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Abstract: One of the most important nonlinear systems for checking the abilities of control methods is 
chaos. In this study chaos in Lorenz system was used for checking abilities of new control method. 
This new method to control nonlinear systems was called Generalized Backstepping method because 
of its similarity to Backstepping but its abilities to control more systems than Backstepping. This new 
method was applied to Lorenz system in three ways: 1. Stabilized states of equations. 2. Track step 
response. 3. Track sinusoidal response. In every way, simulations proved abilities of method. 
Comparing this new method with Backstepping showed that in this method, states stabilize at zero in 
shorter time than Backstepping and input control is more limited. So new method not only is used in 
more systems but also has better response.  
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INTRODUCTION 

 
 Before appearance of Chaos theory, scientists 
supposed that if the equations of a system and the initial 
conditions were known, then the output of the system 
would be obtained. If any perturbations were observed 
in output of the system, then the noise input of the 
system or incapability recognized as the cause. 
 With the appearance of the new generation 
computers and increasing calculation power, the 
problem became more and more serious; since powerful 
computers solve nonlinear equations and draws the 
answer of the equations for a long time, it would leave 
no question for justification of the problem no longer. 
Therefore, many works have been done in this field in 
recent years[1-9]. 
 In this study, the Generalized Backstepping 
Method is used as an approach to control Chaos in 
Lorenz system and eventually the results of this method 
would be compared with the Chaos control results of 
Backstepping method[10] which is based on a recursive 
application of Lyapanov theory. 
 Lorenz equations: The Chaos theory was 
discovered for the first time in meteorological activities 
by the mathematician and meteorologist of MIT called 
Edward Lorenz[11]. Although the scientists were very 
interested in solving the problems in connection with 
nonlinear systems, but none of them accomplished this 
problem, seriously. Lorenz declared that the intensive 
sensitivity to initial conditions would cause in 
predictability of these equations in the next years. 

 He obtained a series of equations by simplifying 
the available systems which were then called Lorenz 
equations terminologically. His work was based on 
modeling heat transfer process that resulted finally in 
achieving Eq. 1[4]. 
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 In which R = R0+u was Raleigh Number and R0 
was performance index and u was input control Signal. 
 If the value of u and R0 are selected as u = 0 and R0 

= 28 then the Eq. 1 is a chaotic System and has three 
unstable states which are shown in the Fig. 1 and 2. 
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Fig. 1: Variations of states before stabilization. 
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Fig. 2: X-Z Phase portrait before stabilizing 
 

MATERIALS AND METHODS 
 
 Generalized Backstepping method will be applied 
to a certain class of autonomous nonlinear systems 
which are expressed as follow. 
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 In which η∈ℜ  and n
1 2 nX [x ,x ,...,x ]= ∈ℜ . In order to 

obtain an approach to control these systems, we may 
need to prove a new theorem as follow. 
 
Theorem: Suppose Eq. 2 is available, then suppose the 
scalar function i (x)Φ for the i th state could be 
determined in a manner which by inserting the i th term 
forη , the function V(X) would be a positive definite 
Eq. 3 with negative definite derivative. 
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 Therefore, the control signal and also the general 
control Lyapanov function of this system can be 
obtained by Eq. 4, 5 
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Proof: The Eq. 2 can be represented as the extended 
form of Eq. 6. 
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V(X)� is always positive definite and therefore the 
negative definite of its derivative should be examined; 
it means W(X) in Eq. 7 should always be positive 
definite, so that V(X)�  would be negative definite. 
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 By 0 0 0u f (X, ) g (X, )u= η + η and adding and subtracting 

i ig (X) (X)Φ to the ith term of Eq. 6 and 8 be obtained. 
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 Now we use the following change of variable. 
 

i i i 0 iz (X) z u (X)=η − Φ � = −Φ��  (9) 
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 Therefore, the Eq. 8 would be obtained as follows: 
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 Regarding that zi has n states, the u0 can be 
considered with n terms, provided that the Eq. 12 would 
be established as follows. 
 

n

0 i
i 1

u u
=
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 Therefore, the last term of Eq. 11 would be 
converted to Eq. 13 
 

i i i iz u ( X )= − Φ = λ��       (13) 
 
 At this Stage, the control Lyapanov function would 
be considered as Eq. 14 
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 Which is a positive definite function. Now it is 
sufficient to examine negative definitely of its 
derivative. 
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 In order that the function tV (X, )η� would be negative 

definite, it is sufficient that the value of iλ would be 
selected as the Eq. 16 
 

i i i i i
i

V ( X )
g ( X ) k z ; k 0

x
∂λ = − − >

∂
 (16) 

 
 Therefore, the value of would be obtained from 
following equation. 
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 Which indicates that the negative definitely status 
of the function tV (X, )η� . 
 Consequently, the control signal function, using the 
Eq. 8, 10 and 11 would be converted to 18 
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 Therefore, using the variations of the variables 
which we carried out, the Eq. 4, 5 can be obtained. 
Now, considering the unlimited region of positive 
definitely of� tV (X, )η  and negative definitely of 

tV (X, )η� and the radially unbounded space of its states, 
global stability gives the proof. 
 
Simulation of Lorenz system: In order to convert 
Lorenz equations to the general state of Eq. 2, the 
change variable r = y-x should be carried out. 

 Therefore, the Eq. 1 would be converted to Eq. 19, 
as follows. 
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Stabilization of the states: In order to use the theorem, 
it is sufficient to establish Eq. 20,21 
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2(r, y) 0Φ =  (21) 

 According to the theorem, the control signal will be 
obtained from the Eq. 22 
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Step response tracking: Suppose, the y state would be 
output of the system and it would track the input 
response. In this case by using the change of variable w 
= 1-y Eq. 19 would be converted to the Eq. 23 
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  By choosing Eq. 24,25 according theorem, input 
control signal would become as Eq. 26 
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Sinusoidal response tracking: Suppose the state x 
would track the sinusoidal response. In this case by 
using the change of variables like 1x bSinwt r= − , x2 = y 
and a = z, the Eq. 19 will be converted to Eq. 27 
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In order to use theorem, the Eq. 28,29  should be 

established. 
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 Using the theorem, the control signal will be 
written as the Eq. 30 
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RESULTS 

 
 By applying control function to the Eq. 19, the Fig. 
3 and 4 will represent the system states and control 
signal, respectively. The stabilized system phase 
portrait diagram is shown in Fig. 5. 
 Figure 6  shows  that  system  tracks  step  response 
very  well  and  Fig. 7  shows  the  input  control   for 
tracking 

The simulation results are shown in the Fig. 8 and 9. 
 

 
 

Fig. 3: x, y and z variations after stabilization 

 
 

Fig. 4: input control signal 
 

 
 
Fig. 5: X-Z Phase portrait after stabilizing 
  

 
  

Fig. 6: Step input tracking by Lorenz system 
                                                

 
Fig. 7: Input control signal for tracking 
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Fig. 8: Sinusoidal input tracking by Lorenz equations 

 
 

Fig. 9: Input control signal for tracking 
 

 
 
Fig. 10: Variations of states after stabilization in 

backstepping method 
 

 
Fig. 11: Input control signal in Backstepping Method 

DISCUSSION 
 
 In ref.[10] the Backstepping method was used to 
control the Lorenz equations that Fig. 10 and Fig. 11 
represent the simulation results, But in this study, we 
use Generalized Backstepping method. Now we would 
compare the results of the proposed method and the 
results in ref.[10]. 
 By comparing the Figs., the following results can 
be obtained. 
 
• In the Backstepping Method, all dynamics would 

have the final value unequal to zero; while in the 
Generalized Backstepping Method, all dynamics 
would have tendency towards Zero. 

• In the Generalized Backstepping Method in 
relation to the Backstepping Method, the system 
states are stabilized by a more limited control 
signal. Consequently, it is less possible that the 
control signal to be saturated 

• In the Generalized Backstepping Method in 
relation to the Backstepping Method [10], tracking 
will be accomplished in a much shorter time 

 
 Considering the results obtained from simulations, 
the much more efficiency of Generalized Backstepping 
Method in relation to the Backstepping Method will be 
demonstrated. 
 

CONCLUSIONS 
 
 In this study¸ a new method to control nonlinear 
systems is presented. The method proposed which is 
called the Generalized Backstepping, by feed backing 
the dynamics of system and without eliminating the 
nonlinear dynamics, a controller is designed. A theorem 
is expressed for this method and the proof is given. 
Consequently, using this method, a controller is 
designed for the Lorenz chaotic system which is 
compared with the results obtained from the controller 
using the Backstepping Method.  
 The efficiency of this method is demonstrated by 
the accomplished simulations and comparing them with 
the former obtained results. Therefore, the 
recommended Generalized Backstopping Method in 
comparison with the Backstopping method not only has 
higher application in the real system but also has better 
response. 
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