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Abstract:  Problem statement: Finite Impulse Response (FIR) filters are widely used in various DSP 
applications. The design of digital FIR filters is a very basic problem in digital signal processing. A 
FIR filter with multiple operation capability is certainly very useful for any real-time filtering 
applications. This article presents a multipurpose FIR filter design modeled by the hardware 
description language VHDL for real-time filtering application. Approach: The VHDL has its concept 
of concurrency to cope with the parallelism of digital hardware. The novel feature is the capability of 
the design to accomplish up to 127variable filter order and an arbitrary filter frequency response. The 
coefficients are calculated by Hamming windowing technique. Basing on selection embedded in the 
design, the model is able to execute highpass, lowpass, bandstop and bandpass filtering operations. It 
is set at 8-bit signed data processing. To filter the input data in time domain, Linear Constant 
Coefficient Difference Equation (LCCDE) is used by the filter. Results: The design outputs are 
validated through simulation and compilation. The output results are also compared with the 
MATLAB implemented calculated output results to test the correctness that proves the effectiveness of 
the design. Conclusion: With the capability of filtering signal in real time mode utilizing arbitrary 
filter shape, the multipurpose filter proves to be versatile.  
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INTRODUCTION 

 
 Frequency-sensitive linear filters can be divided 
into two categories: Finite Impulse Response filters 
(FIR) and Infinite Impulse Response filters (IIR). The 
design of FIR digital filters is a very basic problem in 
digital signal processing. As such, a lot of attention for 
the last 30 years has been received in this field. It is 
widely used in various DSP applications. Few examples 
are signal preconditioning, video convolution functions 
and communications. The FIR filter is chosen for 
applications which require linear phase or where not 
producing noise inside the filter is vital. True linear 
phase can be achieved only in an FIR filter where the 
impulse response is symmetric. Filters without noise 
can be achieved only with FIR filters. Because FIR 
filters can always be designed with a sufficient number 
of bits in the multipliers where truncation or rounding is 

not required after the multiplication. In the arena of 
digital FIR filters designing with the constant fixed-
point binary coefficients, significant work has been 
done (Ma and Taylor, 1990; Lim and Liu, 1988; Dey 
and Oppenheim, 2008). 
 Ascertaining filter coefficients is the main task for 
designing a FIR filter. Usually window method and 
iterative method is applied for the determination of the 
coefficient. Iterative method, Ramez-Algorithm permits 
designing of optimal filters (Kumar et al., 2010; 
Mogaki et al., 2007; Parks and McClellan, 1972). 
Difficulty in implementation by HDL is the drawback 
of this method. On the contrary, it is easier to 
implement by the window method (Oppenhaim and 
Schafer, 1975).  
 For implementing the digital filtering algorithms, 
the most common approaches are special purpose 
digital filtering chips and Application-Specific 
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Integrated Circuits (ASICs) for higher rates (Khoo et 
al., 1993; Laskowski  and  Samueli, 1992; Evans, 1993) 
or general purpose digital signal processing chips for 
audio applications.  
 The Field-Programmable Gate Arrays (FPGA) 
offers a potential substitute to accelerate the hardware 
implementation (Coussy et al., 2009; Marufuzzaman et 
al., 2010; Reaz et al., 2007b; Verma et al., 2009). 
FPGA has the merits of shorter design, higher density 
and lower cost cycle from the point of computer-aided 
design (Choong et al., 2005; Akter et al., 2008; 
ElGizawy et al., 2010). It comprises of a wide variety 
of building blocks. Each block consists of 
programmable look-up table and storage registers, 
where interconnections among these blocks are 
programmed through the hardware description language 
(Reaz et al., 2004b; 2005b; Iskandarani, 2010). This 
programmability and simplicity of FPGA made it 
favorable for prototyping digital system. FPGA allows 
the users to easily and inexpensively realize their own 
logic networks in hardware. FPGA also allows 
modifying the algorithm easily and the design time 
frame for the hardware becomes shorter by using FPGA 
(Choong et al., 2006; Ibrahimy et al., 2006). 
 In this study we present a model of multipurpose 
FIR filter by hardware description language VHDL. 
The aim of the work is to get a proficient structure to 
ease hardware implementation to attain multi-purpose 
filtering with variable filter order and arbitrary 
frequency response and to assess the feasibility of using 
VHDL for prototyping and quick design. The utilization 
of Hardware Description Languages (HDL) is steadily 
increasing, as digital designs become more complex 
and larger (Pang et al., 2006). Previous methods like 
schematic capture have not been as well suited for 
reusing design and quick prototyping of large chip 
designs. Utilizing VHDL for modeling is attractive. 
Because, a formal description of the system is offered 
by VHDL. It also permits using definite description 
styles for covering up various abstraction levels (logic, 
register transfer and architectural level) used in the 
design (Reaz et al., 2006; 2007a). At first the problem 
is separated into small pieces in the computation of 
method. In VHDL, each can be considered as 
submodule. Synthesis is activated after the software 
verification of each submodule. It does the translations 
of HDL code into an equal digital cells’ netlist. The 
synthesis facilitates to integrate the design work. It also 
gives a higher probability to explore far wider range of 

architectural substitute (Reaz et al., 2004a). This 
method offers a systematic approach for realization of 
hardware which allows quick prototyping of the 
multipurpose FIR filter. 
 

MATERIALS AND METHODS 
 
 In this project, a multipurpose digital (FIR) filter is 
realized using VHDL. It can be modeled by utilizing 
LCCDE as given by Eq. 1: 
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 The FIR filter involves no feedback. As such, the 
LCCDE can be described by Eq. 2 as follows (Kumar et 
al., 2010; Mogaki et al., 2007; Parks and McClellan, 
1972): 
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 The FIR filter is a generalization of a running 
average function as we can find from the above 
equation. Whenever data fluctuates, averaging is 
usually done and then smoothed before interpretation. 
An M-point averaging model method is where each 
value of the output sequence is the sum of M 
consecutive input sequence multiplied by its 
coefficient, bk (usually less than 1).  
 By using windowing technique, the multipurpose 
FIR filter is designed. It is the most suitable algorithm 
because it is the easiest way for FIR filter realization. 
By defining the piecewise function with discontinuities 
at the boundaries between bands, the frequency 
response can be achieved. By choosing predefine 
windows, the specifications of the filter can be easily 
found which matches filter specification. Then, the 
coefficients can be calculated by mathematical models. 
 The window selection is based on the stability and 
causality of all filter types, high pass, low pass, band 
stop and band pass for windowing algorithm. The 
specifications which are considered for the windows are 
the transition width, peak stop band attenuation and 
peak side lobe amplitude. A tradeoff between transition 
width and peak stop band attenuation remains. The 
transition width gets bigger as soon as the window gets 
higher stop band attenuation. As such, Hamming 
window which has a tradeoff between peak stop band 
and transition width attenuation is chosen.  



Am. J. Applied Sci., 8 (12): 1272-1281, 2011 
 

1274 

 MATLAB’s fir2 function is utilized to determine 
the coefficient number. The interpolation point is set to 
128 points and maximum order is limited upto 127 (7 
bits) for VHDL realization. The frequency breakpoints 
and magnitude are divided into 101 sections. With the 
resolution of 0.01, each of them ranges from 0-1. 
Values are scaled up with a factor of 100 which is 
represented with 7 bits as VHDL is unable to function 
with floating point. To produce corresponding filter 
coefficients in real time, the filter specifications are 
supplied into filter model. To filter the signal, LCCDE 
is employed in time domain. A 256 points FFT 
generator is utilized to assist generation of the code to 
automate the design. The algorithm flow is illustrated in 
Fig. 1 for the filter. 
 The complication of multipurpose VHDL coding is 
in the filter coefficient calculation part. All codes are 
written in one file. Some codes are used again for the 
similar operation. The codes arrangements are 
illustrated in Fig. 2. 
 Process block is the main component for the 
architecture in the multipurpose FIR filter model. It 
handles the instruction execution flow as well as 
external and internal signal porting and filtering 
process. Like LCCDE concept used in the specific 15-
order filter, the coefficients in multipurpose filter are 
initialized by computation of the filter coefficients 
basing on MATLAB’s fir2 function. Figure 3 shows 
major part of the architecture. 
 In the process_block, the main execution 
instruction flow is dependent on enable_in port. The 
filter stays in the idle mode when it is “00”, 
specifications are sent to the filter when “01”, filter 
coefficients are calculated at “10” and input data are fed 
for the purpose of filtering at “11”. In the code below, 
the IF/Else condition for main process is illustrated. 
 
If (clock = ‘1’ and enable_in = “00” and clock’ event) 
then 
 (idle mode) 
ElsIf (clock = ‘1’ and enable_in = “01” and clock’ 
event) then 
 (Obtain filter specifications) 
Elsif(clock = ‘1’ and enable_in = “10” and clock’ 
event) then 
 (computation of filter coefficients) 
Elsif(clock = ‘1’ and enable_in = “11” and clock’ 
event) then 
 (Filtering process) 
End if; 

 
 
Fig. 1: The multipurpose filter algorithm flow 
 

 
 
Fig. 2: VHDL code arrangement sequence 
 
 Since the filter is supposed to operate in the real 
time, a buffer is created for receiving the input data 
even though the filtering process has not started. The 
size of the buffer is 700 elements of integer type. When 
the enable_in is set to “01”, the filter order is pumped 
into the filter serially once the clock is triggered from 
low to high. The maximum of filter order is set to 127 
or 27 orders. After 7 cycles, when 7 bits are gathered by 
the buff3, the order is converted into integer as 
described in the code below. 
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Fig. 3: The architecture inside the multipurpose FIR 

filter model 
 
If counter_in2<=7 then 
 buff3 (counter_in2):=order; 
 Counter_in2:=counter_in2+1; 
Elsif counter_in2=8then 
 buff3 (0):=’0’; 
 nn:= conv_integer (buff3(0-7)); 
End if; 
 
 At the same time buff1 and buff2 gathered bits of 
the magnitude and frequency breakpoints respectively. 
When 7 bits are gathered, the buffer values are 
converted to integer and assigned to the array aa and ff. 
To avoid the wrong integer value conversion, the Most 
Significant Bit (MSB) is set to 0. Hence, altogether first 
8 bits are used during the conversion with the value 
obtained is always positive. The magnitude and 
frequency breakpoints received by the VHDL model is 
represented in the code below. 
 
buff1 (counter_in1):=amp; 
buff2 (counter_in1):=amp; 
Counter_in1:=counter_in1+1; 
If counter_in1>=8then 
 aa(counter_array): conv_integer (buff1(0 to7)); 
 ff(counter_array): conv_integer (buff2(0 to7)); 
 buff1(1 to (700-8):= buff1((9) to700); 
 buff2(1 to (700-8):= buff2((9) to700); 
 counter_array:=counter_array+1; 
 counter_in1:=1; 
End if; 
 
 When the enable_in turns “10”, values of the 
Hamming windows are computed. Since the cosine 
function cannot be synthesized, the cosine function is 
replaced with an array of constant values. The 
increment from 0-90° is stored in the constant. The 
values are up scalded by a factor of 1000 as illustrated 
in the code below. 
 
Constant cosine: array91:= 
Array91’(1000,1000,999,999,998,996,995,993,990,988,
985,982,978, 974, 970, 966, 961, 956, 951, 946, 940, 
934, 927, 921, 914, 906, 899, 891, 883, 875, 866, 
857,848, 839, 829, 819,809, 799, 788, 777, 766,755, 

743, 731, 719, 707, 695, 682, 669, 656, 643, 629, 616, 
602, 588, 574, 559, 545, 530, 515, 500, 485, 469, 454, 
438, 423, 407,391, 375, 358, 342, 326, 309, 292, 276, 
259, 242, 225, 208, 191, 174, 156, 139, 122, 105, 87, 
70, 52, 35, 17, 0); 
 
 The degree involves division of the filter order but 
only power two denominator is synthesized. Since, 
every fraction is divided by the filter order, the 
nominator and denominator are both multiplied by 128, 
which is of power of two. Using the Case statement, an 
additional nominator is used for different order so every 
order is divisible by 128 to emulate the division of filter 
order as described below. 
 
hamm3: =intorder; 
 For counter in 0-127 loop 
 if counter<=hamm3 then 
 Case hamm3 is  
  When 1=>hamm1:= 360 * counter * 128/128; 
  When 2=> hamm1:= 360 * counter * 64/128; 
  When 3=> hamm1:= 360 * counter * 43/128; 
  When 4=> hamm1:= 360 * counter * 32/128; 
  …  ... ... … 
  When 128=>hamm1:= 360 * counter * 1/128; 
  When others => NULL; 
End case; 
 
 After obtaining the degree, it might vary from 0-
360° but the cosine constant only ranges from 0-90°. 
Hence, trigonometry theorem is used so that the cosine 
value is obtained for the value of degree more than 90. 
The code to obtain the value of the Hamming window 
is given below. 
 
hamm2: 1; 
If hamm1>360 then 
 Hamm1:=360; 
End if; 
  If (hamm1> 90 and (hamm1<180 or hamm1 = 
180)) then 
  hamm1:= 180-hamm1; 
  hamm2:= -1; 
Elsif (hamm1> 180 and (hamm1<270 or hamm1 = 
270)) then 
 hamm1:= hamm1-180; 
 hamm2:= -1; 
Elsif (hamm1> 270 and (hamm1<360 or hamm1 = 
360)) then 
 hamm1:= 360-hamm1; 
 End if: 
hamming1(counter):=(540000-(460*hamm2* 
cosine(hamm1)))/1024 
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 The difference in the frequency breakpoints are 
calculated through the codes below. If negative values 
are obtained, the enable_error port is set high indicating 
the occurrence of an error. 
 
For counter in 0-127 loop 
 If counter<= counter_array-2 then 
 diff (counter):= ff (counter+1)-ff(counter); 
 if diff(counter)<0 then 
  enable_error <=’1’; 
 End if: 
 End if; 
End loop; 
 
 Next, the filter’s frequency response is interpolated 
to 128 points using same algorithm obtained from fir2 
function as described below. The interpolation points 
are then assigned to the signals before they are ported to 
the FOURIER_TIME_SHIFT component.  
 
Input129 (counter2): = (11*inc *aa(counter 1+1)+11* 
 (1000-inc)* aa(counter1))/1024; 
Case counter2 is  
 When 1=> temp1+0<= input129 (1); 
 When 2=> temp1+1<= input129 (2); 
 …  … ….. 
 When 127=> temp1+126<= input129 (127); 
 When 128=> temp1+127<= input129 (128); 
End case; 
temp1_128<=input 129 (129); 
 
 In the FOURIER_TIME_SHIFT component, 
interpolation points are transformed into complex 
points by multiplying with a complex exponential value 
similar to the algorithm in fir2 function. Hence, sine 
and cosine are constant and are declared the same way 
as declaration of the cosine function earlier. Since, 
these values are inputted to the fast Fourier transform 
operation, they are conjugated first so inverse FFT 
operation is emulated through the codes below. 
 
Case counter is  
When 0=> temp_0R<=(temp1*IN_0* 
cosine(angle))/1024; 
   temp_0I<=((-1)*temp2*IN_0 
sine(angle))/1024; 
When 1=> temp_1R<=(temp1*IN_1* 
cosine(angle))/1024; 
 :  temp_1I<=((-1)*temp2* 
IN_1*sine(angle))/1024; 
 :  temp_255R<=(temp1*IN_1* 
cosine(angle))/1024; 

 :  temp_255I<=(temp2*IN_1* 
sine(angle))/1024; 
 :  ….. … ... 
when 127 temp_127R<=(temp1*IN_127* 
cosine(angle))/1024; 
   temp_127I<=((-1)*temp2*IN_127* 
sine(angle))/1024; 
   temp_129R<=(temp1*IN_127* 
cosine(angle))/1024; 
   temp_129I<=(temp2*IN_127* 
sine(angle))/1024; 
when 128 temp_128R<=(temp1*IN_128* 
sine(angle))/1024; 
   temp_128I<=((-1)*temp2*IN_128* 
cosine(angle))/1024; 
 when others=> null; 
End case; 
 
 When a sequence of data is inputted to the FFT 
computation, the order of the inputs reshuffled first. 
Shuffling of input data is performed where the order 
has to correspond to the bit-reversed indexing of the 
original sequence. Hence, when the complex series is 
fed to the 256-point FFT computation, the porting is 
done according to the bit-reversed indexing as shown 
below: 
 
IN_0R=> temp_0R, 
IN_0I=> temp_0I, 
IN_1R=> temp_128R, 
IN_1I=> temp_128I, 
 …  … 
IN_254R=> temp_127R, 
IN_254I=> temp_127I, 
IN_255R=> temp_255, 
IN_255I=> temp_255I, 
 
 After computing the FFT, the results are 
conjugated to obtain the IFFT series. Since the real part 
of the results is needed to compute the filter 
coefficients, conjugation of the results is redundant. 
Then, the real output is multiplied with Hamming 
window values to obtain the filter coefficients through 
the codes below. The number of coefficients is equal to 
the value filter order plus one. 
 
For counter in 0-127 loop 
 If counter <=hamm3 
 Case counter is  
  When 0=>    hamming2(0):=temp2_0* 
hamming1(0)/262144; 
  When 1=>hamming2(1):=temp2_1* 
hamming1(1)/262144; 
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  …  ... ... … 
  When 126=>    hamming2(126):=temp2_126* 
hamming1(126)/262144; 
  When 127=>    hamming2(127):=temp2_127* 
hamming1(127)/262144; 
End case; 
 End if; 
End loop; 
 
 The computation of the filter coefficients take 
about 20 cycles. After the 20 cycles, the enable_in is set 
to “11”. Then, the inputs that are stored in the buffer are 
recalled and the filtering process begins. The concept 
filtering is similar to the specific 15-order filter except 
that the filter coefficients are variables. The LCCDE 
equation used for the filtering purpose through the 
codes are given below. After computing the filtered 
data, they are sent to the multipurpose FIR filter output 
port to be received by other devices. 
 
If (enable_in=”11”) then 
 Input1(0):=(arraydata(0)-128); 
 Qoutput:= 
 ((hamming2(0)) * (input1(0)))/1024+ 
 ((hamming2(1)) * (input1(1)))/1024+ 
 ((hamming2(2)) * (input1(2)))/1024+ 
 …   …. 
 ((hamming2(125)) * (input1(125)))/1024+ 
 ((hamming2(126)) * (input1(126)))/1024+ 
 ((hamming2(127)) * (input1(127)))/1024+ 
End if; 
 
 

RESULTS AND DISCUSSION 
 
 To verify the performance and functionality, the 
multipurpose FIR filter is simulated utilizing VHDL 
testbench. As the stimuli to the VHDL model consists 
of a huge data, it is extracted from a text file. For file 
manipulation, the std.textio.all library is utilized. As 
such, the data is read line by line from the text file. 
Then it is fed into the model. The output of the filter is 
written in another text file after filtering. Together with 
the signal, the location of the output and input files are 
declared. Signals from testbench which ported to 
VHDL model under the test described by VHDL code 
are shown below: 
 
UUT: FIRFilter 
 port map 
  (order =>order, 
  freq=>freq, 
  amp=>amp, 

  enable_in=>enable_in, 
  clock=>clock, 
  input=>input, 
  output=>output 
  ); 
 
 To find out the VHDL model’s performance, the 
output frequency response using MATLAB and VHDL 
simulations are analyzed and compared. The 
specification of an order 20, 16, 18 and 20 for 
Hamming window band stop, high pass, low pass and 
band pass filter respectively is inserted in the VHDL 
model for generating filter coefficients. Then the 
coefficients are further compared with the results 
generated from the MATLAB for verification. In 
Table 1, the specifications are given. 
 The mulitpurpose filter model operating frequency 
is 1MHz with a period of 1µ sec. Using an external 
clock, the frequency is pumped in the model. 
Effectively the square wave duty cycle is 0.5 with a 
0.51µ sec period. The output results also operate with 
the clock at the same frequency. Changes in both input 
and output occur on the waveform during the transition 
as only the clock transition from low to high triggers 
the filter executions.  
 With 1 µ sec period, each bit of input signal is fed 
in the model. To get rid of misreading from the 
previous bit value, a delay of 0.05 µ sec in the bit 
stream is used. As given in Fig. 4, at the beginning of 
simulation, the enable_in is pumped with “01”. The 
frequency break points and magnitude are fed to the 
corresponding ports for the duration of state “01”. 
Thereafter the enable_in is changed to state “10”. The 
calculation time for the filter coefficients at the state 
“10” is approximately 20 cycles as given in Fig. 5. 
Hence, the delay is introduced to the enable_in port 
before the state “11” is introduced to prompt the start of 
filtering process shown in Fig. 6. The coefficients 
generated by the multipurpose filter for band stop, high 
pass, low pass and band pass in the MATLAB and 
VHDL model are shown in Table 2. It is to be noted 
that the VHDL coefficients model are scaled up by 
1000. 
 The scaled up filters’ coefficients can be clearly 
viewed from Table 2. These are fairly close to the 
coefficients generated by the MATLAB. The computed 
values differ slightly for the approximation and 
truncation errors. As such, it affects the accuracy of the 
filter slightly when these coefficients are utilized. 
 The analytical comparison of the filtering is 
calculated by examining the signal’s frequency 
response of VHDL and MATLAB model which is 
given in Fig. 7 and 8. 
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Table 1: The specifications for low pass, high pass, band pass and band stop 
      Low pass filter High pass filter Band pass filter Band stop filter 
Order of filter 20 18 16 20 
Frequency break 0, 0.348, 0.352, 1.0 0, 0.33, 0.34, 1.0 0, 0.44, 0.45, 0, 0.44, 0.45, 
Points   0.50, 0.51, 1.0 0.50, 0.51, 1.0 
Magnitude of the break points 1, 1, 0, 0               1, 1, 0, 0 0, 0, 1, 1, 0, 0  1, 1, 0, 0, 1, 1 
Magnitude of the break points        0, 0, 1, 1 

 
Table 2: Coefficients generated by VHDL and MATLAB 
Low pass filter  High pass filter  Band pass filter  Band stop filter 
--------------------------------------- ---------------------------------------- --------------------------------- ----------------------------- 
VHDL MATLAB VHDL MATLAB VHDL MATLAB VHDL MATLAB 
-3 -0.0030 0 0.0001 6 0.0032 -3 -0.0028 
-3 -0.0031 -4 -0.0037 1 0.0005 4 0.0037 
0 0.0003 -6 -0.0074 38 0.0209 10 0.0127 
15 0.0156 0 -0.0002 -7 -0.0041 -7 -0.0083 
52 0.0489 27 0.0252 -26 -0.0223 -33 -0.0381 
102 0.0969 39 0.0429 -7 -0.0050 15 0.0200 
152 0.1456 2 0.0005 -287 -0.2728 49 0.0541 
180 0.1765 -128 -0.1227 15 0.0092 2 0.0028 
174 0.1765 -259 -0.2683 538 0.5420 933 0.9395 
137 0.1456 662 0.6660 7 0.0092 -4 -0.0049 
84 0.0969 -267 -0.2683 -288 -0.2728 49 0.0541 
38 0.0489 -124 -0.1227 -6 -0.0050 12 0.0179 
10 0.0156 1 0.0005 -26 -0.0223 -33 -0.0381 
0 0.0003 40 0.0429 -6 -0.0041 -7 -0.0083 
-2 -0.0031 26 0.0252 38 0.0209 10 0.0127 
-3 -0.0030 0 -0.0002 1 0.0005 4 0.0037 
  -6 -0.0074 6 0.0032 -3 -0.0028 
  -4 -0.0037 
  0 0.0001 
 

 
 
Fig. 4: The simulation waveform of the initialization of VHDL model multipurpose FIR filter 
 

 
 
Fig. 5: The simulation waveform of the coefficient computation of VHDL model multipurpose FIR filter 
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Fig. 6: The simulation waveform of the filtering process of VHDL model multipurpose FIR filter 
 

 
 
Fig. 7: The frequency response of the VHDL model 

filtered signal 
 

 
 
Fig. 8: The frequency response of the filtered signal 

using MATLAB 
 
Table 3: MSE and SNR Comparison between VHDL model and 

MTALAB 
Filter method Mean Square Error (MSE) SNR (dB) 
Multipurpose VHDL 0.0291 2.8943 
model filter 
MATLAB 0.0268 3.0162 

 
 The filtered signal’s Signal to Noise Ratio (SNR) 
and Mean Square Error (MSE) for the MATLAB model 
and the proposed multipurpose filter are compared as 
given in Table 3. Although the same filter 
specifications and algorithm are used, VHDL model has 
lower SNR. This happens for truncation and rounding 

errors in VHDL coding. Before arithmetic operations, 
all floating points are scaled up as VHDL does not 
allow floating point data type. The values are scaled up 
by 1000 when the filter coefficients are entered to the 
LCCDE. However, all the decimals places are not 
represented. The decimal places which exceed range are 
rounded to closest integer. Floating points are truncated 
during divide operations by division function. As such, 
it introduces truncation errors. Moreover, 
approximation errors also occur while estimating sine 
and cosine. This is the cause of magnitude attenuation 
of the filtered signal using VHDL model.  
 

CONCLUSION 
 
 By simulating and comparing with multipurpose 
FIR filter MATLAB algorithm, the proposed approach 
of multipurpose FIR filter design using VHDL is 
effectively designed, realized and tested. There is 
significant magnitude attenuation of the filtered signal 
using VHDL model, which is due to scaled up the 
floating point. However, with the capability of filtering 
signal in real time mode utilizing arbitrary filter shape, 
the multipurpose filter proves to be versatile. For 
compensating filter flexibility, the accuracy of filtering 
is sacrificed.  
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