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Abstract: Problem statement: This study discusses the robust stabilization of norm bounded discrete 
switched systems. Approach: The proposed method is using the second Lyapunov approach and the 
poly-quadratic function concept. The stabilization conditions are written through linear matrix 
inequality relations. The control law is based on a static output feedback with the use of a switched 
observer. The synthesis conditions of the controller are written in the form of linear matrix inequalities 
difficult to resolve by current numerical solvers. That’s why relaxations are proposed to mitigate the 
pessimism of LMI conditions obtained. Results: The poly-quadratic Lyapunov approach provides a 
constructive way to tackle uncertainty in the switched framework. The feasibility is illustrated by the 
example of discrete uncertain switched systems. Conclusion: With these results, the study of stability 
can be achieved for arbitrary switching laws, state-dependent, time dependent or generated by a 
controller. However, the implementation of the control law is possible only if the switching status is 
well known in real time. 
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INTRODUCTION 
 
 Many natural and artificial systems work in 
different operating modes, each with its own dynamic. 
The car changes from one dynamic mode to another 
with every change of speed, the human heart switches 
between different modes depending on the emotional 
state of the person. These systems concoct continuous 
dynamics with both synchronous or asynchronous 
discrete events. Such class of systems is called hybrid 
systems (Liberzon, 2003) 
 The literature has shown a growing interest in 
switched systems. Switched systems are hybrid systems 
defined by a set whose elements are dynamic 
continuous and/or discrete time models with 
commutation law which define, in time, the jumps 
between the elements, leading to a non stationary 
dynamic system. Some recent results are given in 
(Daafouz et al., 2001; 2002a) where a sufficient (but 
relatively non restrictive compared to the quadratic 
approach) stability condition for discrete switched 
systems is  provided using the poly-quadratic approach 
recently proposed by (Daafouz and Bernussou, 2001)  
to analyze stability and  stabilization control of Linear 
“Time Varying   systems”. 
 Other approaches are concerned with the 
determination of an act of switching between several 

controllers guaranteeing the stability of systems 
(Skafidas et al., 1999; Liberzon, 2003; Hespanha and 
Morse, 2002) which operating constraints require 
switching between multiple controllers. 
 This study proposes an extension of this works in 
the case when the switches are made between uncertain 
LTI systems. The control investigated is of state feedback 
control, observer based and dynamic controller. 
 

MATERIALS AND METHODS 
 
 Let us consider a discrete autonomous switched 
system (1) where each subsystem is vitiated by a norm 
bounded uncertainty (Maherzi et al., 2007; Zhou and 
Khargonekar, 1987; 1988), this system can be described 
by the following equalities (1): 
 

M

k
1

x(k 1) (A A )x(k)
=

+ = ξ +∑ ℓ

ℓ ℓ

ℓ

△  (1) 

 
With Eq. 2 and 3: 
 

A D F E=
ℓ ℓ ℓ ℓ

△  (2) 
 
And: 
 

T 2F F I≤ γ
ℓ ℓ ℓ  (3) 
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Where: 
ℓ  = Switching index 
M = Number of subsystems Eq. 4 and 5: 
 

k

1if thestatematrix A (A A )

0if not

 ∈ +ξ = 


ℓ ℓ ℓ
△

 (4) 

 

M 1 N T
k k k k k1

0; 1; [ ,..., ]
=

ξ ≥ ξ = ξ = ξ ξ∑ℓ ℓ

ℓ
 (5) 

 
Analysis of stability: By using Theorem developed by 
(Daafouz and Bernussou, 2001) the system (1) is poly-
quadratically stable if and only if there are N symmetric 
positive definite matrices S1… SN and N symmetric 
positive definite matrices G1 ... GN matrices of 
appropriate dimensions satisfying Eq. 6: 
 

T T T

j

G G S G (A A )
0 ( , j)

(A A )G S

(e e)

 + − +
> ∀ ∈ 

+  

×

ℓ ℓ ℓ ℓ ℓ ℓ

ℓ ℓ ℓ

△
ℓ

△  (6) 

 
 This is equivalent to the following inequality Eq. 7 
and 8: 
 

�

�

TT T T T

j

G G S G A 0 G A
0

A G S A G 0

  + − ∆
 − > 
    ∆ 

ℓℓ ℓ ℓ ℓ ℓ ℓ

ℓ ℓ ℓ
ℓ

 (7) 

 
�A D ( F )E∆ = −

ℓ ℓ ℓ ℓ
 (8) 

 
 Knowing that Eq. 9: 
 

�

�

T T T T

2 T

0 G A G E E G 0

0 D DA G 0

 ∆  
  ≤  γ   ∆ 

ℓ ℓ ℓ ℓ ℓ ℓ

ℓ ℓ ℓ
ℓ ℓ

 (9) 

 
 So we can say that if Eq. 10: 
 

T T T T T T

2 T

G G S G A G E E G 0
0

A G Sj 0 D D

   + −
− >   γ   

ℓ ℓ ℓ ℓ ℓ ℓ ℓ ℓ ℓ

ℓ ℓ ℓ ℓ ℓ

 (10) 

 
 Then inequality (7) is true. Thereby lead to the 
following conditions Eq. 11: 
 

T T T T T

2 t
j

G G S G E E G G A
0

A G S D D

 + −
> − γ  

ℓ ℓ ℓ ℓ ℓ ℓ ℓ ℓ ℓ

ℓ ℓ ℓ ℓ ℓ

 (11) 

 
 Applying the Schur complement leads to the 
following proposal. 
 
Proposition 1:  By using Theorem developed by 
(Daafouz et al., 2002b) the system described by Eq. 1 is 

a poly-quadratically stable “if and only if there are N 
symmetric positive definite matrices S1… SN and N 
symmetric positive definite matrices G1 ... GN matrices” 
of appropriate dimensions satisfying Eq. 12: 
 

T T T T T

j

T 2

G G S G A G E 0

SA G D0
E G 0 0I

D I0 0

 + −
 
 
 
 
 −γ 

ℓ ℓ ℓ ℓ ℓ ℓ ℓ

ℓ ℓ ℓ

ℓ ℓ

ℓ ℓ

 (12) 

 
Synthesis of dynamic control based on a switched 
observer: This part aims to design switched observer to 
reconstruct the unknown states of the system (1), these 
states will then be used to formulate a stabilizing control 
law. The ultimate goal would be to stabilize the 
observation error and system states (Liu and Duan, 2005). 
 
Form of switched observer: Let us consider an 
observer of the form Eq. 13: 
 

( )M

1

M

1

ˆ ˆA x(k) B u k
x̂(k 1) (k)

ˆL (y(k) y(k))

ˆ ˆy(k) (k)C x(k)

=

=

 +
 + = ξ
 + − 

= ξ

∑

∑

ℓ ℓ

ℓ

ℓ
ℓ

ℓ ℓ

ℓ

 (13) 

 
 The gains observation 

Error! Bookmark not 

defined.
 have to be calculated to guarantee the 

convergence to zero of the observation error Eq. 14: 
 

ˆ(k) x(k) x(k)ε = −  (14) 
 
 The evolution of the observation error is described 
by the following Eq. 15: 
 

( )
( )

M

1
ˆ(k 1) (k) A A A x(k)

Â L C (k))

=
ε + = ξ + ∆ −

− ε

∑ ℓ ℓ ℓ ℓℓ

ℓ ℓ ℓ

 (15) 

 
 We see here that the problem of reconstruction 
does not make much sense, since the observation error 
term depends on a term such like an open loop gain on 
which L has no effect. In this term we chose to consider 
A A≠
ℓ ℓ

⌢
as well and does not constrain the Â

ℓ
value to 

have an additional degree of freedom (Vidal et al., 
2002; Richard, 2003). 

 
Control and stabilization of the system: The new 
augmented system is Eq. 16-22: 
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( )
M

1

x(k)x(k 1)
(k)

k(k 1) =

+   
= ξ φ    εε +   
∑ ℓ ℓℓ

 (16) 

 
A A B k B k

ˆA A L C

 + ∆ + −
φ =   ∆ + ∆ − 

ℓ ℓ ℓ ℓ ℓ ℓ

ℓ

ℓ ℓ ℓ ℓ ℓ

 (17) 

 
ˆA A∆ = −

ℓ ℓ ℓ
 (18) 

 
Let:  
 

T D F EΦ = Φ +
ℓ ℓ ℓ ℓ ℓ

ɶ ɶɶ  (19) 
 

T A B K B K

A L C

 + −
Φ =  

∆ − ∆ − 

ℓ ℓ ℓ ℓ ℓ

ℓ

ℓ ℓ ℓ ℓ ℓ

ɶ  (20) 

 
T TD [E 0]=
ℓ ℓ
ɶ  (21) 

 

T
D

E
D

 
=  
 

ℓ

ℓ

ℓ

ɶ  (22) 

 
 Using results of last proposition, system (16) is 
poly-quadratically stable “if and only if there are N 
symmetric positive definite matrices S1… SN and N 
symmetric positive definite matrices G1 ... GN matrices” 
of appropriate dimensions satisfying Eq. 23: 
 

i

z

0G G S G G E

DG S 0
0 ( , j) (e e)
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τ τ τ τ τ
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ɶ

ɶɶ

ℓ
ɶ
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  (23) 

 
 By rewriting Gℓ as follows (24) and after the 
change of variables we arrive at the following stability 
condition (25) Eq. 24: 
 

 
,1 ,2

,3 ,4

G G
G

G G

 
=  
  

ℓ ℓ

ℓ

ℓ ℓ

  (24) 

 
Proposition 2: The system is poly-quadratically stable 
“if and only if there are N symmetric positive definite 
matrices S1… SN and N symmetric positive definite 
matrices G1 ... GN matrices” of appropriate dimensions 
satisfying Eq. 25-29: 
 

T

T

T

T 2

G G S 0

(.) 0 I 0
0

(.) 0 I 0

0 (.) 0 I−

 + − Γ ψ
 
  > 
 
 γ 

ℓ ℓ ℓ

ℓ

 (25) 

T T T
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T T T
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G (A B k ) R G B k G A R U C

G (A B k ) F G B k G A F V C
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+ + − + − −  
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(26) 
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T
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T
,4
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  
= ∆  
    

ℓℓ

ℓ
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 (29) 

 
 Find a solution to the LMIs (26) while respecting 
the equality constraints (28) and (29) is a non convex 
problem a solution exists only if the following rank 
conditions are verified Eq. 30: 
 

T T T
,3 ,3 ,3

T T T
,4 ,4 ,4

G U G R G
rank rank rank

G V G F G

     
= =     

          

ℓ ℓ ℓ ℓ ℓ

ℓ ℓ ℓ ℓ ℓ

 (30) 

 
 So to find solutions to the LMIs (25) that satisfy 
the constraints (28) and (29) it is possible to apply an 
iterative algorithm of solving the LMI (25) iteratively 
by testing the rank condition (28) and (29) at each stage 
(Halabi, 2005). 
 Another approach would be to fix. 
 ,3G 0=

ℓ
then the condition (25) becomes Eq. 31-36: 

 
T

3 3

T
j

T

T 2

G G S 0

(.) S 0 E
0

(.) 0 I 0

0 (.) 0 I−

 + − Γ ψ
 
  > 
 
 γ 

ℓ ℓ ℓ

ℓ

ℓ

 (31) 

 
T t
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T T
3 ,2 ,2

T
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G (A B k ) F G B k

G A F V C

 + + −
 

Γ = + + − 
 
+ − −  

ℓ ℓ ℓ ℓ ℓ ℓ ℓ ℓ

ℓ ℓ ℓ ℓ ℓ ℓ ℓ ℓ
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 (32) 

 
T
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3 T T
,2 ,4

G D

G D G D

 
ψ =  

+  

ℓ ℓ

ℓ ℓ ℓ ℓ

 (33) 

 
Â A= − ∆
ℓ ℓ ℓ

 (34) 
 

( ) 1T
,4G F

−
∆ =
ℓ ℓ ℓ

 (35) 

 
T
,4L G V=

ℓ ℓ ℓ
 (36) 
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 ,3 ,4G G=
ℓ ℓ

 the condition (25) becomes Eq. 37-42: 

 
T

34 34

T
j

T
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G G S 0
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0
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0 (.) 0 I−

 + − Γ ψ
 
  > 
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ℓ
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T T T
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φ =  
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T T
,1 ,4

34 T T
,2 ,4

G D G D
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 +
ψ =  

+  
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With: 
 
Â A= − ∆
ℓ ℓ ℓ

 (40) 

 

1
,4(G ) F−∆ =

ℓ ℓ ℓ
 (41) 

 

T
,4L G V=

ℓ ℓ ℓ
 (42) 

 
RESULTS 

 
 It is clear that these methods are conservative, 
because the control gains and observers are calculated 
separately and we imposed a special structure in the 
matrix variable G. However these methods are 
interesting because they allow a relaxation of conditions 
LMIs to be solved by the freedom granted to the matrices 
Â
ℓ
 required for the construction of the observers. 

 
Illustration example: It’ is a benchmark example, 
commonly used in the literature, which we added an 
uncertainty of norm bounded type. 
 

1

2

3

T
1 2

x (k 1)

X(k 1) x (k 1)

x (k 1)

AX(k) Bu(k)y(k) [x (k) x (k)]

0.2113 0.0087 0.4524

A (I aI) 0.0824 0.8096 0.8075

0.7599 0.8474 0.4832

0.6135 0.6538

B 0.2749 0.4899

0.8807 0.7741

 +
 

+ = + 
 + 

+ + =

 
 = +  
  

 
 

=  
 
 

 

 One of the two actuators can fail, in this case the 
matrix B may take three different values: 

 

1

0.6135 0.6538

B 0.2749 0.4899

0.8807 0.7741

 
 

=  
 
 

 

2

0.6135 0.0000

B 0.2749 0.0000

0.8807 0.0000

 
 

=  
 
 

 

2

0.000 0.6538

B 0.000 0.4899

0.000 0.7741

 
 

=  
 
 

 

 
 A representation norm bounded uncertainty in the 
dynamical matrix can be given by: 

 
T 2A DFE;D A ;F F I;E I∆ = = ≤ α =

ℓ ℓ ℓ
 

 
 For a maximum value of = 0.18, the proposition 1, 
allows us to obtain the state feedback gains by 
replacing A

ℓ
 by: 

 

1

A B K :

1.4882 0.7063 1.7174
k

0.7982 1.6053 2.5123

+
− 

=  − − 

ℓ ℓ ℓ

 

2

0.6604 0.9712 2.5123
k

0.00000 0.00000 0.00000

− − − 
=  
 

 

2

0.6604 0.9712 2.5123
k

0.00000 0.00000 0.00000

− − − 
=  
 

 

  
 Based on the condition (5.47) we obtain the 
following observers: 

 

1

1

2

0.2203 0.0207 0.4472

Â 0.1076 0.8584 0.8031

0.7844 0.9053 0.4856

0.3740 0.5572

L 0.4396 1.9716

1.0580 1.7440

0.2126 0.0383 0.4729

Â 0.0876 0.9036 0.8694

0.7692 0.9396 0.5361

 
 =  
  

 
 

=  
 
 

 
 

=  
 
 
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Fig. 1: Evolution of actuator 1 
 

 

 

Fig. 2: Evolution of actuator 2 
 

2

3

3

0.3754 0.5604

L 0.4450 1.9813

1.0628 1.7525

0.2252 0.8499 0.4597

Â 0.0677 0.8499 0.8359

0.7555 0.8953 0.5076

0.3548 0.5186

L 0.3882 1.8695

1.0127 1.6541

 
 

=  
 
 

 
 =  
  

 
 

=  
 
   

 

 The conditions obtained from the formulation norm 
bounded uncertainties have the advantage of reducing the 
number of LMIs to be solved compared to the poly-
topical formulation of uncertainty which, admittedly, is 
less conservative but generates much of LMIs to solve. 
 Figure 1 and 2 shows the evolution of controls u1 
and u2 for the uncertainty range with a loss of control u1 
[15s 20s]  and loss of control u2 between times [0s 10s]. 

 
 

Fig. 3: System output Y1 
 

 
 

Fig. 4: System output Y2 

  
 Figure 3 and 4 show the system stability despite 
uncertainties and actuator failures. 
 

DISCUSSION 
 

 The poly-quadratic Lyapunov approach provides a 
constructive way to tackle bounded uncertainty in the 
switched framework. The controller synthesis 
conditions are dependent on information provided by 
observers and the feasibility of LMIs generated by the 
calculations. We believe that the proposed conditions 
are not pessimistic and against this approach may offer 
alternatives to conventional methods of synthesis of 
current regulator for this particular type of system. 

 
CONCLUSION 

 
 With these results, the study of stability can be 
achieved for arbitrary switching laws, state-dependent, 
time dependent or generated by a controller. However, 
the implementation of the control law is possible only if 
switching law status is known in real time (Gao et al., 
2004; Hetel et al., 2008). 
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 In terms of outlook, an important point, to seek, is 
to develop conditions based even on partial knowledge 
of the switching law without necessarily having a 
thorough knowledge of real-time switching. 
 Information obtained in advance of the switching 
law can afford to give less restrictive conditions, not 
having to account for any switching law possible. 
Indeed, it is possible in some practical applications, 
such as control systems via computer networks, to 
estimate an interval containing the delay as a function 
of various parameters of the network. It will be 
interesting, in this case, to define conditions of 
stabilization not only taking into account the parameter 
uncertainties but also uncertainties about the delay. 
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