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ABSTRACT

Voltage stability and voltage collapse issues hawecent years begun to constitute an unpleasartting
to the operational security of power systems. M@eniques have been investigated in order to giréu
point of voltage collapse. However, there are s#leral restrictions due to the insufficiency afrent
system state information. Accompanied by the conmmment of the Phasor Measurement Units (PMUSs)
evolving technology, it donates a solution to eglkahe existing power system state estimationohseguence,
the significances to develop preferable methodswloalld provide a preliminary warning before thdtage
collapse had grabbed the attention. This studyrsabe forming of real-time system monitoring melhdhat
able to provide a timely warning in the power syst@&he algorithms used to estimate the points ldse are
according to the theory that voltage instabilityaisproximately linked to the maximum load ability @
transmission network. As a result, the criticalrafing conditions (peak of maximum deliverable pgveeme
when the system Thevenin impedance is equal to#iceimpedance. This study focuses specificallyggearch
about the motivation and the application of différ&alman filter implementations such as Discretdnkan
Filter (DKF), Extended Kalman Filter (EKF) and Uasted Kalman Filter (UKF) are used to track thevEmmn
parameters. Therefore, the implications of thisaesh paper are to determine the robustness datoiligl of the
proposed tracking methods. As compared to prewtudies, the tracking process is just mainly foduse DKF
method only, while the novelty throughout this stigito compare the performances and efficiendielfferent
Kalman filters in determining the maximum load ipibn the 2 different types of test systems. Acpanying,
the parameters are utilized in real-time voltagtainility estimator to discover the current sysgeogndition. In
this study, the effectiveness of the proposed &ilgos is assessed under a large number of randenatom
conditions on the Malaysia's power system 132 kMjug and 10-bus systems. Eventually, the results ar
differentiated by using the early-warning indexoltage collapse. All through the test cases, Ekhod shows
the best ability to track the Thevenin parametsersampared to DKF and UKF. Last but not least,eidudy-
warning index acted as a pioneer implication iimesing the maximum load power ability of the powgstem
right before load shedding methods are being egdcut
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Furthermore, the Thevenin equivalent is also afplie
to compute the maximum power transfer to determaine
Voltage stability has been an anxious curiosity of voltage stability index. The Voltage Stability Marg
industry and research sectors widely around theeglo (VSM) can be expressed in terms of active power,

As the effect of the load growth without a relative reactive power and apparent power (Cleeal., 2012).
increase of transmission capacity has contributadynm  With the VSM index achieved, the decision making
power systems operating closer to the limit in can be done easily either provide information te th
conjunction with the network expansion is restiicte operator for further control actions.

due to many reasons such as limited expension and The rest of this study is organized as follows. A
high investment expenses. From this ground, abackground study on the overview of voltage stgbili
continuous real-time system monitoring based on theassessment, optimal PMUs placement and significande

1. INTRODUCTION

voltage instability predictor is required to calatd the
length of the peak maximum deliverable power.

preceding works on DKF, EKF and UKF will be disags
in section 2. Distinct Kalman filters accomplishrisewill

Phasor Measurement Units (PMUs) technology is be talked about in section 3. Results and discussilb be

able to produce a shot of the current system digte

comprised in section 4. Finally, this study is daoded

measuring such parameters as positive sequenageolt together with the future work in section 5.
and current magnitude and angle and frequency. The
Malaysia power system is equipped with Phasor
Measurement Units (PMUs). The implementation of the
PMU technology in real power systems is in progress2.1. Voltage Stability Assessment
currently. In accordance with the announcement on

2. BACKGROUND OF STUDY

the increment in electricity tariff from (TNB, 20},1
the continually increasing in load demand and fuel

cost leads to an urgent need to improve operationa

efficiency’s  utilization of transmission and

distribution assets and reduction of losses.

This research study was analysing data collected

from PMUs system and different Kalman methods for
voltage stability analysis are implemented. Voltage
collapse such as fault occurrence or tripping antbs
will be created by referring to the simulation d&i@m
the Real-Time Digital Simulator (RTDS). The PMUs
simulated data is held in the form of electric it
and current phasors which refer to its magnitude an

Voltage stability is the ability to maintain theltage
at an acceptable level under normal conditionstagel
Ftability is closely related to the notion of maxim load
ability of a transmission network. Merited by vagé
stability characteristics (10 sec to a few minuteiisges
of time periods) (Kundugt al., 2004), voltage stability of a
stressed power system should be supervised iimresako
authorize suitable control measures effort in aelym
manner. Apart from that, voltage instability, pgrhdeads
to voltage collapse in the system or subsystemtagel
stability is continuous issues despite various aebers
were conducted a couple of decades ago.

Various events commenced by voltage instability and
induced to voltage collapse were reported in many

angle. For the time being, Tenaga Nasional Berhadregions of the world (Lee and Lee, 1991). One & th

Research (TNB-R) is using the PMUs technology |oc| jssues experienced in Malaysia was the major
that's able to measure 50 samples per second. Thgjackout event in 13 January 2005 and uliimately
experimental performance of simulation was enforced the local authority to shed some of thael Ito
conducted at TNB-R with the 132 kV load area under pgjance the demands (Vaimetral., 2012).

investigation. The limitation of this project is eluo Voltage instability commencement is caused by the
the communication channels at some TNB substationslectrical distance between generations and loads a
of interest are not fully configured, thus the depends on the topology of the network. Besidesepo
measurements based on real data streams are stidystem affected by disturbances can enter a sfate o

impossible at the second. Therefore, the resultsveh
are based on input from simulations.
In this study, three different types of Kalmanéiit

voltage instability after a progressive and unagltable
drop in voltage (Chakrabarti and Halder, 2006).
The predictions of voltage stability and proximity

implementations such as DKF, EKF and UKF are beingvoltage collapse have been advised to take stefosebe

taken to track the Thevenin equivalent by usingvititage

corrective actions such as the load shedding messsar

and current provided from PMUs. Then, the Theveninnumber of formerly works have been established to

equivalent is used to calculate the early warnimex to
monitor the condition of the power system.
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predict the voltage stability and the proximityvoltage
collapse. The prediction initiated with conventibna
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approaches, for example, PV and QV curves andmeasurements at the bus to calculate the load
sensitivity based indices (Kundur, 1994). Followibg impedance. These measurements are the load voltage
continuation methods with the special advantage ofand current. Thus, it can be implemented on-linghen
being able to converge even near the nose pointiseof control centres to investigate the voltage stabildKF

QV curves, where other load flow programs fail to algorithm is being used to implement to identifye th
converge  (Ajjarapu and  Meliopoulos, 2008; critical point beyond which voltage instability may
Balasubramanian and Singh, 2011). These method®ccur. The results obtained in this study show DiaF
provide accurate and complete results, but they aredlgorithm is an effective algorithm for measuring
inhibited because of consuming longer computingetim Thevenin impedance for short-term and long-term

due to the repetitive power flow calculations. voltage stability studies (Al-Ammari, 2002).
) o The State-of-Charge Estimation of the Lithium-lon
2.2. Optimal PM Us Placement and Significance Battery Using an Adaptive Extended Kalman Filter

(EKF). EKF algorithm is able to obtain a better
r%:onvergent and robust result that can greatly ingithe
dependence of the traditional filter algorithm dme t
battery model. The typical characteristics of tileidm-

ion battery are analyzed by experiment. An improved

. s @ . Thevenin battery model is achieved and model paemie
PMUs to one specific application in power grid coht are identified by using the EKF algorithm. Thereais

and .gpergltion. _The at?alysisd in_dicatgs that the.? ar comparison between the EKF algorithm and the adapti
considerable gains to be made in estimator accufac ; ;
the PMUs ar(ge placed in accordance with the meth)é)thhKF and yet the resuits for adaptive EKF, whichspr

at the estimation algorithm has higher accuracy
when compared to the current placement strategy. licompared with the EKF algorithm. Ordinarily, the EEK
could be observed when the PMUs monitored busesygorithm possesses certain stability; even saatily
reach a certain number in the entire network; ththér  causes divergence due to the error existing inmbdel
introduction of phasor measurements will not be asand the noise statistics, particularly the noisatistics
effective in the estimation accuracy |mprOVement. evaluated by the trial-and-error method md, 2011)

The estimator determines the best approximation of  An investigation based on online state estimatibn o
the current power system states, normally includiv®  the synchronous generator by using the Unscented
voltage phasors, transformer taps positions anclitir  Kalman Filter was introduced (Ghahremani and Kamwa,
breaker status, moved over the stream of telembttly ~ 2011). The authors presented an online state estirima
has been gathered from the system’s sensors, turrethe model based category, according to above
network model and information from other data sesrc  cjassification, uses the UKF algorithm to generthie
In the modern control centres, estimates are thrma estimated states from the available signals obthine
input for many grid supervision applications. Thsigte  from PMUs, which is assumed to be installed in the
estimator is commonly referred as the “boardingeit substation of a power plant.
to many other power system monitoring and control  As a conclusion from the previous studies, the UKF
applications (Zhuet al., 2009). The illustration of the addressed the approximation issues of the EKF sTate
role of state estimation in power system control an distribution is again represented by a Gaussiard&an
operation is shown ikig. 1. Variable (GRV), but is specified using a minimat eé

. carefully chosen sample points. These points caelyle
2.3. Preceding Works on DKF, EKF and UKF capture the true mean and covariance of the GR¥. Th

Several works were purported to identify the UKF consistently achieves a safer grade of better
voltage instability in a specified load bus for awer accuracy than the EKF at a comparable level of
system (Vuet al., 2001; Al-Ammari, 2002; Miret al., complexity. In EKF, the state distribution is propted
2009). They are based on the DKF algorithm and theanalytically through the first-order linearizatiaf the
maximum power transfer principle. The proposed nonlinear system due to which; the posterior meach a
technique is used to determine Thevenin equivaléat  covariance could be corrupted. The UKF which is a
bus for different loading conditions, either wheret derivative-free alternative to EKF can surmounts thi
total system load’s changes at the same rate flemg-  trouble by using a deterministic sampling approddte
voltage stability problem) or when a load on a @iert  state distribution is represented using a mininedl of
bus change. The proposed algorithm employs the reatarefully chosen sample points, called sigma points

The optimum PMUs placement methods with
applications to state estimation accuracy have bee
hashed out in (Zhwet al., 2009). The authors have
considered the geographic location of the PMUs iwith
the power system naturally affects the value adoled

////4 Science Publications 1381 AJAS



Goh, H.H.et al. / American Journal of Applied Sciences 11 (87932390, 2014

g S—
If ¥ SCADA Phasor | ‘I/ Topology |' Pseudo \|
leasurements Measurements | Processor | [Measurements

i /

- = ) ‘
Conventional Symphenized Phasor Network Model Fo?éiaisé';f};i'es
Measurements Measurements Bataditad \aloas

elc..,

State Estimation

Estlma'.ed States

— ’/ — — ‘_ — __:__,__—j
Con‘tlngency Secunt Optlmal Power Other
__Analysis nhanceme __ Flow phcattons

Fig. 1. Contribution of state estimation in power systemtml| and operation (Wu and Giri, 2006)

Same as in the EKF, UKF consists of the same tepsst  Where:

which are the model forecast and data assimilation,E,, = The real part of the Thevenin equivalent
except they are now preceded by another step for th voltage
selection of sigma points. Emi = The imaginary of the Thevenin equivalent
voltage
3. DISTINCT KALMAN FILTERS R = The resistive part of Thevenin equivalent
ACCOMPLISHMENTS impedance o
Xin = The reactive part of Thevenin equivalent
3.1. Tracking Thevenin Equivalent impedance
V,and \4 Therealand i |mag|nary parts of load voltage
Thevenin equivalent. This step is requisite forugrag two
indicators which will be discussed in the followisggctions. In this study, two measurements which are loadagelt

Based orFig. 2, bus Z has a load demand on the right (V) and load current (I) taken at time tare obtdifiem the
side. Besides, the Thevenin equivalent of the aygthe Real-Time Digital Simulator (RTDS). The unknown are
rest of the power system) is connected to thesigft of R Xin Enn Eini- In Equation 2, there are two equations and

the bus Z as shown Fig. 2. four unknowns, so clearly measurements taken atamwo
The voltage equation at bus Z during time t takemf  more different times are required to solve for wwns. In
the measurement ig. 2 can be expressed as: a real environment, measurements are not precgehan
Thevenin parameters drift due to the system’s dhgng
Eth=V+ (Zth*I) 1) conditions. To suppress oscillations, a larger eatalow

needs to be used. The estimation, therefore, aftetop
Partition Equation 1 into two equations of real and minimize the error in a least-square sense.

imaginary parts, then indirectly notice that astaavo sets i i
of voltage and current information about the buat Eme t ~ 3-2- Proposed Kalman Filter Implementations

are required to solve the equation. By using above321 Discrete K alman Filter (DK F)
formulations, Equation 1 can be altered to: e
The DKF estimates a process by using a sort of

E thr feedback control. The filter estimates the proctate at
10 =Ir i Ethil vr . R some time and then obtains feedback in the formotsdy
) * =, |= (H*X) +v =Z (2) measurements. As such, the equations for the Diifaico
01 -li -Ir| [Rth Vi . f .
two groups, which are the time update equationsthed
X th measurement update equations as presenked. id
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The time updated equations are responsible forEach sigma point is then propagated through the non
projecting forward the current state and error cavee linearity yielding in the end a cloud of transfotioa
estimates to obtain a priori estimates for the rigwe  points. The new estimated mean and covariancehare t
step. The measurement updated equations argomputed based on their statistics. This procesalisd
responsible for the feedback which incorporatinge®  ynscented transformation. The unscented transf@mat
measurement into the a priori estimates to obtain a js a method for calculating the statistics of ad@m

improved a posterior estimate (\af al., 1999; 2001;  yariable which undergoes a non-linear transformatio
Warland and Arne, 2001; Chehal., 2012). The update

time is actually the prediction stage of the DKFileh

. i p :
the measurements update represented the correction L L

stage. Indeed, the final estimation algorithm rdsles 1. Project the state ahead.
that of a predictor-corrector algorithm for solving & om ~ -
numerical problems (Bishop and Welch, 2001). xp =A x4 “Bu-

. 2. Proj h rari head.
3.3. Extended Kalman Filter (EKF) RN e et Co‘a”fnce alea
The EKF able to linearize the estimation around the Py ~APuAd+Q
current estimate using the partial derivatives bé t MRt Dt
procedure and measurement functions to computeast

even in the face of non-linear relationship. Adwtite basis 1. Compute the Kalman gain.

DKF, the measurement updated equations correctate — I -1
and covariance estimates with the measurementAZ Ki=py H(H Py H+R)
important feature of the EKF is that the Jacobldrin 2. Update estimate with measurement, > . .
the equation for the Kalman gainy Kerves to correct A e
and propagate only the relevant component of the x.=xx *K.z:—H x3)

measurement information as provided Kig. 4
(Bishop and Welch, 2001).

3.4. Unscented Kalman Filter (UKF)

The UKF is founded on the intuition that it is @asi  Fig. 3. A complete operation of the DKF for the Thevenin
to approximate a probability distribution that & to equivalent estimation process

approximate an arbitrary non-linear function or
transformation. The complete process diagram is

3. Update the error covariance.

P.=U -K.H)P;

i . . . . Time Update:
provided inFig. 5. The sigma points are chosen so that

their mean and covariance to be exactly:and R.;. 1. Project the state ahead.
Vi Xk :f {xt_iflf;--:-‘o)

2. Project the error covariance ahead.

ZtH IIL = T o 5. 7
Pk =4 P':-:Ak +W eQ;.;w k
Bus Z Measurement Update:

Thevenin equivalent of the system

1. Compute the Kalman gain.

= = 7.4 ¥ ¥ T
Kk =Py He (H Pr Hr +VkRiVi )
Zr 2. Update estimate with measurement. ~ .
Xi :xk '—K;:(Z:c_h (x}( :0 ))
3. Update the error covariance.

P.= -K.H)Pr

Fig. 4. A complete operation of the EKF for the Thevenin
Fig. 2. Thevenin equivalent network equivalent estimation process
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Initialization of ¥, and P, then calculate sigma points:
|'A:z

Sia= i.x"l x-‘_1+\,||(L +A )P‘:_(i|
Time update:
Sua=F [ SieS21]

A

. T
5= ZW S s

~a

2L -7
e AN ox _ x A
P=2W, [5,-__:4;{-1 x:\-} [51=;¢|;c-1 ka
Ziga ~H [S;-.-_I‘S:_[]
~— i _—
R T
ok e W @ LR
Measurement Update:
2L ad
N @) _ n= LB
Pz-.: = ;:)IVJ [‘L i.k|ie—1 Zk][‘l'_ﬂk—l Zk
W | j
(e = ~=
2 %W i |:S:',k|kfl_-TkJ[Zi,klkfl_fk}
Ki=P,.Pa,
X=X Kz z)
P.=P.-K.P,.K:

Fig. 5. A complete operation of the UKF for the Thevenin
equivalent estimation process

3.5. Voltage Stability Monitoring I ndicator

By incorporating the estimated Thevenin impedance

value from different Kalman filter implementatiortbe

4. RESULTSAND DISCUSSION

For more detailed analysis, the application isetst
with simulation data from Real-Time Digital Simudat
(RTDS). This is to ensure that voltage instabilitguld
occur in the specified load area and in the meantion
estimate the performance of RTVSM application when
the system is exposed voltage instability phenomena

4.1. Employment of TNB 132 kV Network (2
Busand 10 Bus Systems)

The TNB 132 kV, 2-bus and 10-bus systems are
employed to examine the ability of the three diéfetr
Kalman filter implementations in order to test the
strength of the voltage stability margin. The 132 k
network, 2-bus and 10-bus systems of the research
area, where the incoming 275 kV supply is takemfro
Bus 1 and stepped down to 132 kV by two units of
180 MVA transformers, which connected to Bus 1 and
Bus 2. All buses in the system are considered as th
load bus. Load bus can be defined as transmisgien |
feeding a certain load. PMUs are installed to mamit
voltage and current phasors from Bus 1 up to Bus 10

The PMUs data provided for 2-bus system takes in a
total number of 32973 data points while for 10-bus
system has a total number of 2000 data points.dBssi
both systems also consist a same step size of &02
which means that the PMUs able to provide 50 sasnple
per second. The TNB 132 kV load area under research
for 2-bus and 10-bus systems are providefign 6.

4.2. Event A: Resultsfor 2 Bus System

In relation to the given data, the set of data ibu2
system shows an abnormal phenomenon at time 634.1

minimum magnitude of the load impedance in a stableSeconds; thus, a prediction that the degree ofagelt

system can be determined. Hence, the monitoringxind
can be defined in Equation 3 to invigorate the diom
of the current power system:

Indeximpedancew
|Zth|

3)
Additional power will be spent whenever the load
impedance started to sink. By this, the monitoiimdex
also decreases indicating that the system is ae edar
to the nose point of voltage collapse. The index
definitely becomes zero when the system is opeyatin
from the nose point. The main perception is to emsiie
index always stays positive and suitable early @néoen
should be implemented when the index is closeito.ze
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collapse potentially happens at time 634.1 sec. The
results of the three methods which are DKF, EKF and
UKF are shown irFig. 7-9 respectively.

4.3. Event B: Resultsfor 10 Bus System

In the meanwhile for the 10 bus system, the
foretelling of the degree of voltage collapse istiate
0.16 sec. The results of the three methods of D&
and UKF are shown iRig. 10-12 respectively.

4.4. Results for the Implemented Voltage
Stability Monitoring I ndex

The indices of the early warning for point of vgjéa
collapse are calculated based on the estimatedehirev

impedance by using different Kalman filtering
implementations is shown in Table 1.
AJAS
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Fig. 9. Graph of load impe dance with Thevenin impedancUiF approach
5. DISCUSSION meanwhile, the Thevenin impedanceg, &e varied.
The magnitude for Thevenin impedanceFiy. 7 is
5.1. Event A: Discussion for 2 Bus System 0.2385 p.u. and the magnitude Fig. 8 is shown as

) ) o 0.2616 p.u. Besides, the magnitudé-ig. 9 is 0.1752 p.u.
The magnitude of load impedancee.d which is  The results have also proven that the point ofageit
0.2881 p.u. remained constant for the graphs. & th collapse of the 2 bus system is occurring at a tifr84.1
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seconds. As stated by the theory, the point ofapsé  load impedance for the power system network €val.,
occurs whenever the Thevenin impedance is equdleto  2001; Warland and Holen, 2001).

Zload and Ztheveuin
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Fig. 10. Graph of load impedance with Thevenin impedancBkif approach
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Fig. 11. Graph of load impedance with Thevenin impedancEKl approach
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Fig. 12. Graph of load impedance with Thevenin impedance k¥ approach
Table1l. Monitoring index for voltage collapse 5.3. Discussion for the Implemented Voltage
Index for early warning Stability Monitoring I ndex

Types of method 2-bus system 10-bus system By comparing the values of the index, it is very

obvious that the result for the EKF is much more

D.|screte Kglman 02182 01529 4ccurate because of its value for the index iseclos
Filter algorithm (DKF) zero. Thus, we concluded that the EKF algorithm
Extended Kalman 0.1013 0.1191  herforms better in tracking the points of collaprs¢he 2
Filter algorithm (EKF) bus and 10 bus systems and then follows by the KF
Unscented Kalman 0.6444 0.3051

algorithm and lastly, the UKF algorithm.

The overall discussion is based on the performahce
) ) three different types of Kalman filter methods for
5.2. Event B: Discussion for 10 Bus System tracking the Thevenin parameters. In the way ofyonl

The magnitude of load impedance, Zload which is looking at its performance to trace the points oltage

0.0401 p.u. remained constant for the graphs. & th f:ollapse, which basic_:ally only refer to its Theveni
meanwhile, the Thevenin impedances, Zth are Variedmpedance and load impedance, the EKF performs the

The magnitude for Thevenin impedance Rirg. 10 is best among them. However, the results of estimatieg

X : . Thevenin voltage from EKF are divaricated. This
88242 p-u. a}lr(1d t_he rr;]agmtude_ még'ﬁ.ll 'sth%\’\ég(?s phenomenon may due to the large error in the true
-0358 p.u. Likewise, the magnitudefirg. 121s 0.0307 o erior mean and covariance. As the EKF is sigitab
p.u. The results also have also proven that that pdi

i for non-linear system and we presented the Thevenin
voltage collapse of the 10-bus system is happealr®  yarameters in its rectangular frame in order te @ik the

time of 0.16 seconds. According to the theory, ghat non-linear requirement.

of collapse occurs whenever the Thevenin impedéce Therefore, both KF and EKF can also be used to
equal to the load impedance for the power systemirack the Thevenin parameters (tial., 1999; 2001;
network. The system will be a normal state if the Warland and Holen, 2001; Ha al., 2011; Cheret al.,
Thevenin impedances are smaller (or very much small  2012). If comparing the results of the KF with the
than the load impedance (Mual., 1999). EKF, the overall performance is better in the EKF

Filter algorithm (UKF)
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algorithm. The performance of EKF for its Thevenin bus in order to support the performance of the Kadm
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