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Abstract: A prismatic beam made of a behaviorally nonlinear material was analyzed under a 
concentrated load moving with a known velocity on a nonlinear elastic foundation with a reaction 

2
e 1 2[ q -K W(1 K W )].= +  the vibration equation of motion was derived using Hamilton principle and 

Euler Lagrange equation. The amplitude of vibration, circular frequency, bending moment, stress and 
deflection of the beam can be calculated by the presented solution. Considering the response of the 
beam, in the sense of its resonance, it was found that there is no critical velocity when the behavior of 
the beam and foundation material is assumed to be physically nonlinear and there are finite values for 

the deflection, stress and bending moment of the beam when 
2

2
2 1.

θη = =
ω
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INTRODUCTION 
 
 Presently there are many structures made from 
materials which are not subject to the Hook’s law. 
Therefore there is a great tendency to study stress and 
strain at elements of structures made of physical 
nonlinear material under various statically and 
dynamical loads. In linear theory the property of 
material is not taken into consideration. However, all of 
relevant parameters are taken into consideration at the 
theory of nonlinearity. Thus, physical nonlinear theory 
for small deformations demonstrates an exact 
calculation method for the analysis of stress, strain and 
other internal forces at structural elements.  
 In this connections, Skramtayev, Stolyarov, Tyte, 
Schlechtwg, Grubbier, Cox and others’ have presented 
formulas concerning the relationships between stress 
and strain[3]. 
 Finally the relationship between stress and strain in 
the case of physical nonlinear is presented by Hans 
Kaudrer[1]. 
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where, i, j = 1, 2, 3 
 
 Where K and G at small deformation are volume 
contraction and shear elastic module respectively. K (σ�) 

is average stress function and l(t0
2) is shear stress 

function therefore:  
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 Researches have demonstrated that K(σ�) at 
physical nonlinear material at average relative 
deformation is close to the straight line K(σ�) = 1 and 
the two first sentences of shear stress function are 
enough. 
 

2 2
0 2 0l(t ) 1 l t= +    (3) 

 
 Where is the physical nonlinear coefficient. The 
relationship between stress and strain at beams by 
simplification of Eq. 1 for two dimensional surfaces is: 
  

3
3
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2 E
E ( l )

2 7 G
σ = ε − ε  (4)  

  
 The purpose of this study was the analysis of a 
beam made of physical nonlinear material under 
moving load on nonlinear elastic foundation. 
 

MATERIALS AND METHODS 
 
 It is assumed that the moving concentrated load 
along the simply supported prismatic beam laid on 
nonlinear elastic foundation shown in Fig. 1.  
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Fig. 1: Schematic view of a prismatic beam under 

moving load 
 
 The load P moves on the beam with a constant 
velocity V. The reaction of the nonlinear elastic 
foundation is: 
 

2
e 1 2q k W(1 k W )− +  (5) 

 
 Where k1, k2

 are coefficients with respect to 
nonlinear elastic foundation which are determined 
experimentally, where W is the beam deflection.  
 The principle of Hamilton for this beam is as 
follow: 
 

( )t

1

2
t

H A E dt= ∏ − −�  (6)  
 
 The potential and kinetic energy of this system can 
be written as follows. 
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 The research of the external moving load is given 
by[4]. 
 

k z2 k z0q(z, t) sin sin
l l lk 1
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k z2 k zl sin . Sin W(z, t)dz0l l l

= =�

πΡ π
��

�

  (10) 

 By substitution of expressions 7, 8, 10 in 6, we will 
have: 
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 Substituting, in expression 11 the principle of 
Hamilton Will be as follows: 
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 The deformation of the beam is found from the 
following expression:  
  
W( , ) p( ).q( )ξ τ = ξ τ  (13) 
 
 Where p(ξ) and q(τ) are coordinate and generalized 
function respectively. Substituting expression 13 in 12 
we will have: 
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 It is assumed that P(ξ) is known so the Hamilton 
integral will be as follows: 
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Where:  
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 For Integral 15, Euler formula gives[2]: 
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 By substitution of 

2
X q

d
ω=  in to equation we 

have:  
 

" 2X X(1 eX ) Sin+ + = ητ  (20) 
 
Where  
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To solve the Duffing Eq. 20, it is assumed: 
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 By substituting expression 22 at 20 and comparing 
the coefficients of Sinnητ. We will get a lot of cubic 
nonlinear algebraic equations. There is no exact 
solution for these equations, there for, we emply an 
approximated method to solve this equation. For this 
purpose we take the three constraints Eq. 22 and in this 
case, we will have system of nonlinear equations. 
Solving that equation by method of Zeidel, we will 
have: 
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 Deformation of beam is given by: 
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Where: 
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 Bending stress at any section of beam is 
determined by: 
 

32 E 3E( l )z z z2 327 G
σ = ε − ε  (25) 

 
Bending moment is calculated by:  
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 When the load is out of the beam: differential 
equation of free vibration will be:  
 

2 2a b
q 1 2 q 0

c a
	 
′′ω + + =� �
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 (27)  

 
 Finally, by solving Eq. 27 we find the period of 
vibration: 
  

( )
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 (28)  

 
Where, Q-is amplitude of vibration 
 

1 9 252 4 6K( ) 1 sin sin . sin ..
2 4 64 256
π � �θ = + θ + θ + θ +� �
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And circular acceleration of vibration will be: 
 

a a 12(1 Q ).
2 c b k( )
πω = +

θ
 (29) 

 
RESULTS AND DISCUSSION 

 
 Now the obtained analytic solution is applied to the 
following example. Figure 2 shows the cross section of 
a railway beam. The material of beam is considered 
steel which is made of a nonlinear material. The 
specification of the material are as follows: 
 

4
0I 0.3252 10−= ×  4m  8

1I 17.827 10−= ×  6m  
8E 2.1 10= ×  2KN / m  8G 0.87 10= ×  2KN m−  

6
2l 0.085 10= ×  78ρ =  3KN m−  

P 62.5 KN=  l 3.00m=   

1k 0,500,1000,1500,2000=  2KN m−  2 2k 0.00,k 0.1= =  
 
 Then   vibration  amplitudes  are  determined  for 
k1 = 1000 and k2 = 0.1 are shown in the Table 1. Based 
on Table 1 resonance curve is drawn (Fig. 3). 
 When, η2 = 1, for K1 = 0.00,500,1000,1500,2000 and 
k2 = 0.1, The deformation, bending stress and bending 
moment at the middle span is determined and is showed 
at Table 2. 
 When k2 = 0.0 that is nonlinear beam on elastic 
foundation (Winkler Theorem), in this case, the 
deformation, stress and bending moment at the middle 
span is determined and is showed at the Table 3.   
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Fig. 2: Section of beam 
 
Table 1: Dynamic coefficients calculated for k1 = 1000, k2 = 0.1 
 X1 

 ------------------------------------------  
η2 |

1X  ||
1X  |||

1X  X3 X5  

0.00 -13.69 12.68 1.00 7.63*10-3 1.76*10-4 
0.6619 -8.87 4.45 - -0.1356 4.073*10-3 
1 -5.59   0.1665 4.81*10-3 
2 -1.0    4.48*10-4 -2.09*10-7 

 

 
 

Fig. 3: Resonance curve 
 
Table 2: Deformation, stress and bending moment for k1, k2 
K1 (KN/m2) e X1 W (cm) σt (MPa) M (KNm) 
  - 
0 -0.00281  707997 1.98 271.424 114.3 
500 -0.00482  -6.5157 1.62 263.094 103.7 
1000 -0.00463  -5.5908 1.39 244.724 93.40 
1500 -0.01162  -4.8593 1.23 223.969 83.80 
2000 -0.01438  -4.2491 1.07 203.004 75.00 
 
Table 3: Deformation, stress and bending moment for k1 
K1 (KN/m2) e X1 W (cm) σt (MPa) M (KNm) 
0.00 -0.00281 -7.7997 1.98 271.424 114.3 
500 -0.0034 -7.3196 1.85 240.830 110.8 
1000 -0.0041 -6.8468 1.73 267.789 107.2 
1500 -0.00516 -6.3694 1.61 261.120 102.2 
2000 -0.0062 -5.8976 1.49 252.215 97.1 
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CONCLUSION 
 
 It is concluded that when the behavior of material 
is assumed to be physically nonlinear then: 
 
• The circular frequency of system decreases 
• It is shown when The material is physical 

nonlinear, for 
2

2 1,2
θη = =
ω

 there is no resonance 

and there is no critical velocity and there are finite 
values for the deflection, stress and bending 
moment of the beam 

• Values for deformation, stress and bending 
moments have been obtained for the various k1 and 
k2 = 0.1 nonlinear elastic foundation and k2 = 0.0 
(Winkler elastic foundation), The obtained results 
at k2 = 0.1 is smaller than that k2 = 0.0  

• Values of x1 (dynamic coefficients) decrease due to 
increase in k1 

• For any velocity V deformation, stress and bending 
moment can also be analyzed  
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