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Abstract: Problem statement: This research purposely brought up to solve carafdd equations
such as partial differential equations, integraluapns, Integro-Differential Equations (IDE),
stochastic equations and others. Many physical grinena contain mathematical formulations such
integro-differential equations which are arise Inid dynamics, biological models and chemical
kinetics. In fact, several formulations and numrisolutions of the linear Fredholm integro-
differential equation of second order currently ddeen proposed. This study presented the numerical
solution of the linear Fredholm integro-differeh@guation of second order discretized by usingein
difference and trapezoidal methodsoproach: The linear Fredholm integro-differential equatioh
second order will be discretized by using finitéfetence and trapezoidal methods in order to derive
an approximation equation. Later this approximagguation will be used to generate a dense linear
system and solved by using the Generalized MiniRedidual (GMRES) methodResults. Several
numerical experiments were conducted to examineffidency of GMRES method for solving linear
system generated from the discretization of linEsedholm integro-differential equation. For the
comparison purpose, there are three parametersasunbimber of iterations, computational time and
absolute error will be considered. Based on observaf numerical results, it can be seen that the
number of iterations and computational time of GMREave declined much faster than Gauss-Seidel
(GS) methodConclusion: The efficiency of GMRES based on the proposedréigmtion is superior

as compared to GS iterative method.
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INTRODUCTION Fredholm integro-differential equations can be rozdi
as follows:

Integro-Differential Equation (IDE) is an importan
branch of modern mathematics and arises frequéntly p(x)y"(x)+g(x)y'(x)+ r(x)y(x)+

many applied areas which include engineering, _ (1)
mechanics, physics, chemistry, astronomy, biology,jak(x't)y(t)dt_f(x)

economics, potential theory and electrostatics {(l&ad

Sezer, 2008). IDE is an equation that the unknowmwith initial conditions:

function appears under the sign of integration iaatko

contains the derivatives of the unknown functidrcan y(0)=m, y'(0)=n

be classified into Fredholm equations and Volterra

equations. The upper bound of the region for irtegr \where, the functions:

part of Volterra type is variable, while it is axdd  p(x), q(x), r(x) = Constant matrices

number for that of Fredholm type. In this study, wef(x) = A given vector function, the kernel
focus on second order linear Fredholm integrok(x,t) = A given matrix function
differential equation. Generally, second-order dine y(x) = The solution to be determined
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In the engineering field, numerical approachesQuadrature method: The formulas of quadrature
were practiced to obtain an approximation solufam  method, in general have the form:
the problem (1). To solve a linear integro-diffeiah
equation numerically, discretization of integral .»
equation to the solution of system of linear algébr J
equations is the basic concept used by researthers
solve _integro-differential problems. By considering where, t,(j=0,1...,n) are the abscissas of the partition
numerical techniques, there are many methods can be ! ' o
used to discretize problem (1) such as compactefini Points of the integration interval [a,b] or quadrat
difference (Zhao and Corless, 2006), Wavelet(interpolation) nodes, Aj = 0,1,...,n) are numerical
Galerkin  (Avudainayagam and Vani, 2000), coefficients that do not depend on the function &(td
variational iteration method (Sweilam, 2007) &n(Y) is the truncation error of Eq. 2. To facilitate
rationalized Haar functions (Maleknejatial., 2004), ~ formulating the approximation equations for problem
Tau, (Hosseini and Shahmorad, 2003), Lagrangél), further discussion will restrict onto Repeated
interpolation (Rashed, 2003), piecewise approximatd rapezoidal (RT) method, which is based on linear
solution (Hosseini and Shahmorad, 2005), conjugaténterpolation formulas with equally spaced dataséth
gradient  (Khosla and Rubin, 1981), quadratureon RT method, numerical coefficients are satisfied
difference (Fedotov, 2009), variational (Saad andhe following relation:
Schultz, 1986), collocation (Aguilar and Brunner,

a

y(Odt=Y Ay(t) +2,() 2)

1988), homotopy perturbation (Yildirim, 2008) and }h i=o.n
Euler-Chebyshev method (Van der Houwen andA ={2" ' 3)
Sommeijer, 1997). Earlier numerical treatment has h, j=12;--,n-1

been done for first order integro-differential etjoa
(Aruchunan and Sulaiman, 2009). ____where, the constant step size, h is defined as:
In this conjunction, there are many iterative
methods under the category of Krylov subspaces have _,
been proposed widely to be one of the feasible andD:T (4)
successful classes of numerical algorithms for isglv
linear systems. Actually, there are several Krylov
subspaces iterative methods can be consideredasuch
Conjuga_te Gradignt (CG) (Hestenes and Stiefel, )]'952Finite difference method: In this study, second order
Generalized Minimal Re§|dual (GMRE.S) (Saad angcentral difference approximation formulas were used
Schultz, 1986), Conjugate Gradient Square s follow:
(Sonneveld, 1989), Bi-Conjugate Gradient Stabilizeaa '
(Bi-CGSTAB) (Van der Vorst, 1992) and Orthogonal q
Minimization (ORTHOMIN) (Vinsome, 1976). a
In this study, GMRES iterative method will be used dx
for solving linear algebraic equations producedttos

n is the number of subintervals in the intervab]a,

Vi “Yia
g Ji=t 5a
oh (5a)

discretization of the second-order linear Fredholm
integro-differential equations by using quadratared dY (Y = 2%+ Yy (5b)
finite difference methods. For differential parecend — dx®| h?

order central difference scheme was used for

approximation whereas the integral term was dis@ét

by quadrature method. In order to compare the . . _

efficiency of the GMRES method, Gauss-Seidel (GS)’Vhere’Y(Xi) and y'(x;) are approximated by second

method was used for numerical comparison. order finite difference schemes. By applying Eqr@l
5 into Eq. 1, a system of linear algebraic equation
MATERIALSAND METHODS obtains for approximation values y(x) at the nodes

Xo: X1 ---» X, - The generated linear systems can be easily
Approximation equation: As afore-mentioned, a shown as:
discretization method based on quadrature andefinit
difference  methods was used to construct,, _
T ) My =f (6)
approximation equations for problem (1). - -
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In this study, interval [a,b] will be uniformly Step 5 Ifp,,|<¢eend forj
divided into n=2",m= 2 and then consider the discrete

elsex, =x
set of points be given ag =a+ih.

RESULTSAND DISCUSSION
Generalized Minimal Residual (GMRES) method:
The GMRES is an efficient algorithm for iteratively ~ In this conjunction, the GMRES method was tested
solving a general linear system in Eq. 4. The métho with the following problem (Hosseini and Shahmorad,
is based upon the Arnoldi process (Saad and Schult2005) and then compared its performances with GS
1986), which constructs an orthonormal basis of thenethod:

Krylov subspac&™(M;v,) . The subspace is defined as:

Con e®-1 5
k™(A;v) =span  {v,,Av,,..., A"V} Y (x) =9y(x)+ 3 +I0 y(tat - x0[0.5] @

where, v, =r/||r,|,, r,=f-Av} and x is the initial  y(0)=1, y'(o):—s,
guess. The idea of GMRES s to find an approxinmatio _ ,
of x in which [f -My|, is minimal. The GMRES With the exact solutiory(x) =e™".
algorithm may be described in Algorithm 1 (Saad, I this research, parameters such as number of
2003). iterations, execution time and absolute error are

considered as comparison. Throughout the simulgtion
Algorithms 1: GM RES method: the convergence test considered the tolerance @frtbe

€ = 10™. Figure 1 and 2 show number of iterations and
Step 1 Start: Choose,compute, =f —Mx ; execution time versus mesh size, respectively.
Step 2 Forj =1, 2... until convergence Furthermore, the numerical results of this appbicat

presented with exact solution have been shownliteTa

B=[rl,. vi=x,/B.p=Be;

Step 3 Forj =1,2,..,m “ Number of iterations Vs mesh size
w=Av;; L0 —— * -
For,k=12,..,i ; 60 |

g 50 4

ey =(wov): Z 40 .’_-——.—'—.

W:W_hkivk; %30*
' g 50 | ——GS

.o =Wl 10 —=—GMRES
Vig =W/ 0
H={h, } 128 256 512 1024

o . Mesh size
Fork=2,..,i
h,,=Ch ., +S,h,; Fig. 1: Comparison on the number of iterationstfer

GS and GMRES methods
hei=-Saho+ Gahoo

y:m 80 - Execution Vs mesh size

C=h;1y.$=hy N; ;zi :

h,=Ch;+$h N; 50 -

P.="SR.P=Cp; 40
Step 4 If|p,,| <€ then

30
End for i 201

lExceulion Lime [ sec)

. . . . . 128 256 512 1024
Yy 0o - hk,k [ Mesh size
X =X, +iyivi Fig. 2: Comparison on the execution time (sec)3&r
= and GMRES methods
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Table 1: Comparison of number of iterations, executime and Hosseini, S.M. and S. Shahmorad, 2005. Numerical

maximum absolute error for the iterative methods piecewise approximate solution of Fredholm
Mesh size integro-differential equations by the Tau method.
Methods 128 256 512 1024 Applied Math. Model.,, 29: 1005-1021. DOI:
(l\égmber of it6egr)ations N a s 10.1016/j.apm.2005.02.003
Khosla, P.K. and S.G. Rubin, 1981. A conjugate
Ex“"e?u'frf‘,n ti%ﬁ (sec) % “ 42 gradient iterative method. Comput. Fluids, 9: 1@9-1
s 5260 2151634 5311204 18624;1 DOI: 10.1016/0045-7930(81)90020-7
GMRES 303 6.69 1888 3754 Kurt, N. and M. Sezer, 2008. Po_Iynom|§1I solut|on of
Methods high-order Fredholm integro-differential equations
Maximum alfgféluteermf 956 510 1024 with  constant coefficients. J. Franklin tlns

GMRES 4.0043E-2 3.1170E-3 5.3332E-3 95621 E-4 Maleknejad, K., F. Mirzaee and S. Abbasbandy, 2004.

Solving linear integro-differential equations syste
CONCLUSION by using rationalized Haar functions method.

. Applied Math. Comput.,, 155: 317-328. DOI:

Based on the results in Table 1, number of 101016/50096'3003(03)00778'1

iterations of the GMRESO methods has decreasegyasheq, M.T., 2003. Lagrange interpolation to campu
approximately 44.00-47.82% compared to GS method e nymerical solutions differential and integro-
as shown in Fig. 1. For the execution time, GMRES  itferential equations. Applied Math. Comput.,
method is much faster about 39.17-45.85% compared t 151: 869-878DOI: 10.1016/S0096-3003(03)00543-5

GS method, see in Fig. 2. As a conclusion, thesaaq Y. and M.H. Schultz, 1986. GMRES: A
numerical results have shown that the GMRES method  generalized minimal residual algorithm for solving
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