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Abstract: Problem statement: The estimation of states and the unknown inputs of a nonlinear 
system described by a multimodel are done by a multiobserver. The stabilization of the 
multiobserver calls upon uses both quadratic and no quadratic functions of Lyapunov. Although 
the stabilization using the quadratic approach is interesting from the point of view implementation, 
the step showed its limits for the multimodel. However, the problem paused by the quadratic 
method lies in the obligation to satisfy several LMI with respect to the same Lyapunov matrix P, 
these results are shown very conservative. Approach: To reduce the conservatism of the quadratic 
approach we propose another approach which is exclusively based on Lyapunov piecewise 
quadratic functions. The conditions obtained by the stabilization of the multiobserver are 
expressed in term of matrix inequalities with constraints on the matrices rank. Results: The 
estimation of both states and unknown inputs of a multimodel using the quadratic approach per 
pieces leads to results less conservative than the quadratic approach. Academic examples illustrate 
the robustness of the piecewise quadratic approach. Conclusion: In this article we proposed new 
sufficient conditions of stability of a multiobserver able to the estimation of states and unknown 
inputs of a nonlinear system describes by a multimodel subjected to the influence of the unknown 
inputs. The study in was carried out by considering two approaches. The first approach is based on 
Lyapunov quadratic functions; it is significant to note the great difficulty in finding satisfying 
results by this approach for the multimodel systems. For this reason we proposed an approach 
based on piecewise quadratic functions which led to interesting results (proposition 1) and less 
conservative than the quadratic approach. The conditions suggested in this article concern both the 
multiobserver stabilization and the estimation of states and the unknown inputs of a multimodel 
with measurable variables of decision (µξ(k)). The synthesis of a multiobserver with no 
measurable variables of decision is not approached. This point can constitute an interesting 
prospect for this study. 
 
Key words: Discrete multimodel, unknown input multiobserver, quadratic stabilization, piecewise 
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INTRODUCTION 
 
 The state observation of the nonlinear dynamic 
systems constitutes a very vast search field having 
many applications. This is justified by the fact that 
the state estimation is an important stage, even 
indispensable, for the synthesis of command laws, for 
the diagnosis or for the supervision of the industrial 
process. The basic idea is the substitution of the 
materials sensor by using non linear observers not 
only for economical reasons but also to come over on 
many technological difficulties, particularly when the 
adequate sensor isn’t obtainable. So, the use of this 
idea for several years has been the replacement of the 

material sensors by state observers, which allow the 
rebuilding of intern information (states, unknown 
inputs and unknown parameters) of a system using its 
model, known inputs and measured outputs. 
 Among the solutions brought to the problem of 
the state estimation and output in the presence of 
unknown inputs we have two approaches of 
construction of multiobserver that emerged. The first 
one supposes a priori knowledge of information about 
these not measurable inputs; in particular, the  filter 
of Kalman who allows to rebuild the state of the 
system  in the presence of measurement noise which 
is defined like unknown inputs, by using a priori of  
statistical knowledge on these noises. The second 
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approach proceeds either by estimation of the 
unknown inputs or by their complete elimination 
from the equations of the system (Akhenak et al., 
2003; 2006; Chadli et al., 2009; Darouach et al., 
1994). The observers with unknown inputs have 
attracted the attention of many researchers that of 
Dassanake et al. (2000) who used unknown input 
observers to detect and isolate sensor faults in a 
turbofan engine. 
 The crucial problem, in the synthesis of the 
observers with unknown inputs, is the convergence of 
the estimation error towards zero. Several works used 
the second method of Lyapunov and their quadratic 
functions for the stabilization of the estimation error 
in the case of the linear systems (Moreno, 2001; 
Floquet and Barbot, 2004) and in the case of the 
nonlinear systems (Koeing, 2006). However, this 
method generates very conservative conditions of 
stability of the observer in particular for certain 
classes of nonlinear systems such as the systems with 
parametric uncertainties (Chadli and El Ahajjaji, 
2006), the saturated systems and linear systems 
piecewise, which includes no information about space 
state partition (Johansson et al., 1999). Whereas, the 
using of the no quadratic Lyapunov functions like the 
polyquadratic functions and the piecewise quadratic 
functions, allows the reduce of the conservatism of 
the quadratic method and leads to after less 
pessimistic results for the stabilization and the control 
of the systems (Jadbabaie, 1999; Johansen, 2000). For 
this reason, it is interesting to use the piecewise 
quadratic Lyapunov functions for the stabilization of 
the estimation error.  
 Today, the diagnosis of the industrial systems 
draws the attention of several researchers 
(Athamena et al., 2007; Kechida and Debbache, 
2005; Hakiki et al., 2006). Many methods are 
published for the diagnosis various classes systems. 
For the diagnosis and the supervision of a multimodel 
system were proposed some interesting methods 
which are based on multiobserver (Dassanake et al., 
2000; Marx et al., 2007).  For this reason we design 
in this article a new multiobserver whom can be used 
for the diagnosis of a system described by a 
multimodel. 
 
Notation: Throughout the study, the following useful 
notation is used:  
 
(X)T = The transpose of the matrix X 
(Y)−1 = The inverse of the matrix Y 
(Z)¯ = The pseudo inverse of the matrix Z 
I = The n× n identity matrix 
 
Estimation of state and unknown inputs of a 
multimodel: The formalization of the estimation 
problem of state and unknown inputs rests on 

multimodel approach. The considered system 
comprises known inputs and unknown inputs. The 
reconstruction of the non measured system states and 
its unknown inputs is realized on the base of 
information generated by a nonlinear observer called 
to unknown inputs widely widespread for the state 
estimation of systems.   
 
General structure of the multimodel: The model of 
system, supposed known, is taken in the following 
form (Akhenak et al., 2004):   
 

( ) i i
i

i 1 i

M A x(k) B u(k)
x(k 1) μ ξ(k)

 R u(k)

y(k) Cx(k) Fu(k)

=

⎧ +⎛ ⎞
+ = ∑⎪ ⎜ ⎟+⎨ ⎝ ⎠

⎪ = +⎩

 (1) 

 
With: 
 

( )

( )
{ }

M

i
i 1

i

μ ξ(k) 1
1,....,M

0 μ ξ(k) 1

              
i=

⎧ =⎪ ∀⎨
⎪ ≤ ≤⎩

∑
∈  

 
Where: 
x(k)∈Rn  = The state vector 
u(k)∈Rm  = The vector of the known inputs 

qu(k) R∈  = The vector of unknown inputs  
y(k)∈Rp  = The vector of measurable outputs 
 
 For the ith local model Ai∈Rn×n is the state 
matrix, Bi∈Rn×m is the matrix of input, Ri∈Rn×q is the 
matrix of influence of the unknown inputs on the 
state x(t), ∈Rp×q is the matrix of influence of the 
unknown inputs on the output y(k) with rank(F) = q 
and C∈Rp×n  is the matrix of output. Finally, ξ(k) 
represents the vector of decision depending on the 
input and/or the measurable state variables. At every 
moment, µi(ξ(k)) indicate the degree of activation of 
each local model for the global model. The activation 
functions are determined by the geometrical approach 
(Maherzi et al., 2007).Choosing the number M of 
local models of this multimodel can be intuitively 
achieved taking into account the number of modes 
functioning observed of  the   system (Gasso et al., 
2001; Johansen and Babuska, 2003). However, 
determining the matrices Ai, Bi, C, Ri and F needs the 
use of adapted estimation techniques parametric or 
techniques of linearization (Johansen et al., 2000).  
 In the following the considered problem 
concerns both the reconstruction of state variables 
x(k)  and the unknown inputs u(k) , using only the 
available namely known inputs u(k)  and the 
measured outputs  y(k). 
 
General structure of the multiobserver: This 
paragraph clarifies the construction of the 
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observer. This last shows an analytical form 
resulting from the aggregation of the local linear 
observers (Kim et al., 2006; Patton et al., 1998). 
This one is particularly adapted for studying the 
stability and the convergence property of the state 
reconstruction error. The numerical aspects related to 
the determination of the gains of the local observers 
will be also treated. The form of the multiobserver 
that is able to estimate the state vector and the 
unknown input of the discrete multimodel (1) has the 
following structure:  
 

i i1
i

i 1 i2 i

N z(k) G u(k)Mz(k 1) μ ξ(k)
G L y(k)  

x(k) z(k) Ey(k)

⎧ ⎛ ⎞⎪ ⎜ ⎟⎛ ⎞⎪ ⎜ ⎟⎜ ⎟⎪ ⎜ ⎟⎪ ⎝ ⎠=⎨ ⎜ ⎟
⎝ ⎠⎪

⎪
⎪
⎪⎩

+
+ = ∑ + +

= −

 (2)  

 
 It is about a general structure of observer, it is 
not only, where Ni∈Rn×n, Gi1∈Rn×m, Gi2∈Rn, Li∈Rn×p 

and E are the gains matrices of the ith local observer 
with unknown input. The variable z(k)  is an 
intermediate variable allowing to deduce the 
estimated value from the state x(k) .   
 Obviously, the observer uses only the known 
variables u(k) and y(k), u(k)  being not measured. 
The whole of these matrices must be given with a 
high degree of accuracy from a numerical point of 
view in order to guarantee the convergence of the 
estimated state by the observer towards the real state. 
For that, let us define the state estimation error: 
 
e(k) x(k) x(k)= −  (3) 
 
 Starting from this definition and by using the 
expression of x(k)  given by the Eq. 2, the expression 
of the error becomes: 
 
e(k) Qx(k) z(k) EFu(k)= − +      (4) 
 
With: 
 
  Q I EC= +  (5) 
 
 Then, one expresses the temporal evolution of 
the state error in order to analyze its convergence 
towards zero. Thus, at time (k+1), the state estimation 
error is expressed: 
 

  
( )

)

i i
M

i i
i 1

i

i1 i2 i

A x(k) B u(k)
Q

e(k 1) μ ξ(k) R u(k)
N z(k)

G u(k) G L y(k) EFu(k 1)

=

⎛ +⎛ ⎞
⎜ ⎜ ⎟+ = +∑ ⎜ ⎝ ⎠
⎜ − −⎝

− − + +

     (6) 

 
 Replacing y(k), z(k) and e(k)  by their respective 
expressions given by (1-3), the state error takes the 
form, the state estimation error is written:   

( )

( )

M

i i
i 1

i i i

i i i
i i1

i2

e(k 1)= μ ξ(k) N (x(k) x(k))

(QA N Q L C)x(k)

QR N EF L F
(QB G )u(k)

u(k) G

EFu(k 1)

=
+ −⎡∑ ⎣

+ − −

⎤+ − −
+ − ⎥
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+ +

 (7) 

 
 We assure that: 
 
     i i iK N E L= +   (8) 
 
Finally: 
 

( )
( )
( )
( ) )

i

M i i i

i
i 1 i i1

i i i2

N e(k) \
QA N K C x(k)

e(k 1) μ ξ(k)
QB G u(k)

QR K F u(k) G

           EFu(k 1)

=

⎛
⎜
+ − −⎜

+ = ∑ ⎜ + −⎜
⎜ + − −⎝

+ +

        (9) 

 
 If the following conditions are satisfied:   
 

i i iN QA K C= −  (10a) 
 

i1 iG QB=   (10b) 
 

i iQR K F=   (10c) 
 

i2G 0=  (10d) 
 
EF 0=  (10e) 
 
then the problem of the stabilization of the dynamic 
error of observation is reduced to the 
stabilization ( )

i 1

M

iμ ξ(k) N e(k)i=
∑  as the following 

expression indicates: 
   

M

i i
i 1

e(k 1) μ (ξ(k))N e(k)
=

+ = ∑  (11) 

 
 The stability conditions of the multiobserver (2) 
will emerge starting from the conditions from 
stabilization of the observation error (11). It is 
important to note that the stability of the local 
matrices Ni (i = 1,…,M), does not guarantee the 
global stability of the matrix ( )

M

i i
i 1

N μ ξ(k) N
=

= ∑ . 

 
MATERIALS AND METHODS 

 
 The stabilization of the estimation error (11) can 
be made by three methods:   
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Quadratic method: This approach is developed in 
the paper which uses a function of Lyapunov of the 
form (17) and this last can exist if the inequality (18) 
having a solution.   
 
Piecewise quadratic method: This second approach 
is proposed in the pape which uses a function of 
Lyapunov of the form (31) and this last can exist if 
the inequality (33) having a solution.   
 
Polyquadratic method: It is another approach which 
uses a function of Lyapunov of the following form:   
 

  ( ) ( )
MT

i i i
i 1

V e(k) e(k) µ (k) P e(k),  P 0   
=

⎛ ⎞= ξ >∑⎜ ⎟
⎝ ⎠

 (12)   

 
where, (Pi, i = 1,…,M) are symmetric positive 
definite matrices. 
 This last can exist if the following inequality 
having a solution (Daafouz and Bernussou, 2001):  
 

{ }
T

i j i

j i j

P (P N )
0, (i, j) 1,...,M

P N P
⎡ ⎤

> ∀ ∈⎢ ⎥
⎢ ⎥⎣ ⎦

 (13) 

 
RESULTS AND DISCUSSION 

 
       This part will present the results of two 
approaches (quadratic approach and piecewise 
quadratic approach) for the estimation of states and 
the unknown inputs of a system multimodel. 
 
Unknown input estimation: In the system (2), the 
unknown input appears with the matrix of influence 
Φ(k). 
 Let us define: 
 

       
M

i i
i 1
μ ( (k))R

Φ(k)
F

=

⎛ ⎞ξ∑⎜ ⎟=
⎜ ⎟
⎝ ⎠

 (14) 

 
 To estimate the unknown input, it is necessary 
that the matrix Ф(k)  is of full  column rank and its 
pseudo inverse Φ (k)−  exists, otherwise this method 
is not applicable: 
 
      ( ) 1T TΦ (k) Φ (k)Φ(k) Φ(k)

−− =  (15) 

 
 The unknown input can then be deduced in the 
following way: 
 

  ( )
M i

i 1 i i

μ ( (k))
x(k 1)

u(k) Φ (k) A x(k) B u(k)
y(k) Cx(k)

=

ξ⎛ ⎞
+ −⎜ ⎟∑−= +⎜ ⎟

⎜ ⎟−⎝ ⎠

 (16) 

 We choose Φ(k) of full column rank, it is to be 
able to reverse the matrix (ΦT(k)Φ(k). 
 
Remark 1: The asymptotic convergence of u(k)  
towards u(k)  is satisfied, if the stabilization of the 
observation error (11) of the multiobserver (2) and 
the condition on the rank of the matrix Ф(k) are 
verified. 
 
Global convergence of the multiobserver: For the 
stabilization of the observation error (11), we propose 
two approaches based on the use of quadratic 
Lyapunov function in the first step and the piecewise 
quadratic Lyapunov function in second step. 
 
Global convergence of the multiobserver by the 
quadratic approach: In this part, the stabilization of 
the dynamic error (11) is based on the use of a 
quadratic Lyapunov function of the form:    
 

TV(e(k)) e(k) Pe(k),   P>0 =  (17) 
 
 From this function (15) we can study the stability 
of the observation error (11). 
 
Theorem 1: The system of form 

M

i
i 1

e(k 1) μ (ξ(k))N e(k)i=
+ = ∑  is globally asymptotically 

stable (Tanaka et al., 1998): 
 

{ } T
i iif   P 0 such as i 1,...,M  N PN P<0∃ > ∀ ∈ −  (18) 

 
 Thus, constraints (18) and (10) allow the 
complete synthesis of multiobserver (2) for the 
multimodel (1).   
 
Theorem 2: The state estimation error between the 
multimodel (1) and the unknown input multiobserver 
(2) converges globally asymptotically towards zero if 
there exists matrices p>0, S and Wi such that the 
following conditions hold  ∀i∈{1,...,M}(Chadli et al., 
2009): 
 

( )T
i i i

i i i

P PA SCA WC 0
PA SCA WC P

⎛ ⎞+ −
⎜ ⎟⎜ ⎟+ −⎝ ⎠

>  (19a) 

 
i i(P SC)R WF+ =  (19b) 

 
SF 0=  (19c) 
 
 Multiobserver (2) is then completely defined by: 
 

1E P S−=  (20a) 
 

1
i1 iG (I P SC)B−= +  (20b) 
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i2G 0=  (20c) 
 

1 1
i i iN (I P SC)A P W C− −= + −  (20d) 

 
1

i i iL P W N E−= −  (20e) 
 
Proof: Using Eq. 18, the hypothesis p>0 and using 
the Schur complement, one can easily deduce that: 
 

i

T
iP (PN )

0
PN P

⎛ ⎞
⎜ ⎟ >
⎜ ⎟
⎝ ⎠

 (21) 

 
 After using Eq. 10a and 10c, the preceding 
inequality becomes: 
 

T
i i i

i i i

P (PA PECA PK C)
PA PECA PK C P
0

⎛ ⎞+ −
⎜ ⎟⎜ ⎟+ −⎝ ⎠
>

 (22) 

 
 However, this last inequality (22) is a bilinear 
matrix inequality BMI in synthesis variables P, E and 
Ki. In order to convert these conditions into an LMI 
formulation, we consider the following changes of 
variables: 
 

i iW PK=  (23) 
 
S PE=  (24) 
 
 After using the new variables of Eq. 23 and 24, 
inequality (22) becomes: 
 

T
i i i

i i i

P (PA SCA W C) 0
PA SCA W C P

⎛ ⎞+ − >⎜ ⎟⎜ ⎟+ −⎝ ⎠
 (25) 

  
 The two equalities constraints (19b) and (19c) 
are obtained by pre-multiplying the last two 
constraints (10e) and (10g) by p>0 with the change of 
variable (23) and (24): 
 

{ }

i i i iPQR PK F (P SC)R W F
       

PEF 0 SF 0

i 1,  ...,M                 

= + =⎧ ⎧
⇒⎨ ⎨= =⎩ ⎩

∀ ∈

 

 
 Therefore classical numerical tools may be used 
to solve LMI problem (19a) subject to linear equality 
constraints (19b) and (19c). After having solved this 
problem, the different gains matrices defining the 
multiobserver (2) Ni, Li, Gi1, Gi2 and E can be 
deduced from the knowledge of P, S and Wi as given 
in equations (20). This completes the proof. 
 
Determination of the multiobserver gain matrices: 
To determine the multiobserver (2) gain matrices by 

quadratic approach, we propose to follow the steps of 
the following algorithm:   
 
Step 1: Determination of the matrices P, S and Wi 

∀i∈{1,...,M}.    
 We solve the Linear Matrix Inequalities (19a) 

in synthesis variables P, S and Wi subject to 
linear equality constraints (19b) and (19c). 
This problem can be solved by LMITOOL 
(Vandenberghe and Boyd, 1996). 

Step 2: Determination of the gains matrices Ni, Li, 
Gi1, Gi2 and E ∀i∈{1,…,M}. 

 After the knowledge of the matrices P, S and 
Wi, we determine the other gains matrices of 
Eq. 20 defining the multiobserver (2). 

 
Remark 2: If F is a scalar, we can deduce the 
following relations ∀i∈{1,...,M}: 
 
S 0=  (26a) 
 
E 0=  (26b) 
 
Q I=  (26c) 
 

i1 iG B=  (26d) 
 

i2G 0=  (26e) 
 

1
i i iN A P WC−= −  (26f) 

 
1

i iL P W−=  (26g) 
 

1
i iR P WF−=  (26h) 

 
Simulation examples: Two examples are presented 
in order illustrate the utilization limits of the 
quadratic approach. The first is an academic example 
and the second describes the conservatism of this 
approach. 
 
An academic example: Consider the following 
multiple model:  
 

2 i i
i

i 1 i

A x(k) B u(k)
x(k 1) µ ( (k))

R u(k)

     y(k) Cx(k) Fu(k)

=

⎧ +⎛ ⎞
+ = ξ∑⎪ ⎜ ⎟+⎨ ⎝ ⎠

⎪ = +⎩

 (27) 

 
With: 
  

1
1

2
2

3

x
y

x x   and  y
y

x

⎛ ⎞
⎛ ⎞⎜ ⎟= = ⎜ ⎟⎜ ⎟
⎝ ⎠⎜ ⎟

⎝ ⎠

 

 
 The activation functions are the following form: 
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1

2 1

1 tanh(u(k))(u(k))
2

(u(k)) 1 (u(k))

−⎧μ =⎪
⎨
⎪μ = − μ⎩

  (28) 

 
 The numerical values of the matrices are the 
following: 
 

1 2

1 2

2

1 2

0.3 0.2 0.3 0.6 0.5 0.2
A 0.3 0 0.5 ,   A 0.4 0.1 0.3 ,    

0.2 0.1 0.6 0.1  0.2 0.3

11
B ,   B 1.251

0.50.5

0 1 0
C 10 ,   

1 1 1

39.86 6.9
R 23.30 ,   R 60.46

26.85

−

− −⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟= = −⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟= = ⎜ ⎟⎜ ⎟

⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

⎛ ⎞
= ⎜ ⎟−⎝ ⎠

⎛ ⎞
⎜ ⎟= − =⎜ ⎟
⎜ ⎟
⎝ ⎠

1
,    F

1
1.51

⎛ ⎞
−⎛ ⎞⎜ ⎟ = ⎜ ⎟⎜ ⎟
⎝ ⎠⎜ ⎟−⎝ ⎠

 

 
 By using the quadratic approach, the numerical 
values of all gain matrices are as follows: 
 

3 3
1 2

79.7 0.26 3.41
P 0.26 71.91 7.94 ,   

3.41 7.94 78.06

0.80 2.45 2.06 1.51
W 10 2.49 0.57 ,   W 10 1.92 2.45

0.79 1.61 1.02 0.46

−⎛ ⎞
⎜ ⎟= − −⎜ ⎟
⎜ ⎟−⎝ ⎠

− − −⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟= = −⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠

 

1

2

18.92 18.92 0.0024 0.0007 0.0032
S 20.74 20.74 ,   N 0.4076 0.0413 0.3996 ,   

6.12 6.12 0.4057 0.0405 0.3967

0.4040 0.0402 0.3946
N 0.0512 0.0054 0.0506

0.2022 0.0200 0.1972

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟= = −⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠

−⎛ ⎞
⎜ ⎟= − −⎜ ⎟
⎜ ⎟−⎝ ⎠

 

1 2

11 21

9.7495 29.9794 26.5981 19.4174
L 33.7870 10.3039 ,   L 25.5211 35.2852 ,  

6.4608 20.3391 11.6825 10.2843

1.0035 1.0047
 G 1.0045 ,   G 1.2560

0.5015 0.5020

− − −⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟= = −⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠
⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟= =⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

 
 Figure 1a and b represent the time evolution of 
known inputs u(k) and unknown inputs u(k) . Figure 
2 shows, on the same graph, the evolution of the 
unknown input u(k)  and its estimate u(k) . Figure 3 
represent the state estimation error with the initial 
conditions T

0x (1 0 0)=  and T
0x (0 0 0)= . 

Excepted around the time origin, the unknown signal 
estimated perfectly matches the true one. 

 
(a) 
 

 
(b) 
 

Fig.1: (a) Input known u(k) and (b) u(k)  input 
unknown  

 

  
Fig. 2: u(k) and u(k)  

 
Example 2: Conservatism of the quadratic 
approach: Let us consider the following discrete 
multimodel, composed of three local models and 
comprising one single output and three states: 
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2 i i
i

i 1 i

A x(k) B u(k)
x(k+1) µ ( (k))

R u(k)

    y(k) Cx(k) Fu(k)

=

⎧ +⎛ ⎞
= ξ∑⎪ ⎜ ⎟+⎨ ⎝ ⎠

⎪ = +⎩

 (29) 

 
 In this example, the vector of variable decision 
ξ(k) is equal to the vector of known inputs u(k). The 
numerical values of the matrices Ai, Bi, C and F are 
as follows: 
 

( )

1 2

1 2

1 2

1 0 0.1 0.4
A ,  A ,

0.1 1 0.7 0.2

1 1
  B ,  B ,   

0.25 0.5

1 2
R ,  R ,  C 0 1 ,  F 5

0.5 0.5

−⎛ ⎞ ⎛ ⎞
= =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠
⎛ ⎞ ⎛ ⎞

= =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠
⎛ ⎞ ⎛ ⎞

= = = =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

 
 The multiobserver able to estimate the 
multimodel (27) state is as follows:   
 

2 i i1
i

i 1 i2 i

N x(k) G u(k)
z(k+1) µ ( (k))

G L y(k)

    x(k) z(k) Ey(k)

=

⎧ +⎛ ⎞
= ξ∑⎪ ⎜ ⎟+ +⎨ ⎝ ⎠

⎪ = −⎩

 (30) 

 

 
 

 
 
Fig. 3: Estimation errors i i ie x x ,  i {1,2}= − ∈  

 The conditions of quadratic stabilization of 
theorem 2 fails to prove the stabilization of the 
multiobserver (30), which shows that no quadratic 
function having the form (17) can exist.  
 The quadratic approach becomes more and more 
conservative in the following cases: 
 
• When the number of local models is very 

important, this is due the difficulty to find one 
matrix P satisfying all (19) inequalities and 
equalities 

• When the multimodel have local models 
saturated (the eigenvalues of matrices Ai are 
closer to 1) like the local model number 1 
(eigenvalues with A1 = {1, 1}) 

 
Global convergence of the multiobserver by the 
piecewise quadratic approach: In this part, the 
stabilization of the error dynamics (11) depended en 
the use of piecewise quadratic Lyapunov function of 
the form: 
 

( )
( )
( ) ( )

1

i n

V x(k) , ...., 
V x(k) = max  

V x(k) , ...., V x(k)

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎝ ⎠

 (31) 

 
Witch: 
 

( ) T
i i iV x(k) x(k) P x(k), P > 0, i {1,...,M} = ∈  (32) 

 
where, (Pi, i = 1,…,M) are symmetric positive 
definite matrices. 
 The goal of this second approach is to cure the 
conservatism of the quadratic approach by 
formulating new less constraining conditions of 
stabilization of the observation error (11) by using the 
following theorem: 
 
Theorem 3: We suppose that there are symmetric 
positive definite matrices Pi and scalars τijk≥0 such as 
(Akhenak et al., 2004): 
 

ijk j kT
i j i j

M τ (P P )
N P N P

< 0,    i, j,kk 1
{1,...,M}    and j k

−
− + ∑

∀=
∈ ≠

 (33) 

 
then the observation error  (11) is globally asymptotic 
stable. 
 Thus, constraints (33) and (10) allow the 
complete synthesis of multiobserver (2) for the 
multimodel (1) with unknown inputs.   
 
Proposition 1: The state estimation error between the 
multimodel (1) and the unknown input multiobserver 
(2) converges globally asymptotically towards zero, if 
all the pairs (Ai, C) are observable and if there exist 
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symmetric positive definite matrices P(i,j,k) and 
matrices Mj and Hji  of appropriate dimensions such 
that the following conditions hold ∀(i, j, 
k)∈{1,…,M} and j ≠ l: 
 

M j i
j ijk j k Tk 1 j i ji

j i j i ji j

(P A
P τ (P P )

M CA H C)

P A M CA H C P

> 0

=

+⎛ ⎞
⎜ ⎟− −∑

−⎜ ⎟
⎜ ⎟⎜ ⎟+ −⎝ ⎠

 (34a) 

 
irank(P   H ) rank(P)=  (34b) 

 
j j i ji(P M C)R H F+ =  (34c) 

 
jM F 0=  (34d) 

 
 Multiobserver (2) is then completely defined 
by: 
 

1
j jE P M−=  (35a) 

 
( )i1 iG I EC B= +  (35b) 

 
i2G 0=  (35c) 

 
i i iN (I EC)A (P H )C−= + −  (35d) 

 
i i iL (P H ) N E−= −  (35e) 

 
With:  
 

1 1i

2 2i

i

M Mi

P H
P H

P and H  i {1,...,M}. .
. .

P H

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥= = ∀ ∈
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 

 
Proof: The studied multiobserver is the result of M 
aggregated linear observer.  The observability of 
multimodel (1) is guaranteed if every local model is 
observable, in other terms is (Aj, C) pairs are 
observable. 
 After the multiplication on the left and on the 
right by -1, the matrix inequality (33) can be rewritten 
in the following form: 
 

T
M j k i j i

j
k 1

τ (P P ) N P NijkP {1,...,M}   
> 0,    (i, j)

and  j k

=

− −
− ∈∑

∀
≠

 (36) 

 
 We multiply the matrix Pj of the last term of the 
matrix inequality (36) by 1

j j(P P )− , we obtain:   

T 1
M ijk j k i j j j i

j
k 1

τ (P P ) N P P P N
P ) {1,...,M}

> 0,    (i, j,k
and  j k

−

=

− −
− ∈∑

∀
≠

 (37) 

 
 Knowing that (AB)T = BTAT and (A+B)T = 
AT+BT, constraint (37) can be rewritten as follows: 
 

T 1
M ijk j k j i j j i

j
k 1

τ (P P ) (P N ) P (P N )
P

0,   ( i, j,k)
{1,...,M}

and  j k

−

=

− −
− ∑

> ∀
∈

≠
 (38) 

 
 The use of the complement of Schur allows 
expressing the constraints (38) in the following 
equivalent forms: 
 

M T
j j k j i

k 1

j i j

P τ (P P ) (P N )i jk 
P N P

0    (i, j,k) {1,...,M}  and  j k  

=

⎛ ⎞
− −∑⎜ ⎟

⎜ ⎟
⎜ ⎟
⎝ ⎠
> ∀ ∈ ≠

 (39) 

 
 After using Eq. 5 and 10a into inequality 39, we 
obtain: 
 

M j i j i
j i jk j k Tk 1 j i

j i j i j i j

(P A P ECA
P τ (P P )

P K C) 
P A P ECA P K C P

0    (i, j,k) {1,...,M}  and  j k  

=

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

+
− −∑

−

+ −

> ∀ ∈ ≠

 (40) 

 
 However, this last inequality (40) is a bilinear 
matrix inequality BMI in synthesis variables Pj, E, Ki 
and τijk. We consider the following changes of 
variables: 
 

ji j iH P K=  (41) 

 
j jM P E=  (42) 

 
 Using the new variables of Eq. 41 and 42, 
inequality (40) becomes: 
 

M j i j i
j i jk j k Tk 1 ji

j i j i ji j

(P A M CA
P τ (P P )

H C) 

P A M CA H C P
0    (i, j,k) {1,...,M}  and  j k  

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟

=⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

+
− −∑ −

+ −

> ∀ ∈ ≠

 (43) 

 
 The tow equalities constraints (34c) and (34d) 
are obtained by pre-multiplying the last two 
constraints (10c) and (10e) by Pj with the change of 
variable (41) and (42): 
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{ }

j i j i j i j i

j j

j j i ji

j

P QR P K F P (I EC)R P K F
          

P EF 0 M F 0

(P M C)R H F
    1,...,M       

M F 0
i

= + =⎧ ⎧⎪ ⎪⇒⎨ ⎨= =⎪ ⎪⎩ ⎩
+ =⎧⎪⇒ ⎨ =⎪⎩

∀ ∈

 

 
 The matrix inequalities (40) obtained is a BMI 
with Pj and Ki that we must linearize. The technique 
chosen is based on the changes of variables (41). 
 With the expression of Hji (41) ∀(i, j, 
k)∈{1,…,M} and j ≠ k, we can write the relations as 
follows:   
 

11 1 1 11 1

21 2 1 21 2

1

M1 M 1 M1 M

H P K H P
H P K H P

K. . .
. . .

H P K H P

= ⎫ ⎡ ⎤ ⎡ ⎤
⎪ ⎢ ⎥ ⎢ ⎥= ⎪ ⎢ ⎥ ⎢ ⎥⎪ ⎢ ⎥ ⎢ ⎥⇒ =⎬

⎢ ⎥ ⎢ ⎥⎪
⎢ ⎥ ⎢ ⎥⎪
⎢ ⎥ ⎢ ⎥⎪= ⎭ ⎣ ⎦ ⎣ ⎦

 (44) 

 

  

12 1 2 12 1

22 2 2 22 2

2

M2 M 2 M2 M

H P K H P
H P K H P

K. . .
. . .

H P K H P
. . .
. . .
. . .

= ⎫ ⎡ ⎤ ⎡ ⎤
⎪ ⎢ ⎥ ⎢ ⎥= ⎪ ⎢ ⎥ ⎢ ⎥⎪ ⎢ ⎥ ⎢ ⎥⇒ =⎬

⎢ ⎥ ⎢ ⎥⎪
⎢ ⎥ ⎢ ⎥⎪
⎢ ⎥ ⎢ ⎥⎪= ⎭ ⎣ ⎦ ⎣ ⎦

 (45) 

 
1M 1 M 1M 1

2M 2 M 2M 2

M

MM M M MM M

H P K H P
H P K H P

K. . .
. . .

H P K H P

= ⎫ ⎡ ⎤ ⎡ ⎤
⎪ ⎢ ⎥ ⎢ ⎥= ⎪ ⎢ ⎥ ⎢ ⎥⎪ ⎢ ⎥ ⎢ ⎥⇒ =⎬

⎢ ⎥ ⎢ ⎥⎪
⎢ ⎥ ⎢ ⎥⎪
⎢ ⎥ ⎢ ⎥⎪= ⎭ ⎣ ⎦ ⎣ ⎦

 (46) 

 
 We pose: 
 

1 1i

2 2i

i

M Mi

P H
P H

P and H i {1,...,M}. .
. .

P H

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟= = ∀ ∈
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

  (47) 

 
 From the Eq. (44-47) we can deduce: 
 

i i i iH PK K P H i {1,...,M}−= ⇒ = ∀ ∈  (48) 
 
 However the gains Ki of the Eq. 48 can exist 
only if the following condition of rank is satisfied:   
 

iirank(P   H ) rank(P) {1,...,M}= ∀ ∈  (49) 

 The conditions (34a-d) of proposition 1 are 
verified. 
 Therefore classical numerical tools may be used 
to solve LMI problem (34a) subject to linear equality 
constraints (34b-d). After having solved this problem, 
the different gains matrices defining the 
multiobserver (2) Ni, Li, Gi1, Gi2 and E can be 
deduced from the knowledge of P(i,,j,k), Hji and Mi  as 
given in Eq. 35. This completes the proof of 
proposition 1. 
 
Remark 3: The matrix inequality (34a) presents two 
not convex problems. The first appeared in the 
bilinear of the matrix inequality (34a) in (τijk, Pj) and 
(τijk, Pk) ∀(i, j, k)∈{1,…,M} and j ≠ k. The second is 
shown on the level of the resolution of matrix 
inequality (34a) under the constraint of rank (34b). 
 
Treatment of the not convex problems: Obtaining 
the solutions to the matrix inequality (34a) requires 
first of all the treatment of not convexities of two 
problems presented previously.  For that we give 
some methods used by researchers to solve this kind 
of problems.   
 
Linearization of matrix inequality Bilinear: The 
linearization of the bilinear matrix inequality (34a) in 
(τijk, Pj) and (τijk, Pk) ∀(i, j, k)∈{1,…,M} and j ≠ k 
can be made by the application of an iterative 
algorithm of initialization of the positive scalars τijk≥0 
or by their  fixing (Chadli et al., 2002). 
 
Treatment of the constraint of rank: After having 
to linearize the matrix inequality (34a), it is necessary 
to solve the latter with the constraint of rank (34b) 
and that is a not convex problem difficult to solve. 
However, several authors proposed iterative 
algorithms to release this kind of problems like 
(Tanaka and Sugeno, 1992).  As an example, in 
(Henrion et al., 2000) the author proposed an iterative 
algorithm of relaxation which consists in solving a 
LMI with a constraint of rank. 
 
Determination of the multiobserver gain matrices: 
To determine the multiobserver (2) gain matrices by 
piecewise quadratic approach, we propose to follow 
the steps of the following algorithm:   
 
Step 1: Determination of the matrices P(i, j, k), Hji and 

Mj, ∀(i, j, k)∈{1,…,M} and j ≠ k.  
 We solve the Linear Matrix Inequalities 

(32a) in synthesis variables P(i, j, k), Hji and Mj 
subject to linear equality constraints (34b-d).  
This problem can be solved by LMITOOL  

Step 2: Determination of the gains matrices Ni, Li, 
Gi1, Gi2 and E, ∀(i, j, k)∈{1,…,M} and j ≠ k 
After the knowledge of the matrices P(i, j, k), 
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Hji and Mj, we determine the other gains 
matrices of Eq. 35 defining the multiobserver 
(2) 

 
Remark 4: For a matrix F equal to a scalar, we can 
deduce the following relations, ∀(i, j, k)∈{1,…,M} 
and j ≠ k: 
 

jM 0=  (50a) 
 
E 0=   (50b) 
 
Q I=   (50c) 
 

i1 iG B=  (50d) 
 

i2G 0=  (50e) 
 

i i iN A P H C−= −  (50f) 
 

i i iL (P H ) K−= =  (50g) 
 

i iR P H F−=  (50h) 
 
 These relations are given after the resolution of 
the linear matrix inequality (34a) for Mj = 0 in 
synthesis variables P(i, j, k) and Hji: 
 

M T
j i jk j k j i ji

k 1

j i ji j

P τ (P P ) (P A H C)
 

P A H C P

0    (i, j,k) {1,...,M}  and  j k  

=

⎛ ⎞− − −∑⎜ ⎟
⎜ ⎟⎜ ⎟−⎝ ⎠
> ∀ ∈ ≠

 (51) 

 
Remark 5: It’s obvious that the conditions of 
proposition 1 are less conservative than the 
conditions depending on the use of a single Lyapunov 
function. The quadratic conditions stabilization is 
considered like a particular case of (34a) by 
composing P(i, j, k) = P0 it follows that Pj-Pk = 0 and the 
condition of rank (34b) becomes trivial. 
 
Example 3: Application of the piecewise quadratic 
approach: Let us consider the discrete multi-model 
of example 2; the conditions of stabilization of 
proposition 1 prove the stability of the multiobserver 
(30), what shows that a piecewise quadratic function 
of the form (31) exists. 
 By applying the piecewise quadratic approach, 
we showed global convergence of the multiobserver 
(30).  
 The resolution of the conditions of proposition 1 
leads to the following result: 
 With the choice of the parameters: 
 

11 12 21 223,  1,  0.3,  0τ = τ = τ = τ =  

 We obtain four LMI in P1, P2, M1, M2 H11, H12, 
H21 and H22 which must be solved under the 
following  rank constraints:   
 

1 11 12

2 21 22

P H H
rank rank rank

P H H
⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 (52) 

 
 The resolution of the conditions of proposition 1 
leads to the following result: 
 

1

2

5683.5055 908.3627
P ,  

908.3627 4189.8622

9070.6173 3681.729
P

3681.729 7455.7043

⎡ ⎤
= ⎢ ⎥
⎣ ⎦
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 

 
M1 = M2 = 0: 

 

11 21

12 22

1182.1192 1907.3198
H = , H = ,

391.3313 745.5706

2364.2385 3814.6396
H = , H =

782.3313 1491.1412

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦
⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

 

 
 We can to check that:   
 

1 11 12

2 21 22

P H H
rank rank rank 2

P H H
⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= = = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

 
 After the knowledge of the matrices P1, P2, M1, 
M2 H11, H12, H21 and H22 we deduce the other 
matrices from the profits defining the multiobserver 
(30):   
 

11 1 21 2

1 1
G B G B

0.5 0.5
⎡ ⎤ ⎡ ⎤

= = = =⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

, 

 

1 11
1 1

212

1 12
2 2

222

P H 0.2
K P H  ,

HP 0.05

P H 0.4
K P H  

HP 0.1

−

−

−

−

⎛ ⎞⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= = =⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎣ ⎦⎣ ⎦⎣ ⎦⎝ ⎠

⎛ ⎞⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= = =⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎣ ⎦⎣ ⎦⎣ ⎦⎝ ⎠

 

 

1 1 1

2 2 2

0.8      0
N A K C ,

0.05    1

0.3 0.4
N A K C

0.6 0.2

⎡ ⎤
= − = ⎢ ⎥

⎣ ⎦
− −⎡ ⎤

= − = ⎢ ⎥
⎣ ⎦

 

 
With E = 0 ⇒ Li = Ki 

 

1 1

0.2
L K

0.05
⎡ ⎤

= = ⎢ ⎥
⎣ ⎦

 and  2 2

0.4
L K

0.1
⎡ ⎤

= = ⎢ ⎥
⎣ ⎦
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 Figure 4 represent respectively the evolution of 
the activation functions, the inputs known u(k) and 
unknown u(k) . As for the Fig. 5, they show the state 
estimation errors (xi(k)- ix (k) , i={1, 2}) as well as the 
unknown input u(k)  of the multimodel and their 
estimation u(k) . It is noted that the estimation quality 
is satisfactory except in the vicinity of the time 

origin; that is due to the choice of the multiobserver 
(30) initial values T

0x (0.3  0)=  and  T
0x (0  0)= . 

 The simulation results presented by the Fig. 5 
show that the state estimation as well as the unknown 
inputs of the multimodel are very satisfying except at 
the origin of time. This is due to the choices of the 
initial conditions. 

 

   
 (a)  (b) 

 

 
(c) 
 

Fig. 4: Functions of activation and input known (a) µ1(k) and µ2(k); (b) u(k) and unknown; (c) u(k)  
 

   
                                                              (a)                                                                              (b) 

 

 
(c) 
 

Fig. 5: Results of the estimates; (a)  1 1x (k) x (k)− ; (b)  2 2x (k) x (k)−  and (c) u(k) et u(k)  
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CONCLUSION 
 
 In this article, we presented two stabilization 
approaches of a multiobserver with unknown inputs 
for a nonlinear system describes by a discrete 
multimodel with decision variables measurable. The 
first approach is based on the use of the Lyapunov 
quadratic functions, the conditions obtained of this 
approach for the convergence of the multi-observer 
are often easy to obtain but they appear pessimistic. 
The second approach suggested for the stabilization 
of the observation error, is based on the use of the 
Lyapunov piecewise quadratic functions. The 
conditions obtained of the multiobserver convergence 
are given in the form of Bilinear Matrices Inequalities 
BMI that we can linearize by the technique of change 
of variables and easily solve them with the numerical 
tools traditional. This second approach appears less 
conservative than the first.     
 Two illustrative examples are proposed to proof 
the efficiency and the utility of each of the two 
approaches. The first example presented showed that 
the quadratic approach is interesting from point of 
view of the practical implementation for the 
supervision and the diagnosis of the industrial 
processes. The second example put emphases on the 
important contribution of the piecewise quadratic 
approach compared to the quadratic approach for the 
states estimation and unknown inputs of a nonlinear 
system represented by a discrete multimodel. 
 The conditions obtained of the two approaches 
proposed, concern only the study of the multiobserver 
stabilization with unknown inputs.  The poles 
placement problem, thus the state estimation and 
unknown inputs in cases where the decision variables 
are not measurable, can constitute an interesting 
prospect for this study. 
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