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Abstract: Problem statement: This research purposely brought up to solve complicated equations 
such as partial differential equations, integral equations, Integro-Differential Equations (IDE), 
stochastic equations and others. Many physical phenomena contain mathematical formulations such 
integro-differential equations which are arise in fluid dynamics, biological models and chemical 
kinetics.  In fact, several formulations and numerical solutions of the linear Fredholm integro-
differential equation of second order currently have been proposed. This study presented the numerical 
solution of the linear Fredholm integro-differential equation of second order discretized by using finite 
difference and trapezoidal methods. Approach: The linear Fredholm integro-differential equation of 
second order will be discretized by using finite difference and trapezoidal methods in order to derive 
an approximation equation. Later this approximation equation will be used to generate a dense linear 
system and solved by using the Generalized Minimal Residual (GMRES) method. Results: Several 
numerical experiments were conducted to examine the efficiency of GMRES method for solving linear 
system generated from the discretization of linear Fredholm integro-differential equation. For the 
comparison purpose, there are three parameters such as number of iterations, computational time and 
absolute error will be considered. Based on observation of numerical results, it can be seen that the 
number of iterations and computational time of GMRES have declined much faster than Gauss-Seidel 
(GS) method. Conclusion: The efficiency of GMRES based on the proposed discretization is superior 
as compared to GS iterative method. 
 
Key words: Fredholm integro-differential, finite difference, quadrature, generalized minimal residual 

 
INTRODUCTION 

 
 Integro-Differential Equation (IDE) is an important 
branch of modern mathematics and arises frequently in 
many applied areas which include engineering, 
mechanics, physics, chemistry, astronomy, biology, 
economics, potential theory and electrostatics (Kurt and 
Sezer, 2008). IDE is an equation that the unknown 
function appears under the sign of integration and it also 
contains the derivatives of the unknown function. It can 
be classified into Fredholm equations and Volterra 
equations. The upper bound of the region for integral 
part of Volterra type is variable, while it is a fixed 
number for that of Fredholm type. In this study, we 
focus on second order linear Fredholm integro-
differential equation. Generally, second-order linear 

Fredholm integro-differential equations can be defined 
as follows: 
 

( )
( ) ( ) ( )b

a

p x y''(x) q(x)y '(x) r(x)y(x)

k x, t y t dt f x

+ + +

=∫
 (1) 

 
with initial conditions: 
 

y(0) m, y'(0) n= =  

 
Where, the functions: 
p(x), q(x), r(x) = Constant matrices 
f(x) = A given vector function, the kernel 
k(x,t) = A given matrix function  
y(x) = The solution to be determined 
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 In the engineering field, numerical approaches 
were practiced to obtain an approximation solution for 
the problem (1). To solve a linear integro-differential 
equation numerically, discretization of integral 
equation to the solution of system of linear algebraic 
equations is the basic concept used by researchers to 
solve integro-differential problems. By considering 
numerical techniques, there are many methods can be 
used to discretize problem (1) such as compact finite 
difference (Zhao and Corless, 2006), Wavelet-
Galerkin (Avudainayagam and Vani, 2000), 
variational iteration method (Sweilam, 2007) 
rationalized Haar functions (Maleknejad et al., 2004), 
Tau, (Hosseini and Shahmorad, 2003), Lagrange 
interpolation (Rashed, 2003), piecewise approximate 
solution (Hosseini and Shahmorad, 2005), conjugate 
gradient  (Khosla and Rubin, 1981), quadrature-
difference (Fedotov, 2009), variational (Saad and 
Schultz, 1986), collocation (Aguilar and Brunner, 
1988), homotopy perturbation (Yildirim, 2008) and 
Euler-Chebyshev method (Van der Houwen and 
Sommeijer, 1997).  Earlier numerical treatment has 
been done for first order integro-differential equation 
(Aruchunan and Sulaiman, 2009). 
 In this conjunction, there are many iterative 
methods under the category of Krylov subspaces have 
been proposed widely to be one of the feasible and 
successful classes of numerical algorithms for solving 
linear systems. Actually, there are several Krylov 
subspaces iterative methods can be considered such as 
Conjugate Gradient (CG) (Hestenes and Stiefel, 1952), 
Generalized Minimal Residual (GMRES) (Saad and 
Schultz, 1986), Conjugate Gradient Squared 
(Sonneveld, 1989), Bi-Conjugate Gradient Stabilized 
(Bi-CGSTAB) (Van der Vorst, 1992) and Orthogonal 
Minimization (ORTHOMIN) (Vinsome, 1976).  
 In this study, GMRES iterative method will be used 
for solving linear algebraic equations produced by the 
discretization of the second-order linear Fredholm 
integro-differential equations by using quadrature and 
finite difference methods. For differential part, second 
order central difference scheme was used for 
approximation whereas the integral term was discretized 
by quadrature method. In order to compare the 
efficiency of the GMRES method, Gauss-Seidel (GS) 
method was used for numerical comparison.  
  

MATERIALS AND METHODS 
 
Approximation equation: As afore-mentioned, a 
discretization method based on quadrature and finite 
difference methods was used to construct 
approximation equations for problem (1).  

Quadrature method: The formulas of quadrature 
method, in general have the form: 
 

nb

j j na
j 0

y(t)dt A y(t ) (y)
=

= + ε∑∫  (2) 

 
where, jt ( j 0,1, ,n)= …  are the abscissas of the partition 

points of the integration interval [a,b] or quadrature 
(interpolation) nodes, Aj (j = 0,1,…,n) are numerical 
coefficients that do not depend on the function y(t) and 
εn(y) is the truncation error of Eq. 2. To facilitate in 
formulating the approximation equations for problem 
(1), further discussion will restrict onto Repeated 
Trapezoidal (RT) method, which is based on linear 
interpolation formulas with equally spaced data. Based 
on RT method, numerical coefficients Aj are satisfied 
the following relation: 
 

j

1
h, j 0,n

A 2
h, j 1,2, ,n 1

 == 
 = − ⋯

 (3) 

 
where, the constant step size, h is defined as: 
 

b a
h

n

−=  (4) 

 
n is the number of subintervals in the interval [a,b].  
 
Finite difference method: In this study, second order 
central difference approximation formulas were used 
as follow: 
 

i 1 i 1

i

dy y y

dx 2h
+ −−≅  (5a) 

 
2

i 1 i i 1

2 2

i

d y y 2y y

dx h

+ −− +≅  (5b) 

 
 
where, ( )ixy′

 
and ( )ixy ′′  are  approximated by second 

order finite difference schemes. By applying Eq. 2 and 
5 into Eq. 1, a system of linear algebraic equations 
obtains for approximation values y(x) at the nodes 

0 1 nx ,x , , x… . The generated linear systems can be easily 

shown as: 
 

~~
My f=  (6) 
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 In this study, interval [a,b] will be uniformly 
divided into mn 2 ,m 2= ≥  and then consider the discrete 
set of points be given as ix a ih= + .  
 
Generalized Minimal Residual (GMRES) method: 
The GMRES is an efficient algorithm for iteratively 
solving a general linear system in Eq. 4. The method 
is based upon the Arnoldi process (Saad and Schultz, 
1986), which constructs an orthonormal basis of the 
Krylov subspacem

1k (M;v ) . The subspace is defined as: 
 

m m 1
1 1 1 1k (A;v ) span {v ,Av , ,A v }−= …  

 
where, 1 0 0 0 02

v r / r , r f Av }= = −  and x0 is the initial 

guess. The idea of GMRES is to find an approximation 
of x in which 

2
f My−  is minimal. The GMRES 

algorithm may be described in Algorithm 1 (Saad, 
2003). 
 
Algorithms 1: GMRES method:  
 
Step 1 Start: Choose x0, compute0 0r f Mx= − ; 

Step 2 For j = 1, 2… until convergence 

 
 0 1 0 12

r , v x / ,p e ;β = = β = β
 Step 3 For, i 1, 2, ,m= …  

 iw Av= ; 

 For, k 1, 2, ,i= …  

k,i ih w,v ;=  

  

k,i k

i 1 2

i 1 i 1,i

k,i

w w h v ;

h w ;

v w / h ;
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+ +

= −

=

=
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 For k 2, ,i= …  

 k 1,i k 1 k 1,i k 1 k,ih C h S h ;− − − −= +  

 

k,i k 1 k 1,i k 1 k,i
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h S h C h ;
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= γ = γ
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Step 4 If i 1p + ≤ ε  then 

 End for i 

 
1 1,1 1,k 1

k k,k 2

y h h p

y 0 h p

    
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j

0 i i
i 1

x x y v
=

= +∑  

Step 5 If i 1p + ≤ ε end for j 

 else 0x x=  
 

RESULTS AND DISCUSSION  
 
 In this conjunction, the GMRES method was tested 
with the following problem (Hosseini and Shahmorad, 
2005) and then compared its performances with GS 
method: 
 

( )
15

5''

0

e 1
y (x) 9y(x) y t dt

3
x [0,5]

− −= + + ∈∫  (7) 

 

( ) ( )'y 0 1, y 0 3= = − ,  
 
with the exact solution ( ) 3xy x e .−=  

 In this research, parameters such as number of 
iterations, execution time and absolute error are 
considered as comparison. Throughout the simulations, 
the convergence test considered the tolerance error of the 
ε = 10−16. Figure 1 and 2 show number of iterations and 
execution time versus mesh size, respectively. 
Furthermore, the numerical results of this application 
presented with exact solution have been shown in Table 1. 
 

 
 
Fig. 1: Comparison on the number of iterations for the 

GS and GMRES methods 
 

 
 
Fig. 2: Comparison on the execution time (sec) for GS 

and GMRES methods 
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Table 1: Comparison of number of iterations, execution time and 
maximum absolute error for the iterative methods  

 Mesh size 
 --------------------------------------------------------------------- 
Methods 128 256 512 1024 
Number of iterations 
GS 69 73 74 75 
GMRES 36 39 41 42 
Execution time (sec) 
 128 256 512 1024 
GS 5.60 11.34 31.04 66.71 
GMRES 3.03 6.89 18.88 37.54 
Methods  
Maximum absolute error 
 128 256 512 1024 
GS 4.6987 E-2 3.3389 E-3 5.5060 E-3 9.8834 E-4 
GMRES 4.0043 E-2 3.1170 E-3 5.3332 E-3 9.5621 E-4 
 

CONCLUSION 
 
 Based on the results in Table 1, number of 
iterations of the GMRES methods has decreased 
approximately 44.00-47.82% compared to GS method 
as shown in Fig. 1. For the execution time, GMRES 
method is much faster about 39.17-45.85% compared to 
GS method, see in Fig. 2. As a conclusion, the 
numerical results have shown that the GMRES method 
is more advanced in term of number of iterations and 
the execution time than GS method. 
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