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Abstract: Problem statement: The number of spanning treeéG) in graphs (networks) is an
important invariant, it is also an important measof reliability of a networkApproach: Using linear
algebra and matrix analysis techniques to evalifegeassociated determinan®esults: In this study
we derive simple formulas for the number of spagnirees of complete graph,kand complete
bipartite graph Kn and some of their applications. A large numbeth&forems of number of the
spanning trees of known operations on complete lgitgp and complete bipartite graph, K are
obtained.Conclusion: The evaluation of number of spanning trees isardy interesting from a
mathematical (computational) perspective, but aisés an important measure of reliability of a
network and designing electrical circuits. Some patationally hard problems such as the
travelling salesman problem can be solved approtémay using spanning trees. Due to the high
dependence of the network design and reliabilityttmn graph theory we introduced the following
important theorems and lemmas and their proofs.

Key words: Complete graph, complete bipartite graph, spantiegs, Kirchhoff matrix, operations
on graphs

INTRODUCTION number of distinct spanning subgraphs of G that are
trees. A classic result of Kirchhoff, (Cayley, 13&8&n
We consider finite undirected graph with no loopsbe used to determine the number of spanning taes f
or multiple edges. LeG be such a graph on n vertices. G = (V, E). Let V = y,........... Vo TO state the result,
A spanning tree for a grap@ is a subgraph of G that is we define thenxn characteristic matrix A = [ as
a tree and contains all vertices of G. There areyma follows: (i) g = -1 if v, and y are adjacent and# j, (ii)
situation in which good spanning trees must be doun a; equals the degree of vertexifvi = j and (iii) 8 = 0
Whenever one wants to find a simple, cheap, yebtherwise. The Kirchhoff matrix tree theorem statest
efficient way to connect a set of terminals, beythe all cofactors of A are equal and their common vasue
computers, telephones, factories, or cities, atisolis  1(G). The matrix tree theorem can be applied to any
normally one kind of spanning trees. Spanning treegraph G to determingG), but this requires evaluating
prove important for several reasons: They creafgaae  a determinant of a corresponding characteristiairmat
subgraph that reflects a lot about the originalpbra However, for a few special families of graphs there
they play an important role to designing efficientexists simple formulas that make it much easier to
routing algorithms, some computationally hardcalculate and determine the number of corresponding
problems, such as the Steiner tree problem and th&panning trees especially when these numbers aye ve
travelling salesperson problem, can be solved lixyygus large. One of the first such result is due to Cayido
spanning trees and they have wide applicationsanym showed that complete graph om vertices, K has
areas such as network design, bioinformatics (Biggsn"?spanning trees (Cvetkoviet al., 1980) that he
1993; Brownet al., 1996; Colbourn, 1987; Bermomtl  showedt(K,) = "% n=>2. Another resultr(K,) = p*,
al.,, 1995; Myrvold et al., 1991). The number of ¢*'p,q =1, where K,.is the complete bipartite graph
spanning trees of G, denoted h{G), is the total with bipartite sets containing p and q vertices,
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respectively. It is well known, as in e.g., (Petiegal.,  Proof: By simple calculations using the property of
1998; Austin, 1960; Clark, 2003; Egecioglu andaddition of two determinants, we can write det[DUy+
Remmel, 1994; Porter, 2004; Lewis, 1999). as an addition ohh determinants each of which is the
Let G, and G be a simple graphs. We introduce same as det[D-A], but by replace one of its coluand
some operations on graphs: any determinant of these is equal todet[D-A]. Since
all cofactors of [D-A] are equals. Then we have:
« If Gyand G are vertex disjoint graphs. Then the

join product, GOG,, is the super-graph of.G G,, det[D - A+ UJ=nxcofactor[D- A]+

in which each vertex of Gis adjacent to every nx cofactor[D- A]+...... + nx cofactol
vertex of G, (Balakrishnan and Ranganathan, [D -A](n —times)+ det[D- A]
2000).

e The Cartesian product of two graphs @&d G, But:
Gix Gy, is the simple graph with vertex set (G
Gy = V (VixV,) and edge set E(®G,) = det[D- A]=0
[(ExxV)O(VixEyp)], such that two vertices
(u,u,)and (v,,v,) are adjacent in &G, iff, either ~ Then:
u = v; and y is adjacent to ¥in G;, or u,is
adjacent to ¥ in G; and y = v, (Wilson and
Watkins, 1990).

* The tensor product, or Kronecher product of two
graphs G and G, G, 00 G,, is the simple graph 1
with v (G, O G,) = VixV, where (4, W) and (\, T(G)=Fdet[D— A+ U]
V,) are adjacent in @31 G; iff u, is adjacent to Min
G; and y is adjacent to xin G,, (Balakrishnan and
Ranganathan, 2000).

» The normal product, or the strong produc of twoThen T(G)-—det[nln D+ A], where A,Dare the
graphs G and G t, G;-G,, is the simple graph _
with V(G10G,) = VaxV, where (4, W) and (\, V) adjacency_and degr_ee ma_ltrlce_s ®f cqmplement of
are adjacent in G G, iff either u, = v; and u, is G) respectively and, lis the identity matrix.
adjacent to ¥inG,, or u, is adjacent to yin G; and
U, = Vp, Or U is adjacent to yvand y is adjacent to _
Vs, (Balakrishnan and Ranganathan, 2000). (U-A-1)=A Then.

* The coronaG,0G,of G, and G is the graph D-A+U=(n-1)I -D+A+l_ =nl_-D+A . Thus from
obtained by taking one copy of; Gwhich has n
vertices) and ncopies of Gand then joining the"i
vertex of G to every vertex in thé"icopy of G,
(Wilson and Watkins, 1990). Theorem 3: 1(K,) =n""2.

det[D - A+ U] = n?x cofactor[D- A]= rf1 (G)

Therefore:

Lemma 2: Let G be a simple graph with vertices n.

Proof: It is clear that D+D=(n-1)I, and
lemmal, we havet(G) =i2det[nL - D+ A].
n

The well-known matrix tree theorem (Kirchhoff
matrix) can be used to count the number of spannin
trees for small graphs, but this method is notides

groof: Applying lemma 2, we have:

for large graphs. So we present two formulas in r(Kn):%det(nl—E+Z):

lemmal, lemma2 is to expresgG) directly as a n

determinant rather than in terms of cofactors as in n 0O 0 - O

Kirchhoff theorem. On o0 - :

_ _ _ Ldefo . . 0|=2xr=

Lemma 1: Let G be a simple graph with n vertices. n c ool ™

Then, T(G)=i2det[D—A+ U], where AD are the 0 -~ 0 0 n

n

adjacency and degree matrices ®f respectively and _ L
U is the nx nmatrix where all its elements are ones. ~ Corollary 4 t(K, -e)=(n-2)i"™.
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Proof: Applying lemma 2, we have:

(K, —e)=i2det(n I- D+ A)
n

n-1 1 o - 0
1 n-1 0 .
1 . . .
n .
: . .. n

:n—lZX((n—l)z—l)x n?=(n- 2x i?®

Corollary 5: 1(K,-e)=2n"°, where K, oe is the
graph obtained fronK, by contracting the edge.

Proof: Immediately from the fact that:

(G)=1(G-e)+T1(Go €)

Zn_l 1 O cee e e
1 2n-1 O R : R
0 0 2n-1 1 0
: ’ 1 2n-1 O
0 0 2n-1 1 O
1 2n-1 0 -
0 0
o 1 "
- . . : .. 2n-1
0 w0 1 2n-Y

Straightforward induction using properties of

determinants. We have:

T(H,) i><((2n—1)2—1T: Z"2x % (n- 1)

~(any

Theorem 9: Let G be a graph constructed by

removing a star grapK, ,from K, . Then:

Theorem 6. Let G be a graph constructed by

w2 1.3
removing m distinct edges fromi,,n>2m. Then: 1(G)=n 2(1_5)(1_3)

1(G)= nn—2(1_§)m Proof: Apply lemma 2, we have:

-1 _ D+ A)=
Proof: Straightforward induction using properties of T(G)_nz det(ni- D+ A) n’ det

determinants. n-2 1 10 - e -
1 -1 R
Theorem 7: 1(K, +e)=(n+2)2. n O
1 0O n-1 0 O :
Proof: Applying lemma 2, we have: 0 n 0
0 0 0 O
T(Kn+e)=%det(nl—b+76\)= -0 .0
n : : ) .0 n
n+1 -1 0 - 0 ) 0
. . n- 1 1 n
1 -1 n+1 0 . : —1d d ..
—def 0 . n .0 =z et 1 n-1 0 |xdet 0 n
n T 1 0 n-1 Sooon
0 - 0 0m :izxn”'3><(n—1)(n2—3n): 2x (B x (1——3
n n n

:nizx((n+1)2—1)x m2= (n+ 2k A°
Corollary 10: Let G be a graph constructed by
Theorem 8: Let H, be a graph constructed by removing removing a star graph,|§ from Kn, rem+1.. Then:
n distinct edges fronk,, . Then:
(6)=n2 -2y -
T(Hn)zzzn—ann—lx (n_ 1)n n n

Proof: Straightforward induction using properties of

Proof: Applying lemma 2, we have: determinants.

T(Hn)=%det(2n|— D+ A)= 1 det Lemma 11: Biggs (1993) letG be a k-regular graph
(2n) (2ny with n vertices and m edges. Then:
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T(L(G)) = 2" x k™ " ix1(G) Lemmald: If :(A Bj and AB = BA. Then
B A
where, L(G) is the line graph of . det(H) = det(A+B). det (A-B)

Theorem 12: Let T, be the line graph ok, . Then:
Proof: Using the fact that
(T,) =1(L(K ) = det(A Bj: {det(A).det(D— CA™B), where A,B
C D det(D).det(A- BD*C)

are non singular, Marcus M. [12]. We have

3(n2—3n+2 l(n’é—an— 2)

22 'x (n—1y x 2
_ . A B i
Proof: The line graph L(G)of a graph G s det A = det(A).det(A- BA" B)
constructed by taking the edges of G as vertices of .

L(G) and joining two vertices inL(G) whenever the _ :_det(/-\ - B")=det(A+ B).det(A—. B
corresponding edges i8 have a common vertex. Also This formula gives some sort of symmetry in some
if G is regular of valencyk, its line graphL(G)is  matrices which facilitates our calculation of

regular of valencgk-2. It is easy to show that determinants.

L(K,) is the triang| hr which be d ibed
(K,) is the triangle graplT, which can be describe Theorem 15: (K, xK_) =n™x(n +2)"".

by saying that the%n(n—l) pairs of numbers from the Proof: Applying lemmas 2. We have:

set{L,2,....,n}, two vertices being adjacent whenever the
. _ ) 1 1
corresponding pairs have just one common membert(K,xK,) —7(2n)2d9t(2n|— D+A)= @n) det

Appling lemmall takingk =n-1, m=%n(n—1), we N+l 0 - ... 0 0 1 e 1
have: 0 n+l1 0 . : 1 0 1
. 0o . : : .
Ln2-3n+2) t-3n2) _ : T “. n+l1 O : 1 0 1
(T,)=1(L(K)) =22 x(n-1)2 x "2 ) o :
(T,) (LK) ( ) 0 e v 0 n+1 1 1 0
Lemma 13: Let A (x) be nx nmatrix such that: o 1 .- = 1 n+l 0 - - 0
1 0 1 .- : 0 nt1 O :
x 1 1 1 ' ’ ’ : : 0o . :
1 x 1 " : . 1 : .. n+l 0
A () = 1 - 1 - 1 . 0 0 0 mJ
n - . . ... . 1
ox 1 Using lemmal4, we get:
1 e e 1 1 x T(K,xK ) =
. n+l 1 1 .. 1 Ml =1 e . =1
Then: ) 1 on+l 1 -1 m1-1 -
. ~deff 1 1 - 1 |xde :
det(A, )= (x+ n-1)(x- 1y @y : o+l 1 Co L el -1
1 - 1 1 n+ -1 - e -1
Proof: From the definition of the circulant
determinants, we have: Applying lemmal3 with x=n+1,for the first
determinant and properties of determinants for the
det(A, (x))= ” (X0, + W + W+ e EXO second, yields:
j=
n — 1 n n-1_ 1 n 2
=(X+1+1+ ...t 1K T(KZXK”)_(zn)Z xen"x2(n+ 2y = (n+ 2f e
j=Loo#1
X+ + 6+ + s +o)") Theorem 16: 1(K,JK,) =n"*(n-1)(n- 2)"*.
=-1
=(x+n-1)x (x=1y*, Proof: Applying lemmas 2. We have:

587



Am. J. Applied Sci., 9 (4): 584-592, 2012

1 — -
= - + =
(K, OK,) (zn)zdet(Zn I-D+ A)
n 1 1
1 : .
1
1 1 1 n
(2n)? n 1 1

Using lemmal4, we get:
(K, UK,) =
ntl 1 1 . 1 1 1 1 .- 1
L 1 n+l 1 " 1 m1 1 -
——_det 1 1 1 |xdet 1 1 . . 1
(ny L .
S Ton+l 1 N o T
1 - 1 1 n 1 - 1 1 m

Applying lemmal3 withx =n+1,n- lrespectively,
we have:

1
(2ny
=n"?(n-1)(n- 2J*

(K,OK,) = x2n" x2(n-1)(n- 2J*

Theorem 17: 1(K, oK ) =(2n)*2.

Proof: Applying lemma 2, we have:

T(K,oK,) =———det(2n1- D+ A)=—— det
(2n) (2nY¥
2n 0 0 0 0
0 2n 0 - : 0
0
T 2n 0
0 0 2n O 0
0 0 2n 0 0
0 0 2n O
: 0
FE 2n 0
o - 0 0 0 2n
1

(@n)'x(2n) = (2nf"*=T (K, )

~(2ny
Theorem 18: 1(K,0K,) =n*"?.

Proof: Applying lemma 2, we have:

1

2ny

det

-1 _D+A)=
T(KZOKn)—(Zn)Zdet(ZnI D+ A) (

0 n 0 . : 1 :
Co
‘ 0 :
0 n 1 1
1. 1 ntl1 O 0
1 1 0 n O :
0 :
: . : P n 0

Using lemmal4, we get:

1(K,0K,) =
ntl1 1 1 1 nml-1.. -1
1 1 ntl 1 " -1 nm1-1".
(f ] 1 1 " !
R & ! -1 - -1n

Applying lemmal3 with x=n+1for the first

determinant and properties of determinants for the

second, yields:

1

> xznn x2nn—2 = n2(rr 2)
(2n)

T(KZOKn) =

Theorem 19: (K, ,)=n""m"".

Proof: Apply lemma 2, we have:

1 = 1
(K, —mdet((n+ m)l- D+ A)= (n+ my det
m+1 1 - 1 0 o el 0
1
1 1 m+1 0
0 n+1 1 1
: 1 :
: : 1
0 0 1 1 n+Y
Using lemmal4, we get:
(Ko m) =
m+l 1 -~ 1 mil1.- 1
1 - : 1 -
Lo o T
(n+my : R | : 1
1 1 mt 1 1 n
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Applying  lemmal3  with x =n+1and n#2 1 . . 1 -1 0 = = 0
x = m + 1 respectively, we have: 1 n+l 1 0 0 o
: 1o e S
: ' “on+l 1 - . . :
(K ):41 O 1« o 1 n+l 0 o e 0
"7 (n+ my oo o w2 1
(n+m)x m'*x (n+ mx A= nf"tAm! 0 0 : 1 n+l1 1
P : 1o :
: e e : : oo on+l 1
Specially, (K, ) =n*"2. 0 oo o e 01 e 1 nd

Using lemmal4, we get:
Corollary 20: 1(K, ,-€)=n*"*x (n- 1y. g I

(K, ,+e)=
. H . n+l 1 1 - 1 m3 1 1 - 1
Proof: Applying lemma 2, we have: 1 one1 1 w11
ﬁde 1 1 1 |xdet 1 1 T 1
_ 1 - = 1 : “on+l 1 T 1=
T(K”'"_e)_(zn)z det(2nl- D+ A)= @ny det . L1 1.
n 1 . 1 1 0 - 0 Applying lemmal3 with x=n+1for the first
n+1 : : 0O 0 - determinant and properties of determinants forfthe
TP the second, yields:
1 . 1 n+1 0 - - 0 1
1 0 - 0 n 1 - 1 T(Knn+e):(2 )2><2n”><2r1“‘2 (rf+ 2n- 1
' n
o 0 1 rT+ ! : =n?"3(n?2+ 2n- 1)
: : : . 1
0 0 1 1 n+ :L Theorem 22: T(L(Kn,r\)) =2n2_2n+1xn r12—2n»lxn 2m 1
Using lemmal4, we get: Proof: It is easy to show that(K, ) is the K, xK ..
Appling lemmall takingk =nand m=n?.
(K, -e)= We have:
n+l1 1 --- 1 -1 1 - 1 T(L(K, ) = (K %K ) —pMantly o2m 2 1
1 1 . : 1 n+1 :
(2ny det : -1 x de : 1 Theorem23:
1 - 1 n+ r - 1 (K, +K, ) =(n+m+1)x (n+ 1" x (m+ 1)

Applying lemmal3 with x=n+1for the first Proof: Applying lemma 2, we have:

determinant and properties of determinants for the _ 1 _
second, yields: (K, +K ) “himeip 1)2det[(n +m+1)I- D+ A]
1 =(n+m+1)x————— det
(K, ,—e)=—5x2mx 2d2x (- 1f = ™ *x (- 1f (n+m+1f
(2n) m+2 1 - 1 0 . .. 0 0
Theorem 21: (K, ,+e)=n*"?(n’+ 2n- 1). T | o
1 1 me2 0 - e 0
0 v - 0 n+2 1 1
Proof: Applying lemma 2, we have: | . 1 :
...... : 1
T(K, . +€)=—— det(2n - D+ A)=—_ def 0 o 0 1 - 1 m2 0
' (2n) (Zﬂ)2 0 - .. e e .. n+m+1
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= (n+m+1)x 1 det Straightforard induction using properties of
(n+m+1y determinants.
m+2 1 1 n+ 2 1 1 We have:
1 : 1 n+2 :
. xdet | . 1 1
1 e 1 me2 1 Lo T(K; XK, ) = s xBn xa(n+ (e 257

=2n*"2x (n+ 1x (n+ 2f™?

Applying lemma 13 withx = m + 2and x =n+ 2,
respectively, we have:

T(K, +K, ) =(n+m+Dx (n+ 7 x (m 1

Specially;t(K, +K, ) =(2n +1)x (n+ 1f"2.

Theorem 26: t(K,K

n) :24n—2xn 2n- Zx (n +1)2n.

Proof: Apply lemma 2, we have:

1 = = 1
Corollary24: t(K,,o¢)= (20~ D™ =1 (K + K,,,.,)- T(Kz oK) = gppdetnt= D A) =gy det
. 22 0 1 01 - 0 0 1 01--
Theorem 25: 1(K,xK, ) =2n*"?x(n+1)x (n+ 2f™ 2 . )
: 0 2%2 0 10 0 0 0 10 1 "
Proof: Applying lemma 2, we have: 1022010 : !
0 1 0 -0 " .0 o0
1 - = 1 - :
(K, %K, ) =——det(4n|- D+ A)=— det ! torod
™ (4n) (4ny¥ : 1022 0
n+2 0 1 0 1 0 1 1 e e 1 P 1 0 2v2 1 Lo
0 nm#2 0 10 1 0 1 : 0 0 1 01 X2 0 1 01--
1 0 m201 0 | 0 0 0 10 - 0 2 0.~
0 1 o0 0 . : 1 0 0 o 1 0 ;»2-.- "
1 ... | 1 0 1 0 - 0 .
: 10m2 0 0 1 1 0 o
1 0 M2 1 o e e 1 o
1 e e 1 m2 0 1 01 - o 1 ooaw2 0
R 0 M2 0 .l o LT
1 1 0 m2 R
DU o 1 o0 S Using lemmal4, we get:
1 .m2 0 n+2 0 2 0 2
1 1 0 n32 0 22 O
) L 2 0 w2 2
Using lemmal4, we get: KoK, )=——del 0 . . x
@ R
n+2 1 2 1 2 e :
1 n+2 1 : o242 0
2 1 n+2 2 0 22
T(KZXKnn)=%d t 1 R x
" (4n) 2
: . n+2 0 0 v e 0
nt2 1 0 2w2 0 :
1 n+2 . .
: 0 2m2 - -
Ne2 -1 0 -1 w0 o e
-1 n+2 -1 . . : . :
0 -1 n+2 R : L2220
det -1 DR 0 0 2m3
: . 0
-1 n+2 -1 Straightforward induction using properties of
0 -1 n+2 determinants.
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We have:
T(KzoKn,n) :24n—2xn2n-zx(n+l)2n

Theorem 27: 1(K, 0K, ) =(n +1)*"*x(2n+1)*.

Proof: Applying lemma 2, we have:

T(K,0K, )= 4(2:+ l)szt(("'an 2)I- D+ A)= 4(2; ) det
n+2 0 0 -+ eer e 0 0 1 1 cor ver wen 1
0O m2 0 10 . : 1 1 - :
0 0 m20 1 . 1 -
1 0 .0 . :
o .7 R :
: 0Ont2 O :
0 1 0 nm2 1 v e 1
0 1 o eee e 1 22 O o 0. --- 0
1 0O m2 0 10 -
1 0 0 m20" "
P10
“.n+t2 0
1 1 0 .1 0 m7
Using lemmal4, we get:
n+2 1 1 eee e 1
1 n+3 1 2 1 -
. 11 m37
T(KZOKn,n):mdet P2 e
1 "
: n+3 1
1 1 nt+3
n+2 -1 =1 e e -1
-1 n+tl -1 0 -1
-1 -1 nt+1l
def : 0o
: : .o n+l -1

Straightforward induction using properties of

determinants.
We have:

(K, 0K, ) 2% x2(n+1P"2x (2n+ 17

2n+ 1f
x2(n+1f2x (2t D= (- % 2 B
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