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Abstract: Problem statement: Development of mathematical models based on set of observed data 
plays a crucial role to describe and predict any phenomena in science, engineering and economics. 
Therefore, the main purpose of this study was to compare the efficiency of Arithmetic Mean (AM), 
Geometric Mean (GM) and Explicit Group (EG) iterative methods to solve system of linear equations 
via estimation of unknown parameters in linear models. Approach: The system of linear equations for 
linear models generated by using least square method based on (m+1) set of observed data for number 
of Gauss-Seidel iteration from various grid sizes. Actually there were two types of linear models 
considered such as piece-wise linear polynomial and piece-wise Redlich-Kister polynomial. All 
unknown parameters of these models estimated and calculated by using three proposed iterative 
methods. Results: Thorough several implementations of numerical experiments, the accuracy for 
formulations of two proposed models had shown that the use of the third-order Redlich-Kister 
polynomial has high accuracy compared to linear polynomial case. Conclusion: The efficiency of AM 
and GM iterative methods based on the Redlich-Kister polynomial is superior as compared to EG 
iterative method. 
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INTRODUCTION 

 
 Group Explicit iterative method has been 
formulated and proposed by Evans (1985). Further 
investigation and implementation of this method are 
done by Evans and Yousif (1986; 1990); Yousif and 
Evans (1986; 1998) and Jumat and Abdullah (2001). 
The method is then modified by Abdullah (1991) using 
half-sweep concept and produced Explicit Decoupled 
Group (EDG) method. The EDG methods have been 
further implemented by Ibrahim and Abdullah (1995); 
Yousif and Evans (1995), Jumat and Abdullah (1999) 
and Sulaiman et al. (2007). Beside that, Othman and 
Abdullah (2000a; 2000b) proposed a new variant of EG 
method called the Modified Explicit Group (MEG). 

This method implements the quarter-sweep concept to 
the EG method. 
 Arithmetic Mean (AM) and Geometric Mean (GM) 
schemes are methods that are categorized in two-step 
iterative type. From its literature, Ruggiero and 
Galligani (1990) is the first to propose the AM method. 
This method has the same computational molecule to 
Iterative Alternating Decomposition Explicit (IADE) 
proposed by Sahimi and Khatim (2001) but different in 
their parameter coefficient. However, the 
implementation of the first step formulation and second 
step formulation is absolutely different. 
 Sulaiman et al. (2004) combined the AM method 
with the half-sweep concept to develop the Half-Sweep 
Arithmetic Mean (HSAM). Further investigation to this 
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method can be found in Sulaiman et al. (2005a; 2005b). 
In fact, Geometric Mean (GM) method is another 
alternative to AM method. Sulaiman et al. (2006a) also 
proposed the Half-Sweep Geometric Mean (HSGM) to 
solve two point boundary value problems. The method 
is further investigated by Sulaiman et al. (2006b) to 
solve water quality model and Muthuvalu and Sulaiman 
(2008) for solving linear Fredholm Equations. 
 In this study, we will implement the EG, AM and 
GM methods to estimate the unknown parameters via 
solving system of linear equations. The system of linear 
equations is generated using the least square method on 
(m+1) set of observed data. Here, only two types of 
linear models will be considered, which are the piece-
wise linear polynomial (Linear) and piece-wise 
Redlich-Kister polynomial (RK). 
 

MATERIALS AND METHODS 
 
Generating system of linear equations: To generate 
the system of linear equations, consider (m+1) data set 
produced via simulation given in Table 1. 
 As mentioned before, in this study we only 
consider the piece-wise linear polynomial and Redlich-
Kister polynomial. The piece-wise linear polynomial 
and the third-order piece-wise Redlich-Kister 
polynomial are given respectively as follows:  
 

[ ]1k 2k 1 2k k k k 1y (X) S S X e , X X ,X− += + + ∈  (1) 
 
and: 
 

( ) ( )( )
[ ]
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Where: 
Xk = kth

  matrix size 
Yk = GS number of iterations for kth

 matrix size  
ek = kth

 random error 
 
for k = 1,2,3,…,m,m+1 and Si i = 1,,2,3,…,(n = 2m),  
are the unknown parameters which will be estimated. 
To generate the system of linear equation from 
observed data, (Xk, Yk), i = 1,,2,3,…,m,m+1, both Eq. 1 
and 2 can be rewritten as: 
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 Meanwhile, the function ( )k

tN x , t 1, 2=  for both 

Model 1 and 2 are given as follows: 
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Table 1: Relation between matrix size and number of iterations for 
Gauss-Seidel to solve one dimensional Poisson problem 

K Matrix size No. of Iterations 
1 X1 Y1 
2 X2 Y2 
3 X3 Y3 

M  M  M  
m Xm Ym 
m+1 Xm+1 Ym+1 
 
and  
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 Assuming that values between data interval are 
equal, thus: 
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 The random error ek, k 1, 2, 3, , m, m 1= +⋯  can be 

defined as follows: 
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where, ( )k

t pN X , t,p 1,2= is denoted as k
t,pN . Next, we 

estimate the Si ( )i 1,2,3, , n 2m ,= =L  which minimized: 
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 Thus, Eq. 9 has to satisfy Eq. 10: 
 

i

H
,i 1,2,3, ,2m,

S

∂ =
∂

L  (10) 

 
 Eq. 10 will be used to generate system of linear 
equation in the form of matrix. The general form of 
generated matrix for the case of m = 10 is given by: 
 

~~
RS F=  (11) 

 
Where: 
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1,1 1,2 1,3 1,4

2,1 2,2 2,3 2,4

3,1 3,2 3,3 3,4 3,5 3,6

4,1 4,2 4,3 4,4 4,5 4,6

5,3 5,4 5,5 5,6 5,7 5,8

6,3 6,4 6,5 6,6 6,7 6,8

7,5 7,6 7,7 7,8 7,9 7,10

8,5 8,6 8,7 8,8 8,9 8,10

9,7 9,8 9,9 9,10

10

R R R R

R R R R

R R R R R R

R R R R R R

R R R R R R
R

R R R R R R

R R R R R R

R R R R R R

R R R R

R

=

( ),7 10,8 10,9 10,10 10x10
R R R
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where, Fi i 1, 2, 3, , n= ⋯  can be defined as: 
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for k 1, 2, 3, , m= ⋯ . 

 
Arithmetic mean, geometric mean and group 
explicit formulations: To formulate the AM and GM 
schemes, let consider the system of linear equations in 
Eq. 11. 
 Decomposing R into: 
  
R L D T= + +  
 
where, L, D and T are lower triangular matrix, diagonal 
and upper triangular matrix, respectively. Therefore, AM 
and GM schemes can be written as (Sulaiman et al., 
2005a; 2005b): 
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and: 
 

( ) ( ) ( )k 1 1 2

~ ~ ~
S S S+ =  (13) 

Where: 

 
( ) ( ) ( )

( ) ( ) ( )

1 k

~~ ~

2 k

~~ ~

(D rL)S ( 1 r D rT)S r f

(D rT)S ( 1 r D rL)S r f

+ = − − +

+ = − − +
 (14) 

 
 The r, k and I represent acceleration parameter, 
number of iterations and identity matrix, respectively. 
Implementations of both methods are in Algorithm 1. 

  
Algorithm 1: AM and GM schemes: 

 
1) First step 

a. Assign 

  ( ) ( ) ( )1 k1 1

~~ ~
S (D rL) ( 1 r D rT)S r(D rL) f− −← + − − + +   

2) Second step 
b. Assign 

  ( ) ( ) ( )2 k1 1

~~ ~
S (D rT) ( 1 r D rL)S r(D rT) f− −← + − − + +   

c. AM Scheme 
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1
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2
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  or GM scheme: 
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 The optimum r value is determined from the lowest 
number of iterations.  
 To formulate the EG scheme, the system of linear 
Eq. 11 has to be decomposed into sub-matrix of (2×2) 
as follows: 
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1,1 1,2 1,3 1,4

2,1 2,2 2,3 2,4

3,1 3,2 3,3 3,4 3,5 3,6

4,1 4,2 4,3 4,4 4,5 4,6

5,3 5,4 5,5 5,6 5,7 5,8

6,3 6,4 6,5 6,6 6,7 6,8

7,5 7,6 7,7 7,8 7,9 7,10

8,5 8,6 8,7 8,8 8,9 8,10

9,7 9,8 9,9 9,10

10

R R R R

R R R R

R R R R R R

R R R R R R

R R R R R R
R

R R R R R R

R R R R R R

R R R R R R

R R R R

R

=

( ),7 10,8 10,9 10,10 10x10
R R R
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1 2 3 4 5 6 7 8 9 10
~
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1 2 3 4 5 6 7 8 9 10~
F F F F F F F F F F F=  

 
 Referring to the system of linear Eq. 11, the two 
point EG scheme can be rewritten as (Evans and 
Yousif, 1986; Jumat and Abdullah, 2001): 
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Where: 
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 Using the matrix approach, Eq. 15 can be rewritten 
as: 
 

i 1

i

i,i i 1,i 1
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 However, the two point EG scheme in Eq. 16 still 
cannot be implemented using computer program since 
the determinant value is to small relatively, i.e.: 

 i 1,i 1 i,i i,i 1 i 1,i(R )(R ) (R )(R ) 0− − − −− ≈  (17) 

 
 Therefore, we rewrite the system of linear Eq. 15 
as: 
 

i 1 1

i 2

S1

S1
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=     ρβ     
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Where: 
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 Using the Gauss elimination technique to Eq. 18, it 
can be shown that the coefficient matrix can be re-
written in the form of triangular matrix as: 

 

i 1 1

i 2

1
i 1

i 2 1

1 0 1 0
S1

S11 1

1
S

S0 1

−

−

    ρα        =β β        ρβ− −        α α   

α ρ   
    =β β    − ρ − ρ    α α   

 (19) 

 
 Manipulating both Eq. 19, it can be shown that the 
two point EG scheme with parameter w (denoted as 2 
point-EG (SOR)) at (k+1)th iteration as: 

 
( ) ( )k 1 k

i 1 i 1 1 2

i i 2 1

S S w
(1 w) , 1

S S 1

+
− − ρ − ρ     

= − + α >     αρ − ρα −     
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with 1 w 2≤ < . The implementation of 2 point- EG 
(SOR) is displayed in Algorithm 2.  
 
Algorithm 2: 2 point-EG (SOR) scheme: 
 

a. Initialize parameter 
( )0
iR, F, S , w, EPSc 5.0E 6← −  

b. For k 1, 2, 3, , m= ⋯ , calculate 

i. Assign 21, ρρ   

ii.  Calculate 

( ) ( ) ( )

( )
( ) ( ) ( )

( )

k 1 k
2k 1 2k 1

1 2

k 1 k
2k 2k

2 1

S 1 w S

w

1

S 1 w S

w

1

+
− −

+

← − +

  ρ − ρ α − 

← − +

  αρ − ρ α − 

  

c. Test convergence for r i 1, 2, , n= ⋯ , calculate 

 ( ) ( )k 1 k
i iS S EPS+ − <   

d. Repeat b if convergence test is not satisfied 
 
 In this research, Gauss-Seidel (GS) iterative 
scheme will be used as the control of comparison. 
 

RESULTS AND DISCUSSION 
 
Numerical experiment: In this research, we analyze 
the accuracy of the approximation via both piece-wise 
polynomial models of Eq. 1 and 2 and compare with 
the observed data. Furthermore, some numerical 
experiments have  been  done to show the 
performance of AM, GM and EG methods to calculate 
the Si  for i = 1, 2, 3, …,(n = 2m). Results of the 
numerical experiments for number of iterations, 
computation time and percentage of average error are 
given in Fig. 1-3. 
 Generally, in this research, we use the tolerance 
error, ε = 5×10−6. In the result, we use GS-Linear, 
AM-Linear, GM-Linear, 2EG(SOR)-Linear, GS-RK, 
AM-RK, GM-RK and 2EG(SOR)-RK notation to 
represent the Gauss-Seidel using piece-wise linear 
polynomial, Arithmetic mean using piece-wise linear 
polynomial, Geometric mean using piece-wise linear 
polynomial, 2 point EG(SOR) using piece-wise linear 
polynomial, Gauss-Seidel using Piece-wise Redlich-
Kister polynomial, Arithmetic mean using Piece-wise 
Redlich-Kister polynomial, Geometric mean using 
Piece-wise Redlich-Kister polynomial and 2 point 
EG(SOR) using Piece-wise Redlich-Kister 
polynomial, respectively. 

 
 
Fig. 1: Comparison of iteration number for all method 
 

 
 
Fig. 2: Comparison of computational time for all 

method 
 

 
 
Fig. 3: Percentage of relative average error comparison 

between methods 
 

CONCLUSION 
 
 In this research, formulation of polynomial model 
for Eq. 1 and 2 can be represented as Eq. 3. Using 
polynomial in Eq. 3, the system of linear equations 
generated for both polynomial models can be shown. 
However, the condition of the coefficient  matrix  of 
Eq. 11 is ill (Chiam and Majid, 1990). Therefore, the 
convergence criteria may not be satisfied. Furthermore, 
the coefficient matrix is not categorized as positive 
definite matrix. Thus, a modification has been proposed 
via Gauss elimination approach. 
 From the numerical experiment results, Fig. 1 
clearly shows that number of iterations for 2 point 
EG(SOR)-Linear and 2 point EG(SOR)-RK reduce 
around 98.12-98.39% and 98.22-99.07%, respectively, 
when compared to GS-Linear. While computational 
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time in Fig. 2 for both 2 point EG (SOR) schemes 
reduce around 88.23-99.28% and 94.87-100%. 
Accuracy results in Fig. 3 show the use of piece-wise 
third order Redlich-Kister polynomial has high 
accuracy compared to only using linear polynomial.  
 Both AM and GM schemes also show tremendous 
results compared to GS schemes. Figure 1 shows that 
99.88-99.97% reduction in number of iterations for 
AM-Linear and GM-Linear compared to GS-Linear, 
77.15-92.57% reduction in number of iterations for 
AM-RK and 89.31-92.83% reduction for GM-RK. 
Both AM and GM schemes computational time are 
almost 100% faster than both GS schemes (Fig. 2). 
Accuracy results for AM and GM Redlich-Kister 
scheme are far better than linear polynomial schemes 
as shown in Fig. 3. 
 Our next research will be implementing half-
sweep (Abdullah, 1991; Ibrahim and Abdullah, 1995), 
quarter-sweep (Othman and Abdullah, 2000a; 2000b) 
concept and multigrid (Hackbusch, 1983; Othman and 
Abdullah, 1999) to solve the same problem. 
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