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Abstract: This study presents the development of the STFT-based fatigue data editing technique that 
will be used as a tool to accelerate for accelerating fatigue testing. This technique was performed by 
removing low amplitude cycles contained in the original signal in order to produce a shortened signal 
using the Short-Time Fourier Transform (STFT) parameter. The effectiveness of STFT power 
spectrum was validated using an SAE random fatigue data in order to indicate the relationship between 
STFT parameter and fatigue damage. The data was separated into two segments, i.e., damage and non-
damage segments based on the 100% retention of the original fatigue damage. For the editing process, 
the STFT power spectrum distribution was used as the parameter to identify the damaged segment 
according to the power spectrum Cut-Off Level (COL). The low amplitude cycles with power 
spectrum lower than COL value were then removed from the original signal. Thus, a new edited signal 
was obtained which has retained almost 100% of the original fatigue damage and has equivalent signal 
statistic. The edited signal was found to be approximately 84% of the time duration of the original 
signal. 
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INTRODUCTION 

 
 Fatigue durability testing of the mechanical 
structure is performed extensively in all industries as 
one of the parts in design process. In the real 
application, the fatigue loading services such as stresses 
on a car wheel, bending moment on the stub axle of a 
car, stresses on the rear axle of a passenger car etc. are 
variable amplitude histories[1]. The histories often 
contain a large percentage of small amplitude cycles 
and the fatigue damage for these cycles can be small. 
Therefore, in many cases the fatigue loading history 
were edited by removing those small amplitudes cycles 
in order to produce representative and meaningful yet 
economical testing[2]. 
 For fatigue life assessment study, fatigue data 
editing is described as a method of summarising the 
fatigue data by removing small amplitude cycles for 
reducing the testing time and cost. Two key factors 
were suggested in order to achieve efficient design and 
modification processes to ensure adequate fatigue 
performance, i.e., the fatigue damage should be as 
accurate as possible and the component durability tests 
should be as short as possible[3]. Several fatigue data 
editing techniques have been developed for use in the 
time domain analysis[4]. Some of the previous 

algorithms were developed for eliminating low 
amplitude cycles, hence to retain high amplitude 
cycles[4-6]. In the frequency domain, a time history is 
low pass filtered on the basis that high frequency cycles 
have small amplitudes which are not damaging[6]. The 
filtering method does not shorten the signal because it 
does not provide the time base information.  
 The time-frequency approach has been applied to 
the problem of fatigue data editing through the 
compromise between the time- and frequency-based 
views of a signal. The Short-Time Fourier Transform 
(STFT) or windowed Fourier transform is one of the 
methods for transforming the time domain signal into 
the time-frequency domain. In addition, the STFT 
adapted the Fourier transform to analyse only a small 
section of the signal at one specific time[7]. Finally, 
STFT provides information on when and at what 
frequencies a signal occurs. 
 This study focuses on two parts, i.e., STFT 
validation with an SAE data and editing process. For 
the STFT validation, the fatigue data editing was 
applied in time domain analysis to shorten the original 
signal with 100% damage retains. The editing process 
was performed using the GlyphWorks® software 
package, which sliced the strain history range less than 
gate value. Gate value was obtained from strain 
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amplitudes and mean stress evaluation at cut-off point 
or fatigue limit of the particular material. The non-
damage and damaged segment in time history was 
recorded. The STFT method was used to transform the 
time domain fatigue signal into time-frequency domain. 
The spectrogram of STFT will be transposed into the 
time history distribution to be compared with the time 
history non-damage and damage segment in order to 
study the effectiveness between STFT spectrogram and 
fatigue damage. 
 For the editing process, the STFT method was used 
to transform the time domain signal into the time-
frequency domain in order to trace the low power level 
contained in the original signal. Those parts were then 
removed from the original signal in order to generate a 
new edited signal which has segments of high 
amplitude cycles. For this reason, low amplitude cycles 
which have been removed have minimal or no fatigue 
damage potential. Therefore, the original fatigue 
damage can be retained in the edited signal produced at 
the end of the process. Finally, for this study, the 
effectiveness of this technique was validated based on 
the fatigue damage retention in the shortened signal and 
it was then compared to the original signal.  
 

MATERIALS AND METHODS 
 
 For many automotive components, the primary 
mode of failure can be attributed to fatigue damage 
resulting from the application of variable amplitude 
loading. Predicting the life of a part stressed above the 
endurance limit is at best a rough procedure[8] 
especially for components like the automobile engine, 
steering and suspension parts[9]. For these cases, the 
strain-based approach is commonly used to predict 
fatigue life[10]. The strain-life fatigue model relates the 
plastic deformation that occurs at a localized region 
where fatigue cracks begin to the durability of the 
structure. This model is often used for ductile materials 
at relatively short fatigue lives. This approach can also 
be used where there is little plasticity at long fatigue 
lives. Therefore, this is a comprehensive approach that 
can be used in place of the stress-based approach. 
 Current industrial practice for fatigue life 
prediction is to use the Palmgren-Miner (PM) linear 
damage rule[10]. For strain-based fatigue life prediction, 
this rule is normally applied with strain-life fatigue 
damage models, such as the Coffin-Manson 
relationship[11,12], i.e., 

   ( ) ( )b cf
a f f f

'
2N ' 2N

E

σε = + ε  (1) 

where E is the material modulus of elasticity, εa is a true 
strain amplitude, 2Nf is the number of reversals to 
failure, σ’ f is a fatigue strength coefficient, b is a fatigue 
strength exponent, ε’ f is a fatigue ductility coefficient 
and c is a fatigue ductility exponent.  
 In order to estimate a fatigue damage event where 
mean stress/strain is involved, functional solutions, in 
addition to the normal fatigue stress/strain life curves, 
are introduced to predict mean stress and mean strain 
effects. Experimental results show that mean strain 
gives a second-order effect if no severe work hardening 
has taken place[13]. Consequently, the damage 
parameters are usually developed to consider mean 
stress effects on fatigue behaviour. Different mean 
stress effects have been documented for a variety of 
materials and testing techniques, with the result that 
various mean stress theories for strain-life relationship 
have emerged and no consensus exists that any one of 
them is superior to the others[13]. For examples, the 
Morrow[14] approach seems to work reasonably well for 
steels while the Smith-Watson-Topper (SWT)[15] 
appears to give good results for a wide range of 
materials and is a good choice for general use[13]. The 
Morrow’s strain-life model is mathematically defined 
as the following expression: 
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and the SWT strain-life model is defined according to 
this formulation: 
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where σm is the mean stress and σmax is the maximum 
stress, applicable for both Eq. 2 and 3. 
 From the strain-life model approach, the number of 
reversals or 2Nf, were determined in order to find 
cumulative fatigue damage. The values of σ’ f, E, ε’ f, b 
and c were the material properties of the particular 
material, while the value of ε’ a can be obtained from the 
rain flow cycle counting method. The cumulative 
fatigue damage was then determined using the 
Palmgren-Miner (PM) linear damage rule.  
 Fourier analysis is a one of the method to analyse 
random data based on the frequency domain analysis. 
The frequency analysis data is typically presented in 
graphical form as Power Spectral Density (PSD). 
Essentially a PSD display the amplitude of each 
sinusoidal wave of a particular frequency. Frequency is 
given  on  the  x-axis.  The mean squared amplitude of a 
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 sinusoidal wave at any frequency can be determined by 
finding the area under the PSD over that frequency 
range. Unfortunately, Fourier transform analysis has a 
drawback as it does not provide the time localization 
information. Therefore time-frequency domain analysis 
was applied to solve that problem. Many time-
frequency analyses are based on windowed or short-
time Fourier transforms[16]. Sliding data windows were 
used to obtain time-localised spectra which together put 
up the time-frequency representation of the data.  
 The STFT is performed by dividing the signal into 
small sequential or overlapping data frames, for which 
the Fast Fourier Transform (FFT) was applied to each 
data frame[17]. The output of successive STFT can 
provide a time-frequency representation of the signal. 
In order to accomplish this, the signal is truncated into 
short data frames by multiplying it by a window so that 
the modified signal is zero outside the data frame. In 
order to analyse the whole signal, the window is then 
translated into a time and reapplied to the signal. The 
STFT is composed by the local spectra of segments of 
the primary function, as viewed through a translating 
window of fixed shape. The local spectra at all points 
on the primary time axis constitute the STFT[18]. The 
STFT is generally expressed as the following: 
   

STFT(t, f ) h(t)w(t )exp( 2 if )d
∞

−∞

= − τ − π τ τ∫   (4) 

 
where h is the primary function, τ is the time and f is 
the frequency. The position of the translating window w 
is determined by t, which has the same units as τ. If w is 
replaced with the value of 1 in Eq. 2, the STFT reduces 
to H, i.e., the Fourier transform of h. The modulus of 
the STFT is also known as the spectrogram. 
 In the related study[19], the STFT spectrogram has 
been applied in fatigue analysis for detection and 
monitoring of hidden fatigue crack growth. The STFT 
method was also widely used in locating the structure 
defect especially for gear and cutting tool using 
vibration data due to its capability to detect highly 
vibration event[20,21]. In this study, the STFT method 
was used to transform the fatigue signal into time-
frequency representation in order to detect the 
damaging event contained in the signal. STFT measures 
the energy in a time-frequency neighbourhood, 
specified by a resolution box. The damaging event will 
be determined based-on level of energy. 
 

RESULTS 
 
 The validation process STFT-based fatigue data 
editing was presented as a flowchart in Fig. 1. In order 
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Fig. 1: Simplified flowchart for the validation of STFT effectiveness 
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Fig. 2: Time history plot of the SAESUS fatigue signal 
 
to achieve this purpose, the strain time histories named 
as SAESUS (this data was obtain from the database of 
Society of Automotive Engineers or SAE) was used for 
evaluating the newly developed fatigue data editing 
technique associated with the STFT. The data was 
collected on a suspension component of a car and it was 
assumed to be sampled at 204.8 Hz for 25,000 data 
points. It gave the total record length of the signal of 
122 sec, as illustrated in Fig. 2. The signal was chosen 
due to the prior success with it by another researcher[22] 
in the fatigue history editing using wavelet approach. 
 The time domain fatigue signal was then edited for 
shortening the signal length with the removal of low 
amplitude cycles. These cycles were removed based on 
time domain analysis. The module for fatigue damage 
editing in the GlyphWorks® software package was 
applied to perform the time signal shortening. The 
editing process was retained at 100% damage level of 
the original signal. In this process all the strain range 
less than the gate value were removed, for which the 
gate value was calculated based on Coffin-Manson 
strain-life relationship. The selected material for the 
simulation purpose was the SAE1045 steel and this type 
of material was commonly used in the automotive 
industry[23] for fabricating a lower suspension arm. The 
material properties and their definitions are given in 
Table 1. For the SAE 1045 steel material, the gate value 
is the strain range that gave the fatigue life value of 
2×108 reversals.  
 The removed low strain range cycle from the 
original signal was shortening the length of the signal. 
The 100% retained damage strain range edited was 
successful removed approximately 50% low amplitude 
cycles with 57 seconds time reduced, as illustrated in 
Fig. 3. For this case, the removed data was assumed as 
non-damage segments because the departures of those 
segments did not change the value of the total fatigue 
damage. In Fig. 3a, the filled areas represent the 
segments which contribute to the minimal or no damage 
potential. 
 For the STFT analysis, the time history signal was 
separated into a number of windows using the Gaussian 
window   with   128   of   window   size.  The  Gaussian  
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Fig. 3: The analysis of SAESUS: (a) The 122-second 

original time history (b) The 65-second edited 
time history  

 
Table 1: Mechanical properties of the SAE1045 steel 
Properties SAE1045 steel 
Ultimate tensile strength, Su (MPa) 621 
Modulus of elasticity, E (GPa) 204 
Fatigue strength coefficient, σ’ f (MPa) 948 
Fatigue strength exponent, b -0.092 
Fatigue ductility exponent, c -0.445 
Fatigue ductility coefficient, ε’ f 0.26 

 
window was used since one simultaneously achieves an 
optimal time and frequency resolution[24]. The 120 
number of overlaps were used in order to provide the 
high resolution in the time representation. For each 
window, the Fourier transform was applied for the 
calculation of the power spectral level contained in each 
window. The power distribution was gained using the 
Power Spectral Density (PSD) that produced the 
spectrogram of the STFT. For this case, the PSD is 
defined as the power distribution of the signal and 
represent at µε2Hz−1 as the unit. The STFT plot of the 
original fatigue signal showed a two-dimensional view 
of the power distribution, as observed in the time-
frequency plane. This result was plotted in Fig. 4, 
showing the different colour contours, i.e., the red 
colour for the highest energy content and followed by 
yellow, green, blue and white.  
 According to the spectrogram parameter obtained 
in the STFT processing, the power spectrum of the 
fatigue signal was decomposed into a time domain data 
in order to represent the time history power spectrum 
distribution. The magnitudes of time domain power 
spectrum  were  obtained  from the accumulative power  
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Fig. 4: The time-frequency localisation of the SAE 

fatigue signal based on the STFT approach 
 

0 
  20 

  40 
  60 

  80 
  100 

  120 
 

  Time ( sec )
  

345 
  

  
  
  
  
  
  
  
  - 999 

  

u
e

Saesus ( s3t )  C h  1: sus 
  

 
 
 

20 40 60 80 100 1200

2

4

6

8

10

12

14 x 105

X: 68.67
Y: 1.278e+006

Accumulative power distribution

P
o

w
er

 [u
e2 /H

z]

Time (sec) 

X: 68.67
Y: 1.278e+006

X: 41.6
Y: 1.234e+006

X: 9.883
Y: 1.086e+006

X: 115.3
Y: 1.016e+006 X: 119.4

Y: 9.94e+005

X: 54.77 
Y: 9.929e+005

X: 1.055
Y: 1.137e+006 

 
 
Fig. 5: (a) SAESUS strain time history, (b) The power 

spectrum in time history representation 
 
distribution along the frequency band for each time 
interval. Thus, it’s provided the power level 
information at time location. The STFT power spectrum 
distribution is illustrated in Fig. 5. The figure shows the 
equality between magnitudes of power spectrum and 
strain magnitude especially at 1, 10, 42, 55, 69, 115 and 
120 sec time locations, where both of the power 
spectrum and strain possess high magnitudes. 
 From the simulation of the fatigue history editing 
at 100% damage retained, the output signal was 
separated into two new signals, i.e., the damage signal 
and the non-damage signal. The damage signal is the 
signal that contained the cycles associated to the fatigue 
damage. On the other hand, the non-damage signal 
contained the cycles which were not damaging. For the 
validation purposes, the power spectrum of each signal 
was  also investigated in order to study the efficiency of  
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Fig. 6: Power spectrum at: (a) the damage segment (b) 

the non-damage segment 
 
STFT parameter based on fatigue damage event. The 
power spectrum of each signal is shown in Fig. 6, for 
which Fig. 6a shows that the power spectrum of the 
non-damage signal that consist higher power spectrum 
level. The non-damage signal produced the lower 
power spectrum level at the minimum value, as shown 
in Fig. 6b, which most of the power spectrum values 
were below 4×105 µε2Hz−1. The findings showed that 
the power spectrum gained from the STFT method was 
enable us to detect the damage event of the fatigue 
signal, as higher power spectrum presents the damage 
part. 
 The flowchart in Fig. 7 shows the process of 
fatigue data editing using the STFT method. The 
overall process consists of time-frequency 
transformation, time history power spectrum 
transposition and elimination of the low amplitudes 
cycles. The output of successive STFT can provide a 
time-frequency representation of the signal. 
 Based on the spectrogram parameter obtained in 
the STFT processing, the power of the fatigue signal 
was decomposed into a time domain data in order to 
represent the power distribution in the time history. The 
power spectrum display in the time domain provided 
the time location containing the low power spectrum 
cycle. Accordingly, the low energy cycles will be 
eliminated for summarising the signal length without 
compromising the original fatigue damage potential. 
For a specific fatigue data, low energy cycles mean 
these cycles had a low amplitude strain which is not 
damaging. 
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STOP 

Create new edited signal 
 

Remove the cycles whose energy 
content lower than COL 

 

Convert the power distribution 
into time history 

Input fatigue signal 

Transform input signal into time-frequency 
domain using STFT method 

 

START 

Set Cut Off Level (COL) 
 

 
 
Fig. 7: The flowchart for fatigue data editing using 

STFT-based computational algorithm 
 
 In order to solve the subject matters of this paper, a 
STFT-based computational algorithm was developed in 
order to analyse the signal according to the fatigue 
damage calculation and also to remove cycles with low 
energy content. Thus, the cycles with higher energy 
content has been retained for further analysis. These 
cycles were then jointed to produce the new edited 
signal, which has shorter time length. In addition, this 
edited signal should also have equivalent fatigue 
damage to the original signal. 
 The low energy cycles were removed from the time 
domain signal based on the location of low energy 
cycle in time history power spectrum distribution. A 
new parameter called Cut-Off Level (COL), which 
represents the minimum power value to be retained 
from the original signal was set. This means that, the 
cycles with power spectrum level below than COL 
value will be eliminated. Thus, a new shortened edited 
signal was generated which neglected low amplitude 
cycles. 
 For the validation purposes, the fatigue damage 
potential for both original and edited signals were 
calculated in order to study the efficiency of the edited 
signal based on the fatigue damage retention. The 
fatigue damage was calculated based on strain life 
model   which   applied   the  Coffin-Manson  strain-life  

 
(a) 

 

 
(b) 

 
Fig. 8: Time history signal of that was measured on the 

different side of lower suspension arm of a car: 
(a) left lower suspension arm, (b) right lower 
suspension arm 

 
relationship. In this study, the optimum edited signal 
was determined based on the shortest signal with the 
minimal fatigue damage deviation when compared to 
the original signal and that retains the original signal 
behaviour.  
 Two input signals were used to observe the 
efficiency of the newly developed fatigue data editing 
algorithm using the STFT approach. Both signals were 
measured on the left and right lower arm suspension of 
a car that was travelling on a country road. It was 
sampled at 200 Hz for 12,000,000 data points. The time 
history plots for the signals were shown in Fig. 8.  
 For the analysis purposes, two segments from the 
overall signal were selected which contained of 30,000 
data point for each segment. Those signals were 
selected due to the highest fatigue damage content. The 
fatigue damage for each segment was plotted in Fig. 9. 
The first selected signal, named as D1 (Fig. 10a) was 
measured on the front left lower suspension arm that 
contained the highest fatigue damage segment and the 
second signal, D2 (Fig. 10b), was simultaneously 
measured with the D1 signal on the front right lower 
suspension arm.  
 Using the STFT-based newly developed 
computational algorithm, the time history D1 and D2  
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Fig. 9: Fatigue damage distribution calculated based on 

30000 data points for each segment: (a) signal 
measured on the left lower suspension arm, (b) 
signal measured on the right lower suspension 
arm 
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Fig. 10: Time history signal of: (a) The D1 signal (b) 

The D2 signal 
 
signal was then transformed into time-frequency 
representation. Those signals were separated into a 
number of windows using the Gaussian window with 
64 of window size. The 60 number of overlaps were 
used in order to provide the high resolution in the time 
representation where higher time resolution provided 
better time information for further analysis. The time-
frequency  power  spectrum for both signals was plotted  

 
(a) 
 

 
(b) 

 
Fig. 11: The STFT localisation for: (a) D1 signal, (b) 

D2 signal 
 
in Fig. 11. As can be seen from this figure, higher 
magnitude distribution was observed with low 
frequencies and lower magnitude distribution was 
observed with high frequencies. The time-frequency 
power spectrum distribution was then converted into 
time representation by accumulating the power 
spectrum at each time scale. Thus, a set of power 
spectrum at particular time was gained. The power 
spectrum in time history for D1 and D2 signals were 
plotted in Fig. 12. As the STFT power spectrum has a 
significant relationship with the fatigue damage 
potential distribution, the STFT spectrogram can be 
utilized as the parameter for this fatigue data editing.  
 For the editing process, the power spectrum level 
was used as the parameter to set the gate value (Cut-Off 
Level or also known as COL) for eliminating process. 
The eliminating process was carried out by removing 
the low amplitude cycles which contain the power 
spectrum lower than COL value. Various COL values 
were  used  in  order  to  exhibit  the effectiveness of the  
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Fig. 12: Power spectrum in the time history 

representation for: (a) D1 signal, (d) D2 signal 
 
edited signal with respect to the fatigue damage 
retention. The editing process at a particular COL value 
produced a new edited signal. For each edited signal, 
the fatigue damage was determined and compared with 
the original signal in order to obtain the optimum edited 
signal. The fatigue damage was estimated by utilizing 
the Coffin-Manson, Morrow and SWT strain-life 
models contained in the GlyphWorks® software.  
 The simulation process provided the fatigue 
damage  distribution  for  each  cycles  as  shown in 
Fig. 13. The fatigue damage of the signal was the 
cumulative of the fatigue damage for each cycles 
contained in that signal. The fatigue damage values for 
each edited signal were plotted in Fig. 14, showing the 
changes of fatigue damage against the COL values for 
all strain-life fatigue damage models. The fatigue 
damage shows decrement when COL values were 
ascending because of the departure of more low 
amplitude cycles. In order to retain the originality of the  

 
 
 

 
 
 

 
 
 

 
 
Fig. 13: The distribution of the fatigue damage 

potential for: (a) D1 signal, (b) D1 edited 
signal, (c) D2 signal, (d) D2 edited signal 
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Table 2: The compression characteristics between the original and edited signals 
     Fatigue damage 
     ------------------------------------------------------------------ 
Data Signal length(s) Mean RMS Kurtosis Coffin-Manson Morrow SWT 
Original D1 150 -2.09 51.30 3.30 2.07×10−6 2.38×10−6 3.25×10−6 
Edited D1 126 -2.43 54.00 3.00 2.07×10−6 2.38×10−6 3.25×10−6 
Original D2 150 0.20 9.10 3.53 1.147×10−11 1.12×10−11 1.07×10−11 
Edited D2 127 0.22 9.43 3.30 1.147×10−11 1.12×10−11 1.07×10−11 
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Fig. 14: The fatigue damage changes over the COL 

values for: (a) D1 signal, (b) D2 signal 
 
signal, the statistical parameter of the edited signal 
should be equivalent to the original signal. For this 
case, the 10% difference in the root-mean-square and 
kurtosis values between the edited and the original 
signals was used for analysing experimental road load 
data sets. This is important in order to retain the signal 
energy and amplitude ranges[25,26]. 
 From the result, the optimum COL value for D1 
was 500 and 20 µε2Hz−1 for D2. Both of the edited 
signals gained from those COL value were retained in 
the majority of the fatigue damage and were 
approximately same as the original signal and they also 
retained the statistical parameters with below than 10% 
deviation. Figure 15 represent the edited signal for both 
D1 and D2 signals. The D1 edited signal recorded 126 
seconds signal length which reduced 16% of the 

original  signal  length,  while  the D2 edited signal was  
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Fig. 15: The time history plots for: (a) the D1 edited 

signal, (b) the D2 edited signal 
 
84.67% (127 sec) of the original signal. The 
compression characteristics between the original and 
edited signals were shown in Table 2. 
 In overall, the analysis findings of this paper 
suggested that the STFT-based fatigue data editing can 
successfully remove the low amplitude cycles with 
respect  to  the  power  spectrum distribution, that retain 
higher fatigue damage segments in the time history. 
With the basis of the statistical parameter retention 
between the original and the edited signals, this 
technique produced the highly accurate edited signal 
which was similar to the original signal. The STFT 
power spectrum shows relatively adequate with damage 
event in the fatigue signal and is a very useful tool for 
damage detection in the fatigue signal. The extraction 
of damaging events successfully created a new edited 
signal which retained the majority of the fatigue 
damage.  

CONCLUSION 
 
 This study discussed the study of a fatigue data 
editing technique in time-frequency domain by using 
STFT method. The STFT-based computational 
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algorithm was developed to remove the low amplitude 
cycles which were contained in the original signal. The 
validation of the effectiveness of STFT was done by 
using the SAE data, called SAESUS. From the result, 
the damage segment contained high power spectrum 
and the non-damage segments were located in the lower 
part of the power spectrum. Obviously, the non-damage 
power spectrum has the power level below than 4×105 
µε

2Hz−1 which is close to the minimum value. It was 
shown that the power spectrum gained from the STFT 
algorithm has a significant relationship with the fatigue 
damage distribution.  
 The editing process was performed based on the 
COL parameter which eliminated the cycle that contain 
power spectrum lower than COL value. In the presented 
case study, two new shortened edited signals, i.e., the 
D1 edited signal and the D2 edited signal were 
obtained. The edited signals gave conspicuous 
decreases of the signal length. The D1 edited signal had 
126 sec of the time length, with the shortening of 16% 
of the original signal length. Similarly, the D2 edited 
signal was only 127 sec of the time length, which is 
about 15.3% reduction from the original signal length. 
Both of the signals also retained the major signal 
statistics with below than 10% of the root-mean-square 
value (represents the vibration signal energy in a time 
series) and the kurtosis value (represent the amplitude 
range in a time series). 
 In terms of the applicability of the shortened signal, 
this kind of signal can be normally used in the 
durability laboratory scale fatigue test. Such test is very 
important in the fatigue design criteria, especially for 
the task of accelerated fatigue testing. Finally, this 
method is suggested as an alternative technique in 
fatigue durability study, especially for the automotive 
engineering field. 
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