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ABSTRACT 

In this study, the problems of mechanical unbalance, parallel and angular misalignments and their 
combinations are analyzed experimentally. Such frequent defects in the drives mainly in the major powers 
are also responsible for the bearings degradation. However, they have not raised the attention of researchers, 
given the complexity of their modeling. The combination of the phasic current signal analysis and the 
neutral current by the FFT supplemented by visual interpretation of patterns models these defects resulting 
from the 3D representation. The results obtained by using the proposed method show the efficiency to 
provide an accurate diagnosis of the state of the electric drive undergoing to isolated and combined 
mechanical defaults to a maintenance staff not necessarily expert of mechanical failure. The innovative 
approach validated experimentally on a 5.37 KW motor, offers an efficiency to provide an accurate 
diagnosis to a maintenance staff not necessarily composed of experts in this field. 

 
Keywords: Induction Motor, Diagnosis, Multiple Mechanical Defects, MCSA, Neutral Current, Pattern 

Recognition  

1. INTRODUCTION 

The monitoring of electrical drives has interested 
many researchers so far (Sethom and Ghedamsi, 2012; 
Li and Meshefske, 2006; Bindus and Vinod, 2014; 
Pandey et al., 2012). As provided in Thorsen and Dalva 
(1995), Bonnett and Yung (2008), Thorsen and Dalva 
(1998), the repartition of many older publications on the 
defects of high power asynchronous machines has 
changed due to the motors production conditions. The 
unbalance, misalignment or their fusion that affects 
rotating machines, particularly those that are subject to 
considerable mechanical stress, generate mechanical 
vibration (Xu and Marangoni, 1994; Scheffer and 
Girdhar, 2004). They are considered as the main causes 
of other mechanical and electrical defects. The extensive 
studies that have been carried out by researchers using 
vibration analysis for the study of unbalance and 

misalignment have shown the complexity of diagnosis 
with vibration analysis. As reported in Thomson and 
Fenger (2001), Martınez-Morales et al. (2010), the high 
sensitivity of the current towards the torque variations 
sensed by the asynchronous motor and consequently 
towards simple and multiple mechanical defects that 
induce them, makes from its analysis an extremely 
powerful investigation tool. This paper tends toward an 
experimental approach for the diagnosis and detection of 
the aforementioned mechanical anomalies. Using signal 
processing, this approach is based on the knowledge of the 
healthy system’s behavior which is then compared with 
the signals measured during different tests of the machine 
degradation (Concari et al., 2010; Medoued et al., 2009). 
Compared to previous works, this experimental research 
uses a combination of techniques by analyzing the phasic 
current (Kazzaz and Singh, 2003); Oumaamar et al. 
(2009) insufficiently developed when it comes to 
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unbalance, misalignment and especially their 
combinations. To reduce the overlapping frequencies 
that can coexist in the spectra when it comes to these 
deficiencies, a content analysis of the signal 
information of the current flow in the neutral conductor 
is conducted (Oumaamar et al., 2007). Then, to 
distinguish between the defects signatures, this 
technique is supported by a 3D representation of the 
square of the intensity of the motor supply current 
which, hitherto, has been subjected only to the 
treatment of the short circuits stator windings and rotor 
bars breaks (Martins et al., 2011; Pires et al., 2010). 
The results obtained are satisfactory. They can witness 
the robustness and effectiveness of this technique 
without a physical contact and through a remote 
monitoring of unique and multiple mechanical defects. 

2. THEORETICAL CONTEXT 

2.1. The Effects of the Mechanical Faults on the 
Spectrum of the Current 

 The results mentioned in several articles have shown 
that the imbalance and misalignment can be detected 
from the motor’s vibration (Patel and Darpe, 2009; 
Sekhar and Prabhu, 1995; Wongsuwan et al., 2006) and 
electric measurements (Cameron et al., 1986).  

 These single or combined mechanical defects 
generate an eccentricity in the air gap affecting a 
variation in the motor’s inductance. Consequently, a 
variation of the magnetic flux that contributes in 
modifying the supply current spectrum (Dorrell et al., 
1997; Chaudhury et al., 2013; Sahraoui et al., 2008) 
compared to that of the healthy drive motor Equation 1: 
 

( ) s s r s c rt  cos( t) cos( t m.cos( t) )Φ = Φ ω + Φ ω + ω − ϕ   (1)  
 

The induced tension Vi(T) corresponding with this 
flux is Equation 2: 

 
iV (t)= dΦ / dt   (2) 

 
So: 

 
i s s s s r s c rV (t) sin( t) sin( t m.cos( t) )= −ω Φ ω − ω Φ ω + ω − ϕ  

 
Consequently, the stator current modulated in phase 

i t0(T) for an arbitrary phase in the presence of an 
oscillating torque is expressed by Equation 3: 
 

( ) ( ) ( )t0 s ri T = i T + i T
  

(3) 

So: 
 

( ) ( ) ( )( )t0 s s r s c ri T = I sin ω t + I sin ω t + m.cos ω t - φA -φ  

 
Where: 
φA = Denotes the phase angle of the modulation.  

This shows that the fundamental component of 
current to is(t) the sum of two components: The term (t) 
results of the stator magneto motive force and it is not 
modulated. The Term ir (t), which is a direct 
consequence of the rotor MMF shows the phase 
modulation due to the oscillations of torque and speed. 
Healthy case is obtained for m = 0. 

 2.2. Mechanical Defects Signatures in the 
Current Phase 

Imbalance and misalignment Defects are detectable by 
appropriate frequency monitoring of the stator current 
phase (Blodt et al., 2010; Ibrahim et al., 2008; Blodt et al., 
2005) Equation 4: 
  

d s rf =  f ± nf      (4) 
 

The unbalance leads to the increase of the frequencies 
amplitude defined by n = 1 Equation 5: 
 

unb. S rf = f ± f   (5) 
 

Most misalignments are a combination of angular and 
parallel ones. They generate additive amplitudes and 
frequencies modulated in the stator current Equation 6: 
 

dés. S rf = f + nf   (6) 
 

With n = 2, 3,4 
 
Where: 
fd = The carrier frequency of the mechanical failure 
fs, fr = The power supply frequency and the rotation 

frequency respectively 

2.3. Mechanical Defects Signatures in the 
Neutral Current  

The change of the neutral current spectrum in the 
vicinity of the third order harmonic and its multiples is 
revealing valuable information about the state of the 
motor. These information are comparable with those of 
the phase current or even better Equation 7 and 8: 
 

d. s rf =  hf ± kf     (7)  
 

With : h = 3,5,7,… et k = 1, 2,3,4,….. 
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2.4. The Combined Defects Detection by the 
Analysis of the Currents and Neutral Phase 

 When it comes to the combination of unbalance and 
misalignments, all the frequency characteristics of these 
defects appear in the spectra of the currents and neutral 
phases, with a prominent increase in amplitudes of the 
concerned lines. 

2.5. Defects Signatures by Analyzing the 
Square of the Intensity of the Phase 
Currents (Pires et al., 2010) 

A m

B

C m

m

I = I sin(ωt - φ)

2π
I = I sin(ωt - - φ)

3
4π

I = I sin(ωt - - φ)
3











     (8) 

 
IA, IB and IC = The three stator currents  
Im = Maximum value of the supply phase 

current  
ω = Supply frequency 
ϕ = The phase angle 
T =  Time variable  
 

In the 3D stator current pattern, also we denote a 
circle centered at the origin of the coordinates, for ideal 
condition where its radius R is Equation 9: 
 
 2 2 2

A B CR² = I + I + I   (9)  
 

The obtained orbits have ellipsoidal, polygonal or 
hypocycloidal shapes according on the nature of the 
defect that occur on the drive. Thus, a visual 
interpretation of the patterns is affiliated for every 
type of fault. 

3. DESCRIPTION OF THE 
EXPERIMENTAL SETUP AND TESTING 

CAMPAIGNS 

 A test rig was required for the experimental study of 
imbalance, parallel and angular misalignment 
mechanical defects whether simple or combined that 
could affect asynchronous motor based electrical drives 
during their functioning.  

It consists essentially of an aggregate of electrical 
machines (Fig. 1) consisting of an asynchronous motor 
(4.05 kW, 1430 r/min, 220 V/380 V, 7.5/13A; 50 Hz). 
Coupled to a DC generator (4 kW, 220 V; 14A; 1500 
trs/mn) filler material.  

 
 

Fig. 1. Photo of engine bench dedicated to diagnosis 
 

The acquisition signals for the diagnosis were made 
by the following apparatus: 
 
• A collection of two-channel brand B & K Vibro data 

type: VT60: with 02 sensors 
• An accelerometer brand SCHENCK Type: AS-065. 
• A current clamp  
• A Hamlet digital oscilloscope to acquire current and 

file transfer via the serial portHM507, to the computer 
 

The data processing is done using MATLAB 
software for signal analysis. Unbalanced mechanical 
defects, parallel misalignment, angular misalignment 
and their combination were created artificially. A mass 
of 50 grams fixed on the motor shaft has been used for 
the intentional creation of the unbalance. The parallel 
and angular misalignments were exercised virtually 
lifting the induction motor using plates 2 mm under the 
four brackets for parallel and only under the two front 
legs or back for angular misalignment. Then we 
proceeded to the combination unbalanced faults with 
axial and angular misalignments on aggregate. This 
latter was subjected to load variations (in vacuum then 
50 and 75%). Only half load tests have been shown to 
avoid cluttering the document.  

4. DISCUSSION OF THE TEST 
CAMPAIGN RESULTS 

During the operation of the machine aggregate, in the 
lack of the defects targeted by our study, no significant 
alteration was observed in the content of the current 
spectrum of the stator phase. Only sidebands around the 
prominent harmonics are found even when the machine 
is healthy. This is due to the ideal theoretical conditions 
which are not met and manufacturing imperfections. 
When the motor operates in degraded mode due to an 
unbalance of 50 g, the presence of lines at 26.17 and 
73.83 Hz frequency reflects this fault and verifies the 
relation (4) with 1fr = 23.83 Hz. 
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In the case of misalignment, a clear emergence appears 
on line at fdés.= 50+2 fr of 97.76 Hz with an more 
attenuated prominent amplitude for angular misalignment. 
We should note that the lines with frequencies funb. = fS±fr 

however, are attenuated, they still exist in the current 
spectrum, but they are overlapped by those of 
misalignments. When the machine aggregate is subjected 
to the combination of unbalance and misalignment 
defects, the frequency signatures 50±fr and 50+2 fr appear 
together in the spectrum of the phase current with a 
significant arithmetic addition of their magnitudes. 

Regarding the spectrum of the neutral current (Fig. 
5), a weakening of the amplitude of the fundamental (50 
Hz), the preponderance of the 3rd harmonic (150 Hz) 
and the 5th harmonic (250 Hz) is observed. In the 
presence of imbalance defects (Fig. 5b), sidebands are 
noticed around the relevant harmonics of order 3,5,7,9 
with the emergence of frequencies 226, 274, 374 and 326 
Hz. It should be noted that more apparent sidebands are 
induced by the unbalance defect at 5fs±fr et 7fs+fr. Due to 
a misalignment in the drive, the spectrum of neutral 
current (Fig. 6a) reveals the prominent emergence of 
lateral lines at frequencies 5fs±2fr, as well as the 
frequency 5fs±fr, but with a slight increase in their 
amplitudes. The frequencies 3fs±2fr, 5fs±fr, 5fs±2fr and 
7fs±fr are introduced into the spectrum of the neutral 
current as a result of the combined fault of unbalance and 
misalignment (Fig. 6b).  

A significant arithmetic addition of the amplitudes of 
the frequencies that correspond to unbalance and 
misalignment is noted. It is worth mentioning that the 
effect of the load variation had no significant effect on all 
failures. The faults signatures can even be hidden through 
the increase in the load by using the noise damping. 

The faults signatures can even be hidden through the 
increase in the load by using the noise damping. When 

the drive via the motor is not subject to any defect 
(healthy), the pattern obtained by the 3D representation 
of the square of the vector resulting from (IA

2 + IB
2 + IC

2 ) 
takes the form of an orbit not completely circular (Fig. 
7), but rather ellipsoidal. This is explained by the 
absence of ideal operating conditions and manufacturing 
imperfections of the machine aggregate. This ellipsoid is 
strongly narrowed when the motor functioning is 
degraded by the presence of imbalance (Fig. 8). The 
pattern interpreting the default tends toward a 
hypocycloid shape (Fig. 9) if a misalignment affects the 
electric drive. This hypocycloidal geometry narrows 
enormously if the unbalance merges with the 
misalignment (Fig. 10) and gives the impression that the 
imbalance tends to hide the misalignment. These visual 
signatures in patterns accompanied by spectral analysis 
to help decide on the type and nature. 

5. EXPOSITION OF THE 
EXPERIMENTAL RESULTS 

5.1. By the processing of the Phase Current 

Figure 2 shows the temporal characteristic and the 
current spectrum for healthy case. In Fig. 3, the three 
spectra of the stator current phase are shown (Fig. 3a) on 
the left, with the spectral content when the motor is 
subject to an imbalance. At the middle (Fig. 3b) and the 
left (Fig. 3c), spectral contents are respectively exposed 
when the motor faces a parallel misalignment and then an 
angular misalignment. Fig. 4a and 4b show the spectra 
and the emergence of the characteristic frequencies of the 
combination of the unbalance with parallel misalignment 
and angular misalignment respectivel. 

 

        
 (a) (b) 
 

Fig. 2. Temporal characteristic of current (a) and its spectrum (b) for Healthy engine 
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 (a)  (b) 
 

. 
(c) 

 
Fig. 3. Spectrum of the stator current of motor in the presence of mechanical defects: (a) Unbalance, (b) parallel misalignment, (c) 

Angular misalignment 
 

      
 (a) (b) 
 
Fig. 4. Spectrum of the stator current of the motor in the presence of combined mechanical defects: (a) Unbalance and parallel 

misalignment, (b) unbalance and angular misalignment 



Bouras A. Karim et al. / American Journal of Applied Sciences 11 (6): 994-1004, 2014 

 
999 Science Publications

 
AJAS 

 
(a) 

 

 
(b) 

 
Fig. 5. Spectrum of the neutral current: (a) A healthy state, (b) failure to unbalance 

 

 
(a) 
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(b) 

 
Fig. 6. Spectrum of the neutral current: (a) Failure to misalignment, (b) failure to combined unbalance and misalignment 

 

 
 

Fig. 7. Healthy motor pattern 
 

5.2. By the Treatment of the Neutral Current. 

 Figure 5a shows the spectrum in the case of non-
degraded machine, where the preponderance of the third 
harmonic followed by the fifth harmonic and the 
fundamental mitigation are noticed. The  

Figure 5b shows the spectrum of the neutral 
current in the case of faulty asynchronous motor in the 
presence of unbalance on its mechanical transmission 
shaft. Figure 6a illustrates the spectrum of neutral 
current for the defectiveness of the alignment. Figure 
6b is about the frequencies introduced by the 

combined defects of unbalance and misalignment in 
the spectrum of the neutral current. 

5.3. The Processing of the Square Intensities of 
the Three Phase Currents 

Figure 7 shows the pattern obtained by the 
3Dspatial representation of the model when the drive, 
via the motor, is not subject to any defect (healthy). 
Figure 8-10 show the representation of the patterns 
during the operation of the drive system, in the 
presence of an unbalance, misalignment and then a 
combination of these two defects. 
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Fig. 8. Unbalance defect pattern 
 

 
 

Fig. 9. Pattern representing the absence of misalignment: (A) 3D view (B) 2D orthogonal view 
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Fig. 10. Pattern marking the default Combined    unbalance and misalignment: A. 3D view   b. orthogonal 2D view 
 

6. CONCLUSION 

In this experimental investigation, the diagnosis of 
isolated and combined mechanical failures have been 
discussed. Diagnostic capacities and remote detection 
without physical contact with the faulty machine 
components have become more robust. The experimental 
results confirm that the studied mechanical defects 
generate additional amplitudes and frequencies in the 
supply current signal. These simple and combined 
mechanical defects are easily detectable and identifiable 
through the analysis of the phase current and neutral 
current (FFT) supplemented by a visual reading of the 
patterns that correspond to each type of anomaly. The 
implementation of this simple and low-cost methodology 
characterized by an easily accessible interpretation of 
results can benefit from a wide range of use. It can 
contribute to the development of an expert systems for 
the diagnosis of single and multiple mechanical failures 
affecting the electric drives. 
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