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Abstract: Problem statement: Effective detection and localization of unbalanc@tage supply
affecting an induction motor may be compromisegitiasence of additionnal noisApproach: In
order to overcome the non possibility of the ddfdetection and localization in presence of ndise,
use of the discrete wavelet transform and espgcthk MultiResolution Analysis algorithm, to
remove efficiently the noise associated to theostatirrents is propose&esults: Simulation results
show that the de-noised stator current is a gotichason of the non disturbed one. They show also
that the default occurrence instant can be wekatetl starting from high frequency detail signal.
Furthermore, the signal details which charactetfisedefault are not smoothed and still characterize
the default occurrence. Experimental results védiddne de-noising approach efficiency and the
effective unbalance detection considering the MR&hhique.Conclusion: In this study, current
signal denoising problem is studied in order tdiqren an effective detection of an unbalance voltage
supply induction machine default. It can be deduited the wavelet transform and particularly the
MRA technique is a good and powerful solution fottbnon linear noise filtering and transient detfaul
detection. Both simulation and experimental ressiisw clearly that the stator currents MRA allows
not only to detect when the default appears buw AkEps to separate the useful signal from noise

without affecting or suppressing the default transinformation.

Key words: Induction motor, unbalance voltage, multiresolutianalysis, non linear demising
detection, transient information, simulation resulturrent signal demising, remove

efficiently, noise filtering

INTRODUCTION

In industrial, production and manufacturing
systems, voltage unbalance is one of the most efau ,
that affect electric machines, in particular indowct
machines which are an important component largely
spread in industries. Many studies and researclees w
and continue to be carried out, since 1936 till nowe
(Moussaet al., 2010; Chatchanayuenyong, 2009; Faiz®
et al.,, 2004), to show causes and effects of high
unbalance voltage supply level on stator operatind
conditions and motor performances. In fact, unb=dan

Single phase, two-phase or three-phase under-
voltage unbalance

Single phase, two-phase or three-phase over-
voltage unbalance

Unequal single phase angle or two phase angles
displacement

One phase load nearby the motor

Unbalanced distribution of single-phase loads on
the power system

Single-phase to ground defaults

These induction motor functioning conditions

electric motors health. reduction of the motor (Moussa&t al., 2010;
Thus, voltage unbalance is due to several cause§hatchanayuenyong, 2009; Tallagt al., 2007,
such as (Moussa al., 2010; Siddiquet al., 2004): Siddiqueet al., 2004) which are:
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« Motor currents unbalance: in this case the currents Since the monitoring and the diagnosis are
unbalance level is six to ten times that of voltageperformed from the motor signals measured from
unbalance Therefore, stator currents aresensors, in any case, the sensors outputs include
characterised by the increasing of the third amd thsignificant additional noise. The presence of noise
fifth harmonics amplitude complicates significantly effective data analysisigd

« Increase in iron and copper losses consequently default detection and localisation.

» Thermal overloading: in fact, a 3.5% voltage Noise reduction is mostly performed using filters
unbalance level per phase causes a windinguch as low-pass filters or band-pass filters. Hane
temperature increase of 25% in the phase with théhese filters are useful only for removing noises i

highest current specific frequency ranges. Moreover, noise and
« Damage of bearings, laminations and windingespecially the white noise contain components in al
insulation due to harmonics frequency ranges; it cannot be effectively remolgd

« Torque ripples which cause motor vibrations andjinear filtering. Thus, as demonstrated by Donoho
then important noise level and motors mechanicaj1995), Giaourist al. (2008) and Aliet al. (2010), the
stresses ) ) discrete wavelet transform is used as a demisialirio

*  Fullload speed reduction and speed ripples order to overcome this limit and separate the usefu

*  Reactive power consumption increase . signal from the noise. The advantage of this teoth

+ Shorten life of motors: In fact, severe and repait  5q proved in a previous work, is that the filterimig] be

over-voltage condition may cause short circuits antherformed without losing the useful information abo
consequently breakdown of motors the default occurrence instant.

Thus, to preserve the motor life and a larger imarg In this stut_:iy, earl)_/ robu;t detectlon_ of an gnbem_
of safety operating, efficient monitoring and early VOltage affecting an induction motor is studiedngsi
detection and localization of voltage supply unhata ~ the discrete wavelet technique. The default deirds
should be provided in time and should be quitecarried out using stator currents. The accent tsopu
sensitive to the motor conditions in general andcapabilities of the discrete wavelet technique ltova
particularly to the stator conditions. performing both the demonising of stator currents

Many methods, widely studied in literature, havesignals and a robust diagnosis of the defaultistart
been adopted for the monitoring of electric motansl  from the de-noised stator currents. White Gaussian
especially induction motors, as well as the diagnos  noise is added to the simulated stator currents to

their defaults such as artificial intelligence lhse reproduce experimental conditions. The robust
methods (Kanthalakshmi and Manikandan, 201lyetection of the default after signal demonising is

Prasannamoorthy and Devarajan, 2010; Boetidl.,  ¢mulated and validated experi
i X ) . perimentally.
2008; Martinset al., 2007; Tallamet al., 2007), signal This study is organized as follows. First, the

processing based methods (Prasannamoorthy angiiresolution Analysis Demising technique is
Devarajan, 2010; Kiat al., 2007; Jungt al., 2006), introduced. Then, the whole procedure of default
automatic and control based methods (Kanthalakshmjetetion respectively from noisy stator currebefgre
and l\_/lanllkandan, 2011; Angelet al., 2009) and a denoising) and from de-noised stator currents r(afte
combination of them  (Prasannamoorthy — andgengising) is described and illustrated by simafati
Devarajan, 2010). _ L . _and experimental results in order to validate tielys
One of the signal processing monitoring techniquesina iy “these results are discussed to concludeigo

\t,g;ir(l:rr:iqijelgrng deIgarl:;eu(ljar?;?hgrhawll?:ggolijtiéze A;I'vm?i\;/ eleteffective diagnosis of the induction motor voltage
T . . bal d to th ti f this study.
(MRA) which is a fast algorithm of the discrete \eéat unbalance and to the prospective ot this study

decomposition technique. In f.a(.:t, wavelet techni_'qwe MATERIALSAND METHODS
very useful, powerful and efficient tool for monitag

and q!agn03|s machln_es purpose becau_se_ of its MultiResolution Analysis Demising Technique:
capabilities to perform signal content analysisboth - .

time and frequency domains (Prasannamoorthy anahe MRA demonising procedure IS I_Jased on the
Devarajan, 2010; Cusidcet al., 2008; Ukil and Discrete Wavelet Transform (DWT) principle.
Zivanovic, 2005; Truchetet and Laligant, 2004; Chow As demonstrated by Mallat (1989), the
and Hai, 2004; Leet al., 2004). This is of a great decomposition of a numerical signal using DWT
importance for the detection of changes startimgnfr consists in applying a bank of filters to this sign
the motor signals and especially abrupt and timeThese filters are band-pass and low-pass filterth wi
localised changes caused by defaults occurrence. different bandwidths.
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Lo level 0 will be applied to the noisy signal, noteg, ko
as to determine the noisy wavelet coefficients
from the first level to the Mlevel.

Al Dy | level 1 Step 2 :Thresholding: This step consists first the

selection of appropriate threshold limits and

second in the smoothing of the detailed signals

Ao Do) level 2 by applying the selected thresholds.

Step 3:Signal reconstruction: This step consists
application of the inverse wavelet transform to
threshold wavelet coefficients, by using a low
frequency approximation of the "Mlevel and

Fig. 1: Discrete wavelet transforms principle the smoothed details from the first level to the

M™ level, to obtain a de-noised signal, notgd |

Y
A3m) Dsm) level 3

Then, by applying the Mallat's MRA algorithm to a

discrete-time current signal &t the scale J, this signal Thus, the signalsd represents an estimation of the
is decomposed into approximated signals notgdAs, signal L.
..., Ayand into detailed signals noted, ., ..., Dy. The In order to perform robust default detection aghin

approximated signals are the output of the low-pasg§oise, the MRA demonising technique implementation

filter bank whereas the detailed signals are thpuif ~ requires choosing carefully the mother wavelet type

the high-pass filter bank Fig. 1. order, the decomposition level, threshold limitee t
The signal J can then be reconstructed using thethreshold method and the noise model. Mat lab

approximated and the detailed signals accordigtdL: environment has been used tolc_onfigure the parasnete
set to process the MRA demonising steps as follgwin

J
Is(n)=AJ(n)+z_1:Di(n) (1) « Mother Wavelet Type and Order: The mother
- wavelet and its order should be carefully selected,
Aymis the product of the scaling coefficients, by so as to obtain the better approximation of the
the scaling functiorg,, at level J, defined as follows original signal {4 starting from the noisy signaj,|
Eq. 2: In fact, the mother wavelet type and order
determine how well the original signal is estimated
s « Decomposition Level : As the wavelet transform is
AJ(n)_;aJ'pQJJ'D(n) (2) performed, at most, foryd levels and the noise
appears with significant amplitude at M detail
Dy is the product of the wavelet coefficierfis, signals, with McJyax, SO to reduce noise from these
by the mother wavelet functioW,, at each level I, contaminated M levels, then the noisy signal can be
defined as follows Eq. 3: decomposed at only M levels
| . Th(eshold Limits: The choice of the threshold
D,(n)=YB,,¥,,(n) 3) limits for each level | _depends on the noise type.
PR Many methods for setting the threshold limits have
been proposed. Donoho and Johnston propose the
The maximum level decomposition, notegl,) following thresholds:
depends on the samples number N of the sigrialde «  Fixed from threshold” The threshold is usually
decomposed, according to the condition Eq. 4: named “universal threshold”. It depends on the
estimated noise power
2 < N 4) * Rigorous Sure”: The threshold is based on Stein's

Unbiased Risk Estimate

Heuristic Sure™ The threshold is chosen using a

combination of the previous two methods. As a tesul

if the SNR (Signal to Noise Ratio) is very smdiee t

“Fixed form threshold” method is used. In the other

Step 1: Signal decomposition: This step requires an case, the “Rigorous Sure” threshold is applied
appropriate  wavelet type and wavelet* Minimax”: The threshold is chosen to yield minima
decomposition level M. The wavelet chosen performance for the mean square error
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If the signal { is contaminated by a noise, then the,
MRA denoising technique, based on the described
MRA algorithm, consists in the three following step
as established by Donoho (1995).
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Data processing

Voltage supply
1230/400V-50H

Squirrel cage
induction motor

Fig. 2: Experimental setup

Threshold method: There are two most popular
threshold methods:

e Hard Thresholding: All

coefficients are maintained at their values
» Soft Thresholding: All wavelet coefficients whose

wavelet coefficients,
whose absolute value is less than the specified
threshold limit, are set to zero. The other wavelet

has given very good and promising results. In this
study, the same procedure will be applied to the
detection of an unbalance voltage supply occurrence
affecting an induction motor.

Experimental setup: A photo and a block diagram of
the experimental setup are depicted in Fig. 2. The
characteristics of the squirrel cage induction matuat

has been used to carry out experiments, are gisen a
following:

e Rated power: 1,5kW

« Rated voltage supply: 230/400V
« Rated stator currents: 6.23/3.6A
e Rated speed: 1400 rpm

Stator currents acquisition has been realiseckthan
to the acquisition station GRAPHTEC DM3000.

The motor operating has been considered with
4.6% over-voltage level affecting the voltage syppf
the motor.

This unbalance voltage level has been obtained by
inserting a single-phase resistive load between the
supply and the induction motor.

RESULTS

Simulation results: Simulations have been carried out
in order to reproduce respectively 5% under-voltage
and 5% over-voltage levels affecting the induction
motor phase a voltage supply, as shown by Fig.d34an
This unbalance level should not be reached acapigin
the standard NEMA which recommends a maximum of
1% unbalanced voltage for AC electric motors.

To study the noise effect on the default detection
and localisation efficiency, different simulatiohave
been carried out in the following conditions:

Default detection from stator curren, Without
added noise

Default detection from noisy stator current,l
where

absolute value is less than the specified threshold
limit are set to zero. The other wavelet coeffitéen *
are attenuated by the threshold value

Noise model: The noise added to the considered signal
can be modelled as:

* A scaled white noise. *
* An unscaled white noise.
* A non-white noise.

The Multiresolution Analysis denoising technique ®
has been applied, in a previous work, to the diagnof
an inter-turn short-circuits in an induction motand
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lsa= lsstl, and |, is the noise which contaminatgs |
Default detection from de-noised stator currggi |
where Lyqis the result of thesJ, MRA demonising

In each of these three cases, the stator current

sequences being studied are:

The steady state induction motor operation in
absence of voltage unbalance (before default
occurrence)

The voltage unbalance transient occurrence

The steady state induction motor operation in
presence of voltage unbalance (after default
occurrence)



2ol Y v . i

Am. J. Applied Sci., 9 (5): 624-632, 2012

06 061 062 063 064 065 066 067 068 069 07
Time (sec)

Fig. 3: 5% under-voltage affecting the motor ph&se
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Fig. 4: 5% over-voltage affecting the motor phasé “

voltage supply

Table 1: Frequency bands obtained for 6 levels letdecomposition

Signal Related frequency band
As 0-78.125 HZ

Ds 78.125-156.25 HZ

Ds 156.25-312.5 HZ

D4 312.5-625 HZ

D3 625-1250 HZ

D, 1.25-2.5 kHZ

D. 2.5-5 kHZ

It will be considered that the induction motortsta

currents are affected with white Gaussian noisesravh =C ¢ L
the SNR was fixed with regard to the experimentaid€composition are displayed in the Table 1.

conditions. To perform default detection, the stato pefauit detection from non noisy stator currents The
currents are sampled at 10 kHz-rate and theResults related to the stator current signal |
decomposed at 6 levels, which is sufficient to hggtt

the default occurrence.
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Fig. 6: MRA of L, using DB4, J = 6. Case of 5%
over-voltage affecting the motor phase “a”
voltage supply

Daubechies is used as a mother wavelet becasse thi
wavelet family gives very satisfactory results detecting
transient phenomena, as demonstrated in previotsswo
To select the optimal mother wavelet order, sewvieias
have been carried out. The Daubechies order 4-mothe
wavelet, noted DB4, has been retained for perfagrttie
signal multiresolution analysis.

The frequency bands related to the 6-levels wavele

decomposition in case of 5% under-voltage and 5&6-ov
voltage are shown respectively in Fig. 5 and 6.
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Fig. 7: MRA of L,, using DB4, J = 6. Case of 5% under- _ ) . . . .
voltage affecting the motor phase “a” voltage syppl Fig. 9: MRA of the white Gaussian noise using DB4,6

5 . : : : : Default detection from de-noised stator currents. In
§ : . i , , order to de-noise the stator current signgl Which
contains the default transient, the following pagtens
have been considered:

lSllll
B

Dg
; ;

- 0.56 0.58 0.6 0.62 0.64 0.66 0.68
2 s A A AR ARSI A «  Number of decomposition level: 4-level wavelet used
3 P 038 o6 062 064 066 06E for the signal demonising is sufficient becausey onl

OOWW“M detail signals D1, D2, D3 and D4 need to be fittere
ooe® 08 o8 062 064 0-66 068 « Noise Model: The unsealed white noise
I | e corresponds to the noise type initially added. o |

0.03

0.56 0.58 0.6 0.62 0.64 0.66 0.68

e Threshold method: The soft thresholding provides

“‘0'05“‘“ » l'H " el all b btrpodondinom ot e J
= 008 ' . PO AL | smoother results than the hard thresholding

0_0%56 o o5 oo oo 0.6 0.8 technique and has been retained for the stator
sl MLl L current wavelet demonising
Time (sec) e Mother wavelet: When too high order mother
wavelet is chosen, the signal obtained after
Fig. 8: MRA of L., using DB4, J = 6. Case of 5% over- demonising becomes smoother and transient cannot
voltage affecting the motor phase “a” voltage syppl be detected. For this reason and after severdd, tria

the DB3 mother wavelet has been considered to
This decomposition, so realized, allows the decompose the noisy signal
monitoring of the default frequency components 150H «  Threshold limits: all the methods allow removing
and 250Hz (for a 50Hz supplied motor), which the noise efficiently. Only the «Rigorous Sure» had
characterize the unbalance voltage default, irparsge permitted to recover correctly the transient
frequency areas. * According to the Donoho-Johnstone approach, the
In fact, the frequency component 150Hz belongs to  following steps have been applied to the siggal |
the sub-band [78,125Hz-156,25Hz] related to D6 and in order to obtain the filtered signald
250Hz belongs to the sub-band [156,25Hz-312,5Hz} Decomposing the signal,}into approximation A4

related to D5. and detail sub-bands D1, D2, D3 and D4
« Thresholding detail coefficients of the obtained

Default detection from noisy stator currents. The signals D1, D2, D3 and D4 from the previous
noisy signal J,, and its MRA decomposition are decomposition in order to obtain the filtered detai
represented in Fig. 7 and 8 respectively for thee aaf signals
5% under-voltage and 5% over-voltage. The six Evel* Applying the inverse wavelet transform to
detailed signals are denoted respectively D®1., reconstruct a better estimation of the originahalg

Furthermore, Fig. 9 gives the MRA decomposition from approximation signal A4 and filtered detail
of only the white Gaussian noisg | signals D1, D2, D3 and D4
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Fig. 11: MRA of de-noised signals,4 Case of 5% The wavelet mother is still DB4. The decomposition
over-voltage affecting the motor phase “a” results are shown in Fig. 10 and 11.
voltage supply
Experimental results The induction motor stator
Hence, only D1, D2, D3 and D4 signal details arecurrents demonising and 'gh_e unbalance voltage mae
threshold, because the frequency band of the noigdétection after demonising have been performed
elimination extends from 312,5Hz-5kH. As A4 = consm_zlerlng the approach protocql desqubed instioigy.
A6+D5+D6, then the sub-bands related to level 5and ~ Figure 12 presents the induction motor stator
detailed signals, which contain frequencies relaed current after applying arbitrarily a 4.6% over-agje
the default, are included in the approximation algh4 ~ Unbalance on the motor supply.
and are not smoothed. Therefore, the reconstructed Figures 13 and 14 show respectively the
signal after thresholding details preserve the mairflecomposition of the experimental stator current
information about the default. before and after denoising it, according to the sam
In order to detect the default occurrence instéduet, steps considered for the simulation results and
demonising signaklqis decomposed again in 6 levels. described above.
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5 éW‘\/\M/‘\/\flv\/:\Jﬁ\/:\JRq Fl_naIIy, the decompositions qbtalned f_rom t_he
106 1o0s 11 12 114 11e 1 12 experimental stator currents confirm the simulation
& éfv\AA}\N‘w\A/\Nmn/\l/MWAM results.
1 ‘ ‘ RIS ‘ ‘ > In fact it b Il noted f Fig. 13, th
1.06 1.08 1.1 112 1.14 1.16 1.18 12 n Tact, as It can pe well notea irom rig. , e
=y zéwwwmwnwwmwwwwwwww presence of noise does not allow detecting anygsan
'0'%.06 108 11 112 114 Ll6 L1812 in the stator current and blurs completely the dléfa
S o AR~ occurrence.
L B R e S S B However, Fig. 14 shows clearly that the stator
S ‘ ‘ — ; |

ool ; : : e e : | current denoising helps to remove efficiently noise
0_015-;“’ bos 1L 12 1 : Lo LIS lf from the processed signal and then to obtain eé¥iegt
- . ‘ ‘ b e e an estimation of the original signal without affagtthe
T S— default transient information.

‘ ' ‘ ‘ ‘ Nttt Then, experimental results confirm the efficierdy
v e l'szime(sif; de e the demonising technique and validate the mongjosind

the diagnosis approach presented in this study.

Fig. 14: Stator current of phase “a” and its MRA

decomposition after demising CONCLUSION

, .
U N
u i

DISCUSSION In this study, current signal demonising problem i
As shown by Fig. 5 and 6, which correspond toStudied in order to perform an effective detectdran

simulation results related to the non noisy statorent ~ unbalance voltage supply induction machine default.
signal L, decomposition and considering the detailcan be deduced that the wavelet transform and
signals O, D,, D; and D, high frequency transient particularly the MRA technique is a good and powkerf
signals are highlighted and then transient instantbe  solution for both noise filtering and transient algf
well determined. This instant corresponds to thedetection. Both simulation and experimental results
appearance instant of the unbalance supply in iterm  show clearly that the stator current MRA allows not
However, as shown by Fig. 7 and 8, whichyn)y 1o detect when the default appears but altuste
correspond to simulation results related to thesynoi separate the useful signal from noise without difiec

stator current signal decomposition, the fault : . . :
transient is blurreél:] by tst%ne noise apnd cannot beatied  ©" SUPPressing the transient default information.

anymore. In addition, the noise amplitude is more
significant in sub-bands DD,, D; and D than in sub-
bands @ and Q. Then, only signal details;DD,, D3 ) )
and D, are de-noised to improve transient detection. This research project was supported by the
Furthermore, the Gaussian noise decompositionlunisian Ministry of High Education and Scientific
given by Fig. 9, shows that the noise does notgmtes Research.
the same behaviour in each sub-band detail. In flaet
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frequency band.
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