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Abstract: This paper presents a new naïve approach for simulating bone remodeling process. It is 
based on the uniform strength theory of optimization and employs a truss-like model for bone. The 
truss was subjected to external loads including 5 point loads simulating the hip joint contact forces and 
3 muscular forces at the attachment sites of the muscles to the bone and the rest are reactions of 
ligaments. The strain in the links was calculated and the links with high strains were identified. The 
initial truss is modified by introducing new links wherever the strain exceeds a prescribed or critical 
value. The critical value was assumed to be equal to an average of the absolute value of strains in the 
initial model. Each link which undergoes a high strain is replaced by several new links by adding new 
nodes around it using Delaunay method. Introducing the new links to the truss, which is conducted 
according to a weighted arithmetic mean formula, will strengthen the structure and reduce the strain 
within the respective zone. This procedure was repeated for several times. Convergence was achieved 
when there were no critical links remaining. This method was used to study the 2D shape of proximal 
femur in the frontal plane and provided results which are in a fairly good agreement with CT image of 
the human proximal femur. 
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INTRODUCTION 

 
 An early hypothesis about the dependence of 
the structure and form of bones on their mechanical 
function was proposed by Galileo in 1638 [1]. The 
nature of this dependence was first described in a semi-
quantitative manner by Wolff [2], who stated that every 
change in function of a living bone is followed by 
adaptive changes in its internal architecture and shape. 
Several mechanisms have been proposed to relate 
changes in mechanical loads to the adaptive responses 
in bone, including: piezoelectric and streaming 
potentials [3, 4], mechanical fatigue microdamage [5-
11], and extra-cellular fluid pressure gradient effects on 
bone cells [12, 13]. Experimental evidence can be 
found in support of each of the above-mentioned 
mechanisms. It is generally accepted that bone growth, 
maintenance, and degeneration are biochemically 
regulated processes that are influenced by mechanical 
functions [14, 15]. Remodeling theories can be 
categorized into phenomenological, mechanistic, and 
optimization models [16]. Generally speaking, a 

remodeling theory tries to find a relation between bone 
apparent density and the mechanical stimuli applied on 
the bone. Also, a remodeling theory can aim at finding 
a relation between the mechanical stimuli and the bone 
micro-structural pattern, i.e. the fabric tensor [17]. 
Many theories, mostly phenomenological, have been 
proposed to explain the process of bone remodeling 
[19-28]. For example, the apparent density has been 
used to characterize the internal morphology of the 
bone and the strain energy density assumed as the 
stimulus for bone adaptation [19]. These methods, 
however, are often based on complicated mathematical 
formulations and/or require extreme computation costs. 
A high-order nonlinear equation of bone remodeling 
was utilized in [21] and the influence of nonlinearity on 
adaptation was studied. Prediction of external shapes 
and internal density distributions in the proximal femur 
was also investigated using these non-linear equations 
[22]. 

It is expected that the application of different 
boundary conditions to the Finite Element model 
(FEM) will have an effect on the density distribution of  
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bone. Recent studies have shown significant differences 
in the femoral strain distribution under varying 
boundary conditions [29-32]. So, it is expected that 
different boundary conditions will have a direct effect 
on the density distribution in the proximal femur. It is 
not clear, however, how these different loading 
configurations can affect the outcome of the remodeling 
simulation. It has been also argued [19, 33] that 
representation of all muscle forces about a joint is not 
needed. 

The goals of this study are to find the external shape 
of proximal femur and its density distribution using a 
novel, computationally efficient remodeling method. 
The effects of different boundary conditions on the 
density distribution will also be investigated.  
  
 

ANALYTICAL METHOD 
 
 In order to find the external shape of bone and the 
bone density distribution, a topology optimization 
method was employed. The initial design domain is a 
uniform rectangular plate which occupies a larger space 
than the anticipated final shape of the bone structure. 
The rectangle is meshed by 156 link elements (Fig. 1) 
and subjected to the actual loadings found on the 
proximal femur (Fig. 2 and table I). This consists of 
muscle contributions from the gluteus medius, gluteus 
minimus, piriformis, and hip joint contact force [22 and 
29].  
 Strain in each link is calculated using an algorithm 
written in Matlab. A critical strain threshold is 
established and links with strains above this critical 
value (�c) are identified. Additional nodes are added 
near any critical links, i.e. the links which have strains 
above �c, in order to stiffen the structure in the vicinity 
of the high strain links. 
 The strain is then recalculated in the structure. At 
each step critical links are identified and additional 
nodes are added. Convergence is a function of the 
critical strain; thus, a judicious choice of critical strain 
is needed to minimize computational time. We have 
found that the average of the absolute value of strains in 
the initial model is a good value for the critical strain 
threshold. In fact, this is the advantage of the present 
method in which strain tensor of each region is reduced 
to a scalar. All the strains of nodes together make a 
strain vector which is here a linear combination of 
displacement vector of the whole structure. Since, the 
essential, i.e. Dirichlet or displacement, boundary 
condition of the problem is homogeneous; the 
displacement vector is inversely proportional to the 

Young's modulus of the links which has been 
considered identical throughout the structures. This can 
be seen in Eq. (1): 
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In Eq. (1a), 0 is a null sub-vector assigned to the 

supported nodes and 
−
f  is a sub-vector of nodal force 

vector excluding reactions of boundary nodes. These 
sub-vectors in terms of mathematics literature are called 
Dirichlet and Neumann boundary conditions, 
respectively [36]. 

 

 
Fig. 1: The uniform initial links elements model 

 

 
Fig. 2: Loadings and boundary conditions 

 
 Since, the stiffness matrix is linearly proportional 
to the Young's modulus (E), then Eq. (1b) implies that 
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all displacement values are inversely proportional to 
Young's modulus (tilde symbols are independent of E). 
Consequently, the strain vector which is a linear 
combination of displacement vector is also inversely 
proportional to the Young's modulus. Stress vector, on 
the other hand, is Young's modulus times strain vector, 
resulting in independence of stress vector to Young's 
modulus. The above statements have been restated in 
terms of mathematical symbols as follows: 

linksofnumberifor
l
u

E

linksofnumberifor
El
u

l
u

linksofnumberifor
E
u

ub

i

i
ii

i

i

i

i
i

i
i

�

�

�

1
~

1
~

1
~

)1(

===

===

==


εσ

ε
              

(2)
 

  
Table I: The forces applied to the initial model at 10% 

of gait cycle 

 
 
     There exist two optimization theories: uniform 
strength theory and trajectorial architecture theory [34]. 
In the first approach, structure is made in a way that 
under loading condition of interest, the maximum 
allowable stress all over the structure is identical. In the 
latter approach, however, the structure is made such 
that material appears only in the trajectories of loading 
transfer in a particular loading condition. In this study, 
the first approach has been considered. As already 
stated, the stress vector is independent of Young's 
modulus.  Therefore, to achieve an optimized structure, 
we do not need to have bone's Young's modulus in this 
method. For any arbitrary value of Young's modulus, a 
vector of strains and then stresses are obtained. 
Uniformity of stress distribution necessitates the 

uniform distribution of strain. The obtained strains span 
from a minimum value, �min to a maximum value, �max. 
By trial and error, it is concluded that if we use the 
average of �min and �max then a convergence to optimal 
shape has an acceptable rate. If one chooses a smaller 
amount, then more iteration might be needed to achieve 
the optimum shape. Also, if a greater amount is chosen 
for the strain, then more regions would undergo 
strengthening and the structure would become more 
elaborated. The elaborated structure means one with too 
many links. This, in turn, implies that in order to obtain 
displacements in the latter steps a too big system of 
equations should be solved and, consequently, more 
overall computational cost is spent in addition to over-
sensitivity to the loads. The over-sensitivity, on the 
other hand, is because much bigger region is influenced 
by each particular load. In other words, when a 
particular load is applied, then more proportion of 
structure is considered as critical and hence subject to 
reinforcement. It is clear that this process contradicts 
with the aim of optimization. 
 New nodes are added by means of a weighted 
method in which the added nodes are closer to the 
critical link. The nearer the new nodes to the weak link, 
the stronger link will result. Not to influence the 
uniformity of nodes distribution, we have used the 
following weighted scheme. Consider that the link 1-2 
in Fig. 3 is a critical link, and two nodes are going to be 
added to it. The location of the new nodes, i.e. nodes 5 
and 6 in Fig. 3, are found by using the following 
relations: 
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 This process is repeated several times until there 
are no critical links remaining. Convergence is achieved 
after about 10 iterations with an appropriate critical 
strain threshold. 
 

 

Fig. 3: Adding nodes near critical link 1-2 
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 The new nodes are attached to the initial nodes 
with new links using the Delaunay method. The 
Delaunay triangulation is one of the most popular 
methods for generation of unstructured meshes. It is 
composed of two phases: placement of the mesh 
vertices, and triangulation. The Delaunay algorithm 
determines non-overlapping triangles that fill the 
convex hull of the input points such that every edge is 
shared by at most two triangles, and the circumcircle of 
every triangle contains no other input points [35]. In 
this way, a sub-structure will be resulted in which 
stiffness between nodes 1 and 2 has been enhanced. For 
example, when two triangles 123 and 124 in Fig. 3 are 
equilateral, the strengthened sub-structure obtained by 
this method between nodes 1 and 2 is 1.48 times stiffer 
than initial sub-structure. In other words, if the right 
structure in Fig. 3 is supported in node 2 and is 
stretched in node 1, the displacement of node 1 will be 
1.48 times less than displacement of node 1 in the left 
structure of Fig. 3. 
 

RESULTS AND DISCUSSIONS 
 

 Figure 4 shows the model after convergence. 
The number of nodes after convergence is 
approximately 1500 and this means that the code will 
not add any new nodes. As a final step, a “density 
matrix” is developed to find the density distribution in 
the model. The model is divided into 100×100 small 
rectangles. The density is found by dividing the mass of 
the trusses in the rectangle by its volume, which is 
assumed to have unit thickness. The mass of the trusses 
in each rectangle is found by multiplying the volume of 
trusses by 1/�max=1.0gr/cm3 which is a typical bone 
density [23]. By assigning white color to the high 
density areas and dark color to the low density areas, a 
gray-scale image is generated which is shown can be 
seen in Fig. 5.  

Figure 6 is a C-T image of human proximal femur. 
The white regions correspond to high density bone and 
black regions to either low bone density or bone 
porosity. An interesting point about Fig. 5 is that the 
highest density can be seen in zone 1 of our model 
which corresponds to the cortical shell of the proximal 
femur (see Fig. 6). A fairly good agreement between 
Figs. 5 and 6 can be seen. 

The convergence rate in this model is very high, with 
an appropriate value for critical strain. As it is shown in 
Fig. 7, the convergence is achieved after only 10 runs. 

 
Fig. 4: Model after the 10th run 

 
 By changing the initial boundary conditions 

(muscle loadings of Table I) in the remodeling 
procedure, different density distributions are achieved. 
For example, by decreasing or increasing the hip joint 
contact forces by 10% (P1, P2, P3, P4, and P5), the 
density distribution will be altered (Figs. 8 and 9). The 
average change in the density is about -0.1% and 2%, 
respectively. The reason why changes in average 
density as a result of increasing and decreasing of loads 
is not equal, or at least comparable, is that the effect of 
bone resorption has not been taken into account in this 
study, and only bone formation process has been 
considered in our model. Results of these simulations 
put an emphasis on the well accepted point in the 
biomechanics of bone that magnitude and also direction 
of loads applied on bone (from muscles, tendons, or 
ligaments) has a significant influence on the bone 
apparent density, and also its microstructure. 

 
Fig. 5:  Density distribution of proximal femur in the 

model after 10th run. Note: White color 
corresponds to the highest and dark color to 
the lowest amount of densities. 

Zone 1 
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 Fig. 6: C-T image of human proximal femur. Note:  

White color corresponds to the highest and dark 
color to the lowest amount of densities. 

 
 Fig. 7: Convergence rate is very high in this method. 

Convergence is achieved after only 10 run with 
a number of nodes of about 1500. 

  
Fig. 8: Change in density distribution of proximal femur in 

the model after 10% decrease in the hip joint 
contact forces (P1, P2, P3, P4, and P5). The 
maximum change in the density occurs in zone 1. 
Note: White color corresponds to the highest and 
dark color to the lowest amount of densities. 

 
Fig.9: Change in density distribution of proximal femur in the 

model after 10% increasing of the hip joint contact 
forces (P1, P2, P3, P4, and P5). Note: White color 
corresponds to the highest and dark color to the lowest 
amount of densities. 

  
CONCLUSIONS 

 
 The whole topology of a bone structure is made up 
of its external shape and internal density distribution. In 
the present study, we put forward and fulfill the 
prediction of the external shape of the human proximal 
femur, and its density distribution by a fast and simple 
method. In this study, unlike most of the existing 
models of bone remodeling which are on a continuum 
mechanics ground, a discontinuous, truss like model to 
analyze the bone remodeling process in the human 
proximal femur is used. The philosophy behind our 
model is the very well accepted point of 
correspondence between the level of external loads and 
the bone strength and density. Uniform strength 
optimization method was adopted in this research 
which resulted in a fairly fast convergence time (about 
20 minutes). Using our method, it is found that the 
density distribution would be fairly similar to the real 
human proximal femur (Figs. 5 and 6). Furthermore, it 
was shown that by decreasing the external loads on the 
femur, there will be a reduction in the bone density too 
(Fig. 8).  
 Considering that the real proximal femur is a three 
dimensional structure, a 3-D modeling of the bone with 
the same method is intended for our future work. 
Moreover, in order to increase the clarity of some of 
our results, e.g. Figs.5 and 8, more research is in 
progress. 
 

Zone 1 
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