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Abstract: Problem statement: Forecasting is very important in many types of organizations since 
predictions of future events must be incorporated into the decision-making process. In the case of 
tourism demand, better forecast would help directors and investors make operational, tactical and 
strategic decisions. Besides that, government bodies need accurate tourism demand forecasts to plan 
required tourism infrastructures, such as accommodation site planning and transportation development, 
among other needs. There are many types of forecasting methods. Generally, time series forecasting 
can be divided into classical method and modern methods. Recent studies show that the newer and 
more advanced forecasting techniques tend to result in improved forecast accuracy, but no clear 
evidence shows that any one model can consistently outperform other models in the forecasting 
competition. Approach: In this study, the performance of forecasting between classical methods (Box-
Jenkins methods Seasonal Auto-Regressive Integrated Moving Average (SARIMA), Holt Winters and 
time series regression) and modern methods (fuzzy time series) has been compared by using data of 
tourist arrivals to Bali and Soekarno-Hatta gate in Indonesia as case study. Results: The empirical 
results show that modern methods give more accurate forecasts compare to classical methods. Chen’s 
fuzzy time series method outperforms all the classical methods and others more advance fuzzy time 
series methods. We also found that the performance of fuzzy time series methods can be improve by 
using transformed data. Conclusion: It is found that the best method to forecast the tourist arrivals to 
Bali and Soekarno-Hatta was to be the FTS i.e., method after using data transformation. Although this 
method known to be the simplest or conventional methods of FTS, yet this result should not be odd since 
several previous studies also have shown that simple method could outperform more advance or 
complicated methods.  
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INTRODUCTION 

 
 Forecasting is very important in many types of 
organizations since predictions of future events must be 
incorporated into the decision-making process. In the 
case of tourism demand, better forecast would help 
directors and investors make operational, tactical and 
strategic decisions. Besides that, government bodies need 
accurate tourism demand forecasts to plan required 
tourism infrastructures, such as accommodation site 
planning and transportation development, among other 
needs. There are many types of forecasting methods. 
Generally, in time series we can divide forecasting 

method into classical or traditional method and modern 
methods. Although recent studies show that the newer 
and more advanced forecasting techniques tend to result 
in improved forecast accuracy under certain 
circumstances, no clear-cut evidence shows that any one 
model can consistently outperform other models in the 
forecasting competition (Song, 2008). 
 The time series forecasting methods have found 
applications in very wide areas including finance and 
business, computer science, all branches of engineering, 
medicine, physics, chemistry and many 
interdisciplinary fields. Conventionally, researchers 
have employed traditional methods of time series 
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analysis, modeling and forecasting. Some of mainly 
been used that will discuss in this study are Box-
Jenkins methods Seasonal Auto-Regressive Integrated 
Moving Average (SARIMA), Holt Winters and time 
series regression. The conventional time series 
modeling methods have served the scientific 
community for a long time. However, they provide only 
reasonable accuracy and suffer from the assumptions of 
stationarity and linearity. Due to these constrains, 
comes the idea of alternative solution that is fuzzy time 
series. In this study, the performance of forecasting 
between classical (Box-Jenkins methods Seasonal 
Auto-Regressive Integrated Moving Average 
(SARIMA), Holt Winters and time series regression) 
and fuzzy time series has been compared.  
 Song and Chissom (1993a; 1993b) first introduced 
the definitions of fuzzy time series and developed their 
model by using fuzzy relation equations and 
approximate reasoning. Since that, fuzzy time series has 
gains much attention from researchers in many fields 
and the methods have been developed rapidly. In 
forecasting time series, Chen (1996) proposed a first 
order fuzzy time series used simplified arithmetic 
operations and fuzzy logical relationship groups to 
forecast the enrollments of the University of Alabama. 
Then, Chen (2002) developed a high-order fuzzy time 
series model by extending Chen’s first-order model 
(Chen, 1996). Lee and Chou (2004) improved the 
forecasting accuracy of Chen’s model (Chen, 1996) by 
properly defining the number of linguistic variables. In 
order to overcome recurrence and weighting problems 
in fuzzy time series forecasting, Yu (2005) developed 
the weighted fuzzy time series models. Recently, in 
tourism demand forecasting Tsaur and Kuo (2011) 
developed adaptive fuzzy time series model to forecast 
Taiwan’s tourism demand. Suhartono and Lee (2011) 
proposed a hybrid approach based on winter’s model 
and weighted fuzzy time series in order to analyze trend 
and seasonal fuzzy time series for tourism data to Bali. 
 In this study we used data of tourist arrivals to Bali 
and Soekarno-Hatta gates in Indonesia as case-study. The 
data were taken from the Indonesia Central Bureau of 
Statistics. All the dataset contain monthly data from 
January 1989 to December 1997. We only consider the 
data until 1997 to anticipate extreme data (Bali bombing). 
For the estimation (in-sample) purpose, data are taken 
from January 1989 to December 1996. Meanwhile, data 
from January 1997 to December 1997 are considered for 
the testing or evaluation (out-sample) purpose. 
  

MATERIALS AND METHODS 
 
The SARIMA model: The Box-Jenkins approach to 
modelling autoregressive integrated moving average 

(ARIMA) processes involved an iterative three-stage 
process of model selection or identification, parameter 
estimation and model checking. 
 Since the tourist arrivals data that we used in were 
measured at regular calendar intervals within a year, it 
may exhibit periodic behaviour. Hence, the general 
Box-Jenkins model which allocates seasonality with P 
seasonal autoregressive terms, D seasonal differences 
and Q seasonal moving average terms (Box et al., 
(1994) is given as follows: 
 

( ) ( )s d D s
p P s t q Q tΦ z (B)ΘB (B )Bφ ∇ ∇ = θ α  
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Time series regression (additive model): In time 
series regression additive model, we model seasonal 
patterns by employing dummy variables. Since we use 
monthly data set, hence there are 12 dummy variables 
and the trend is linear, we have: 
 

t 1 1 1 2 2 3 3 4 4 5 5 6 6

7 7 8 8 9 9 10 10 11 11 12 12

ŷ = δ t +β M + β M + β M + β M + β M + β M +

β M + β M + β M β M β M + β M+ +
 

 
where, M1, M2,…M12 are dummy variable that define as 
follows: 
 

1
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 The above equation also can be written as follows 
(Bowerman et al., 2005): 
 

t 0 1 2 1 2 3 3 4 4 5

5 6 6 7 7 8 8 9 9 10 10 11

= β +β t +β M + β M + β M + β M +

β M + β M + β M + β M +β M + β M

ŷ
 

 
 The purpose of dummy variable is to ensure that an 
appropriate seasonal parameter is included in the 
regression model in each time period. This dummy 
variable model assumes that the seasonal component is 
unchanging from year to year. 
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Time series regression (multiplicative model): 
Regression models involving trigonometric terms can 
be used to forecast time series exhibiting increasing 
seasonal variation (Bowerman and O'Connell, 1993): 
 

2πt 2πt
y = β +β t +β sin +β tsinsin +β coscost 0 1 2 3 412 12

2πt 2πt 4πt 2πt
+β tcoscos +β sin +β coscos5 6 412 12 12 12

4πt 4πt 4πt
+β tcoscos +β coscos +β tcoscos +εt7 8 912 12 12

   
   
   

       
       
       

     
     
     

 

 
 This model also has a linear trend assumption and 
it was altered to handle trends in our case study. Hence, 
the following multiplicative model was obtained:  
 

t 1 1 1 2 2 3 3 4 4 5 5 6 6

7 7 8 8 9 9 10 10 11 11 12 12 1 1
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Holt Winters: Method proposed by Winters in 1960 is 
one of the most famous forecasting techniques for 
seasonal time series. It has two types of method, 
additive seasonality and multiplicative seasonality. In 
this study we use the multiplicative Holt Winters 
method which is more often applied in software 
package. The magnitude of the seasonal variation 
increase when the mean level of the time series 
increase, hence the seasonality is multiplicative. The 
three smoothing equations of the multiplicative Holt 
Winters method given by the following equations: 
 

( ) ( )( ) ( )
( ) ( )

L = α Y / S + 1-α L - T ,T = γ L - L +t t t-p t tt-1 t-1 t-1

(1- γ)T S =δ Y / L + (1- δ)S = L + T St t t t-p t t-pt-1 t-1 t, y -1ˆ,  

 
Where: 
Lt = Level at time t  
Tt = Trend at time t 
St = Seasonal component at time t 
yt = Fitted value or one-period-ahead forecast at time t  
y = Weight for the trend 
a = Weight for the level 
yt = Data value at time t 
δ  = Weight for the seasonal component 
P = Seasonal period 
 
 The parameters α, β, γ should lie in the interval (0, 1). 
We use the default weight in Minitab, which the weight 
for this level, trend and seasonal component are 0.2.  

Fuzzy time series: Song and Chissom (1993b) first 
introduced the definitions of fuzzy time series and 
developed their model by using fuzzy relation equations 
and approximate reasoning. General definitions of 
fuzzy time series are given as follows. 
 Let U be the universe of discourse, where U = {u1, 
u2,…ub}. A fuzzy set Aj of U is defined as Aj = fAj 
(u1)/u1+fAj (u2)/u2+…+ fAj (ub)/ub, where FAj is the 
membership function of the fuzzy set Aj; fAj:U→[0, 1] ua 
is a generic element of fuzzy set Aj; fAj (ua) is the degree 
of belongingness of ua to Aj; fAj (ua) ∈[0, 1] and 1≤a≤b.  
 
Definition 1: Fuzzy time series. Let y (t) (t = …, 0, 1, 
2…) a subset of real numbers R, be the universe of 
discourse by which fuzzy sets fi (t) are defined. If F(t) is 
a collection of f1 (t), f2 (t),… then F(t) is called a fuzzy 
time series defined on Y(t). 
 
Definition 2: If there exists a fuzzy relationship R (t-1, 
t), such that F (t) = F (t-1) R (t-1, t), where ° is an 
arithmetic operator, then F (t) is said to be caused by F 
(t-1). The relationship between F (t) and F (t-1) can be 
denoted by: F (t-1) →F (t). 
 
Definition 3: Suppose F (t) is calculated by F (t-1) only and 
(t) = F (t-1) R (t-1, t). For any t, if (t-1, t) is independent of t, 
then F (t) is considered as a time-invariant fuzzy time series. 
Otherwise, F (t) is time-variant. 
 
Definition 4: Suppose F (t-1) = Aj and F (t) = Aj, a 
fuzzy logical relationship can be defined as: 
 

i jA A→  

 
where, Ai and Aj are called the Left-Hand Side (LHS) 
and Right-Hand Side (RHS) of the fuzzy logical 
relationship, respectively. The definition of the first order 
seasonal fuzzy time series model for forecasting proposed 
by Song and Chissom (1993b) is given as follows. 
 
Definition 5: Let F(t) be a fuzzy time series. Assume 
there exists seasonality in {F(t)}, first order seasonal 
fuzzy time series forecasting model: 
 

F(t - m) F(t) →  
 
where, m denotes the period. 
 The high order fuzzy time series model proposed 
by Chen (2002) is given as follows: 
 
Definition 6: Let F(t) be a fuzzy time series. If F(t) is 
caused by F (t-1), F (t-2,… and F (t-n) then this fuzzy 
logical relationship is represented by: 
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( ) ( )F t - n ,…,F t - 2 ,F(t -1) F(t)→  

 
 And it is called the nth order fuzzy time series 
forecasting model. 
 Initially, the repeated FLRs were simply ignored 
when fuzzy relationships were established. In many 
previous studies, each FLR was treated as if it was of 
equal importance, which may not have reflected the real 
world situation (Chen, 1996; Huarng, 2001; Song and 
Chissom, 1993a; 1993b; Yu, 2005). In this scenario, the 
occurrences of the same FLRs are regarded as if there 
were only one occurrence. In other words, the recent 
identical FLRs are simply ignored. To explain this, 
suppose there are FLRs in chronological order that have 
the same LHS.  
 
A1, as follows Eq. 1: 
 
( )
( )
( )
( )
( )

t = 1 A A1 2
t = 2 A A1 1

t = 3 A A1 1

t = 4 A A1 3
t = 5 A A1 1

→

→

→

→

→

 (1) 

 
 Following Chen (1996), these FLRs in Eq. 1 are 
used to establish an FLRG as:  
 

1 1 2 3A A ,A ,A→  
 
 The ignoring of recurrence, however, is 
questionable. Yu (2005) argued that the occurrence of a 
particular FLR represents the number of its appearances 
in the past. For instance, in Eq. 1, A1→A1 appears three 
times, both A1→A2 and A1→A2 only once. The 
recurrence can be used to indicate how the FLR may 
appear in the future. 
 Later, Yu (2005) proposed the chronological 
weights to deal with recurrent fuzzy relationships and 
their importance. To illustrate it, suppose there are 
FLRs in chronological order as in Eq. 1 and then the 
weights are as follows: 
 

( )
( )
( )
( )
( )

1 2

1 1

1 1

1 3

1 1

with weight 1

with weight 2

with weight 3

with weight 4

t = 1 A A

t = 2 A A

t = 3 A A

t = 4 A A

t = 5 A A with weight 5

→

→

→

→

→

 

 
 As a result, the most recent FLR (t = 5) is assigned 
the highest weight of 5, which means that the 

probability of its appearance in the near future is higher 
than in the case of the others. On the other hand, the 
most aged FLR (t = 1) is assigned the lowest weight of 
1, which means that the probability of its appearance in 
the near future is lower than in the case of the others. 
 Recently, Cheng et al. (2008) proposed the weights 
focused on the probability of its appearance and their 
importance of chronological FLR for the same recent 
identical FLRs. To explain it, suppose there are FLRs in 
chronological order as in Eq. 1 and then the weights are 
as follows: 
 

( )
( )
( )
( )
( )

1 2

1 1

1 1

1 3

1 1

with weight 1

with weight 1

with weight 2

with weight 1

t = 1 A A

t = 2 A A

t = 3 A A

t = 4 A A

t = 5 A A with weight 3

→

→

→

→
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 In this study, we applied the FTS according to the 
following procedures: 
 
Step 1: The data are not stationary, hence data 

preprocessing has been carried out by taking 
transformation according to Koehler Eq. 2: 

 
λ

t tZ = (Y -1) / λ   (2) 

 
where, λ is the coefficient from Box-Cox 
Transformation. 
 
Step 2: Fuzzy relationship was determined according to 

SARIMA model for the data set. This 
procedure also has been done by Faraway and 
Chatfield (1998) in order to select neural 
network input variable. Due to limitation of 
considered methods, we have to ignore the lag 
from MA and SMA. For instance SARIMA 
model for Bali is (0, 1, 1) (0, 1, 1)12 (Hence the 
fuzzy relationship can be denoted by: 

 
( ) ( )F t -13 ,F t -12 ,F(t -1) F(t)→  

 
Step 3: In order to select input and fuzzy time series 

order, firstly we try to input all the three input 
from fuzzy relationship that obtained in step 2. 
To experiment the selection of input, we try all 
the possible combination of two input from the 
three inputs and single input as well. So all 
possible input are Lag 1, 12, 13; Lag 1, 12; Lag 
1, 13; Lag 12, 13; Lag 1; Lag 12; and Lag 13. 
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Step 4: The optimum length of intervals was calculated 
following average-based length by Huarng 
(2001). 

Step 5: Forecast. Three different FTS methods was used 
 i.e., Chen (2002; 2008) and Hui Kuang 
 Yu (2005). 
Step 6: Forecast data were transformed back to original 

scale data and the forecast accuracy were 
calculated. 

 
Measures of accuracy: In order to evaluate the accuracy 
of forecast data by the six methods, we computed Mean 
Absolute Percentage Error (MAPE), Mean Absolute 
Deviation (MAD), Mean Square Error (MSE) and Root 
Mean Square Error (RMSE). For all the three measures, 
the smaller the value, the better the fit of the model. These 
statistics are compute as follows:  
 

( )
( ) ( )

( )

( )

t t t
t

t t t

t t

2

t t

ˆy - y / y
MAPE = 100 ;y 0

ˆy - y / y

ˆy - y
MAD =

n

ˆy - y
MSE =

n

≠∑
∑
∑

∑

 

 
Where: 
yt  = The actual value at time t  
yt = The fitted value 
 
 For in sample, n is the number of observations 
(degree of freedom in case of SARIMA). Meanwhile, 
for out sample, n is the number of forecast data which is 
12 in this study. 
 

RESULTS 
 
SARIMA: In this study we used MINITAB version 
14 to analyze SARIMA model. In model identification 
stage, firstly we used time series plot to see briefly 
whether the data have seasonal and trend patterns. 
Figure 1 and 2 show clearly that both data sets have 
trend patterns; hence the assumption of stationary 
condition in mean is not satisfied. Yet, we validate this 
assumption by using Autocorrelation Function (ACF) 
and Partial Autocorrelation (PACF) plot and from the 
results ACF plot for both data only dies down until first 
differencing both in non-seasonal and seasonal (S = 12). 
From box-cox plot, we found out that both data are not 
stationary in variance. Data transformation was made 
according to Johnson and Wichern (2007). After the data 

preparation, we plot again ACF and PACF in order to 
identify the model and took a few possible models. The 
best model was chosen among these competitive models 
base on the smallest RMSE value. The model parameters 
were estimated by using least squares estimation. Models 
with insignificant parameters (exclude constant) were 
eliminated. Remaining models then proceed to the 
diagnostic checking step to see whether the models 
adequate by using Ljung-Box statistics. According to 
RMSE value, the best SARIMA models for Bali is 
SARIMA (0,1,1) (0,1,1,)12, meanwhile for Soekarno-
Hatta is SARIMA (1,1,0) (1,1,1,)12.Therefore, the 
models to forecast tourist arrivals to Bali and Soekarno-
Hatta after taking the parameter estimation from 
MINITAB output are following the below equations 
respectively: 
 

t t -1 t -12 t -13 t t-1 t -12 t -13

t t -1 t -2 t-12 t -13 t -14

t -24 t t -12

Z = Z + Z - Z + a - 0.6489a + 0.8160a - 0.5295a

Z = 0.3384(Z - Z ) - 0.6745Z 0.1101Z + 0.2283Z

-0.3255Z + a - 0.8439a

+

 
Where: 
 

λZ = (Y -1) / λt t  

 
Time series regression: Time series regression for Bali 
and Soekarno-Hatta are given by the following 
equation: 
 

( )
t 1 2 3

4 5 6 7

8 9 10 11

12 t 1 2 3

4 5 6 7 8

Y = 820t + 23713M + 23161M 21856M +

22727M +17752M + 25989M + 38233M
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27194M Y = 797t + 40697M + 39020M + 42575M +

40236M + 39166M

a   A

+ 46040M + 59831
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+

M 56534M

+

+ +

48866 9 10 11 12
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3 4 5 6

M + 50705M + 50654M + 58973M

Y = 803t + 28071M + 22118M + 23925M + 26166M +

22878M + 30153

(b)  Multi
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2tM - 70t- M
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+172 7 8
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12 1 2 3 4 5
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tM + 202tM +
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Y = 901t + 44753M + 47050M + 40775M +

35913M + 37529M + 45008M - 61789M

52480M + 49659M + 50647M + 53017M +

53335M -199tM - 287tM - 64tM 10tM - 70tM -

83tM -144tM - 23tM -120tM -

+

-

103t 10 11M -149tM
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Fig. 1: Time series plot for number of tourist arrivals to 

bali 

 

 
 
Fig. 2: Time series plot for number of tourist to 

soekarno-hatta 
 
Fuzzy time series: All the three methods of FTS were 
implemented by using MatlabR2008a. The selection of the 
best FTS input is according RMSE. We choose only lag 
13 for Bali and lag 2, 3, 13, 14, 15 and 25 for Soekarno-
Hatta. In case of Chen’s method for Bali, since only one 
lag was chosen, hence it follows Chen’s first order method 
Chen (1996). The number of intervals for Bali and 
Soekarno-Hatta are 26 and 30 respectively (calculated 
following average-based length procedure). 
 Figure 1 and 2 show time series plot for tourist 
arrivals to Bali and Soekarno-Hatta respectively before  
data transformation. Meanwhile, Figure 3 and 4 show 
after data transformation following Eq. 2 for tourist 
arrivals to Bali and Soekarno-Hatta respectively. The 
Comparison of forecast performance between three 
F.T.S methods before and after data transformation is 
shown in Table 1. Before the data transformation, 
Cheng’s methods outperformed all other methods, but 
after transformation Chen’s methods is the best 
according to MAPE, MAD and RMSE. There is 
exception for Bali before data transformation, where 
Chen’s method is the best according to RMSE.  

 
 
Fig. 3: Time series plot for number of tourist to Bali 

after data transformation 
 

 
 
Fig. 4: Time series plot for number of tourist to 

Soekarno-Hatta after data transformation 
 
Comparison of forecasting performance: The 
forecasting of tourist arrivals to Bali and Soekarno-
Hatta gate in testing period is done using four different 
approaches (total seven methods). From the results in 
Table 2, it is clearly shows that FTS Chen’s and FTS 
Yu’s method outperform all the classical methods and 
FTS Chen’s method gives the most accurate forecast 
according to MAPE, MAD and RMSE.  
 It seem that all the three accuracy measurement 
give inconsistent ranking, except for the first ranking 
which Chen’s methods has been chosen by all of the 
measurement. 
 

DISCUSSION 
 
 Compare with Fig. 1 and 2, it seem that the 
transformation produced series with more constant 
variations. The changing rank before and after the data 
transformation might due to different assign weight for 
FLR by both methods, since Chen’s method gives the 
same weight and Cheng’s method gives different weight 
according   to   the   number  of  times  each  FLR  occur.  
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Table 1: Comparison of forecast performance by F.T.S methods before and after data transformation (a) Airport gate: Bali (b) Airport gate: 
Soekarno-hatta 

 Before data transformation    After data transformation 
 ---------------------------------------------------------------------- ---------------------------------------------------------------------------- 
 MAPE Rank MAD Rank RMSE Rank MAPE Rank MAD Rank RMSE Rank 
F.T.S Cheng’s 7.507 (1) 8377.2 (1) 10448.7 (3) 7.677 (3) 8473.6 (3) 10262.8 (3) 
F.T.S Chen’s 7.620 (3) 8459.5 (3) 10304.7 (1) 7.265 (1) 8100.7 (1) 10136.0 (1) 
F.T.S Yu’s 7.572 (2) 8422.9 (2) 10343.8 (2) 7.518 (2) 8329.2 (2) 10203.3 (2) 
b 
F.T.S Cheng’s 9.275 (1) 11674.8 (1) 14529.5 (1) 9.708 (3) 12407.6 (3) 15490.4 (3) 
F.T.S Chen’s 9.687 (3) 12123.3 (3) 14641.1 (3) 8.617 (1) 10904.4 (1) 13922.9 (1) 
F.T.S Yu’s 9.454 (2) 11869.9 (2) 14562.1 (2) 9.380 (2) 11923.3 (2) 14832.3 (2) 
 
Table 2: Comparison of forecast performance by different forecasting methods 
Method MAPE Rank MAD Rank RMSE Rank 
Airport gate: Bali       
F.T.S Cheng’s 7.677 (3) 8473.6 (5) 10262.8 (4) 
F.T.S Chen’s 7.265 (1) 8100.7 (1) 10136.0 (1) 
F.T.S Yu’s 7.518 (2) 8329.2 (3) 10203.3 (3) 
Holt Winter’s 8.108 (5) 8430.0 (4) 10157.2 (2) 
SARIMA  8.395 (6) 8684.5 (6) 10601.6 (5) 
T.S Regression Additive 8.919 (7) 9249.7 (7) 10693.9 (6) 
T.S Regression Multiplicative 7.920 (4) 8180.3 (2) 19217.7 (7) 
Airport Gate: Soekarno-Hatta 
F.T.S Cheng’s 9.708 (3) 12407.6 (5) 15490.4 (3) 
F.T.S Chen’s 8.617 (1) 10904.4 (1) 13922.9 (1) 
F.T.S Yu’s 9.380 (2) 11923.3 (3) 14832.3 (2) 
Holt Winter’s 11.622 (6) 12926.0 (6) 17297.7 (6) 
SARIMA  15.115 (7) 17041.5 (7) 22111.7 (7) 
T.S Regression Additive 10.892 (5) 12368.8 (4) 15640.9 (4) 
T.S Regression Multiplicative 10.190 (4) 11607.0 (2) 16285.0 (5)

 
Despite the changing rank, when we compare the 
magnitude value of error, the data transformation still 
improved the forecast accuracy for the best method of 
both data sets.  
 For tourist arrivals to Bali, Holt Winter’s has 
lowest value of RMSE after Chen’s method. Holt 
Winter’s method which is exponential smoothing 
model is basically weight average of previous 
observations. Hence it can predict well for series that 
repeat their pattern and scale like Bali 

 
CONCLUSION 

 
 It is found that the best method to forecast the tourist 
arrivals to Bali and Soekarno-Hatta was to be the FTS 
i.e., Chen (1996; 2002) method after using data 
transformation. Although this method known to be the 
simplest or conventional methods of FTS, yet this result 
should not be odd since several previous studies also 
have shown that simple method could outperform more 
advance or complicated methods (Makridakis et al. 
(1982;  1993); Spyros Makridakis and Hibon (2001). 
According to Spyros Makridakis and Hibon (2001) many 
simple methods, such as a random-walk model, for 
example, offer adaptability to structural change, in that 
the model immediately adapts to the latest level of the 
series. 

 
 
Fig. 5: Forecasts of tourist arrivals in Bali (1997) 
 
 Generally, we can conclude that FTS (especially 
Chen’s method) is good to predict fluctuating series 
such as tourist arrivals. However, future research could 
be done by using FTS that can consider Moving 
Average (MA) terms in input lag in order to improve 
the forecast accuracy. More advance accuracy 
measurement such as statistical test also can be applied 
to evaluate the forecast accuracy among competition 
models. Besides, turning points and directional change 
errors also will be useful since they can give better 
information on tourism growth cycles instead of just 
forecast error magnitude.  
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Fig. 6: Forecasts of tourist arrivals in soekarno-hatta 

(1997) 
 
 When refer to Fig. 5 and 6, all the consider 
methods perform better for Bali compare to Soekarno-
Hatta. This is due to the different pattern of both data. 
Bali continue the pattern of training data in testing data, 
in contrast this is not happen to Soekarno-Hatta which 
dropped dramatically in May 1997 and then increase 
sharply until July 1997. This shows that tourist arrivals 
to Bali has less affected by economic crises in Asia 
compare to Soekarno-Hatta. 
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