to: 
 
{Total # cycles} = {#cycles startup} + {#cycles affine to 

projective} + {#cycles initial point 
doubling} + (m-1) × [{#cycles counter 
Increase} + {#cycles Counter Compare} 
+ {#cycles Point Addition} + {#cycles 
Point Double}] + {#cycles Affine to 
Projective}. 

 = 1+1+2+(162) ×  [1+1+10+9]+62 
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 =3468 cycles 
The total duration = {Total # cycles} × (Minimum  Period) 
 = 3468*1.782ns = 6.1799 µs, equivalent 

to realize approximately: 161786 ECC 
scalar multiplications per sec 

 
 The speed of the implementation is based on the 
target device family, mainly those having enough slices 
and Input/Output pads. Our design is implemented on 
the xc5vsx95t-3f1136, with the following parameters:  
 
• Goals of optimization set to speed 
• Optimization effort set to high 
• Global Optimization Goal set to AllClockNets 
 
 The partition design summary is presented in 
(Table 6), while (Table 7) shows the inverse circuit 
design summary, which shares with the full design the 
field multiplier, the field squarer and the field adder. 
 Our architecture has out-performed one of the best 
architectures[6], as shown in (Table 8), the performance 
(column 2) represents the required time for one 
complete scalar multiplication (over all the 163 bits of 
the scalar k), as per Eq. 1. 
 
Table 4: Estimation of the FSM stages and their respective execution 

number of cycles 
FSM Steps #* stages # execution cycles 
 Startup  1 1 
 Affine to projective 1 1 
 Initial point doubling 2 2 
 Counter increase 1 1 
 Counter compare 1 1 
 Montgomery point addition 9 162 
 Montgomery point doubling 10 162 
 Project to affine 62 1 
*: The symbol #: Stands for: “Number of” 
 
Table 5: Field operations required through the ECC implementation  
  # Occurrences in one 
Field operations # cycles  cycle of the FSM 
 Field multiplication (163 bits) 1 24 

 Field squaring 
12A  1 15 

 Field squaring 
52A  1 7 

 Field squaring 
152A  1 8 

 Field addition  1 11 
 Field reduction (modulo) 1 24 

 
Table 6: Partition design summary of the ECC circuit 
No. of slice registers  6376 
No. of slice LUTs  21013 
No. of fully used bit slices 4928 

 
Table 7: Partition design summary of the inverse circuit 
No. of slice registers  1962 
No. of slice LUTs  15302 
No. of fully used bit slices 1147 

Benchmark tests: Working with 163 bits and 2163 
order numbers or more, is not a direct way 
implementation, even checking of the results is very 
cumbersome, in this matter, different Matlab scripts 
with similar input/output behavior to the VHDL 
programming have been written, in order to compare 
the execution steps, as well the final results, timing is 
not taken into consideration in this specific stage 
(Emulation style process). 
 The benchmark tests have been done with the 
inputs of (Table 9) (in hexadecimal format)[22]. 
 Fig. 3 and 4 show the intermediate results, obtained 
from the hardware simulator Modelsim, through 
different steps of the scalar multiplication as indicated 
by the “k_counter” value (5th line of the Fig. 3 and 4). 
 
Table 8: Performance comparison of ECC (GF(2163)) implementations 

 Performance Frequency 
Design [µs] [MHz] (Max) 

Chelton et al.[23] 19.5500 153.900 
Smyth et al.[24] 3720.0000 166.000 
Sozzani et al.[25] 30.0000 416.700 
Satoh and Takano[26] 190.0000 510.200 
Sakiyama et al.[6 ] 12.0000 555.600 
Present study (Fastest) 6.1799 561.136 

 
Table 9: Benchmark input test vectors of the NIST proposed curve B-

163[18] 
Px = ’3F0EBA16286A2D57EA0991168D4994637E8343E36’ 
Py = '0D51FBC6C71A0094FA2CDD545B11C5C0C797324F1’ 
b = '20A601907B8C953CA1481EB10512F78744A3205FD'  

 

 
 
Fig. 3: Startup of the simulation under Modelsim 
 

 
 
Fig. 4: Stepping through the bits of the scalar k 
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Fig. 5: Final result of the scalar multiplication k×P 
 
Table 10: The x and y output coordinates of the result point Q=kxP, 

for an arbitrary value of k 

k = ’6950A0A0301E34580600180404020158200020657’ 
Q.x = ’39FBE940C15F355289DEF938ABF2512FEA36EC7BE’ 
Q.y = ’356A9D7CDCD59E95546B385E77566EF4B4DD81D3’ 
 
 Fig. 5 and Table 10 show the output results of the 
ECC scalar multiplication for a "163 bits" arbitrary 
value of k. 
 The implementation was intensively tested for 
different inputs of k and the obtained results were 
compared each time with the outputs of the different 
scripts written within Matlab. Both, hardware 
implementation and software emulation generated the 
same results over the 163 bits. 
 

DISCUSSION 
 
 The main contribution of present research 
concerned three major points: 
 
• An optimal Finite State Machine (FSM) controlling 

the whole components, minimizing empty cycles. 
• Optimization of the hardware inversion process, by 

reducing the number of different squaring from 
162-21, leading to an inversion in just 32 cycles  

• Separation of the data path routing from the control 
part, in order to modify only the multiplier, the 
squarer, the adder as well as the modulo 
component for the different curves of (Table 1) 

 
 The introduction of additional multipliers and 
squarer’s can speed up the design at the expense of 
hardware spreading inside the FPGA. In embedded 
processes, this choice “speed/space” is crucial, 
depending mainly on the type of application, the 
targeted space, the possible addition of extra future 
functions and finally the cost allocated to the project. 
 The results, we obtained are very encouraging and 
will impact our decision on the embedding of larger 
encryption schemes, mainly the extension to the NIST 
proposed curves (193, 233, 283, 409 and 571) in a 

single FPGA, taking into account: The use of two or 
more multipliers (tuned parallel design), the use of 
internal memories such as Block RAMs (optimized 
timing memory accesses), the speed up of the FSM, as 
well as using different ECC hardware algorithms…; 
these optimization schemes are constrained to minimize 
the parallel inputs of the design and reduce routing 
circuitry, that dramatically decrease efficiency, lower 
speed and increase power consumption. 
 

CONCLUSION 
 
 We have presented a fast version of an ECC 
crypto-hardware based on a finite state machine, 
implemented on a XILINX FPGA xc5vsx95t-1136 
device. We attained a frequency of 561.136 MHz, 
which allows the execution of 161786 scalar 
multiplications per sec. Compared to the remarkable 
research of[6], with its 555.6 MHz, allowing 80000 
scalar multiplications.  
 Our implementation can be still more competitive 
while introducing more optimization at the level of the 
multiplier and the squaring components. 
 The second main optimization, in present research, 
concerned the modular inverse circuit; which attained 
the frequency of 777.341 MHz; that is 13 times faster 
than the implementation of[27], against an increase, from 
our side, of 1:2 in the number of slices, for the 163 bits 
operands. 
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