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Abstract: Continuous Stirred Tank Reactor (CSTR) is one of the common reactors in chemical plant. 
Problem statement: Developing a model incorporating the nonlinear dynamics of the system warrants 
lot of computation. An efficient control of the product concentration can be achieved only through 
accurate model. Approach: In this study, attempts were made to alleviate the above mentioned 
problem using “Artificial Intelligence” (AI) techniques. One of the AI techniques namely Artificial 
Neural Networks (ANN) was used to model the CSTR incorporating its non-linear characteristics. Two 
nonlinear models based control strategies namely internal model control and direct inverse control 
were designed using the neural networks and applied to the control of isothermal CSTR. Results: The 
simulation results for the above control schemes with set point tracking were presented. 
Conclusion: Results indicated that neural networks can learn accurate models and give good non-
linear control when model equations are not known. 
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INTRODUCTION 
 
 The Continuous Stirred Tank Reactor system 
(CSTR) is a complex nonlinear system. Due to its 
strong nonlinear behavior, the problem of identification 
and control of CSTR is always a challenging task for 
control systems engineer. Usually the industrial reactors 
are controlled using linear PID control configurations 
and the tuning of controller parameters is based on the 
linearization of the reactor models in a small 
neighborhood around the stationary operating points. If 
the process is subjected to larger disturbance and/or it 
operates at conditions of higher state sensitivity, the 
state trajectory can considerably deviate from the 
aforementioned neighborhood and consequently 
deteriorates the performance of the controller. 
 The economic objectives generally require the 
reactor design for operation in the area of its higher 
state sensitivity and in some cases even at the borders 
of its stability or in the vicinity of an unstable stationary 
point, which might even induce the periodic 
oscillations. As a result, the nonlinear nature of the 
reactor acquires more relevance in control systems and 
creates difficult control problems. If severe nonlinearity 

is involved in the controlled process, a nonlinear 
control scheme will be more useful. Nowadays, neural 
networks have been proved to be a promising approach 
to solve complex nonlinear control problems. 
 The use of neural networks in chemical 
engineering field offers potentially effective means of 
handling three difficult problems: Complexity, non 
linearity and uncertainties. The variety of available 
neural network architectures permits us to deal with a 
wide range of process control problems in comparison 
to other empirical models. Neural networks are 
relatively less sensitive to noise and incomplete 
information and deal with higher levels of uncertainty 
when applied in process control problems[1].The 
multilayer feed forward neural networks offer 
interesting possibilities for modeling any nonlinear 
process without a priori knowledge[2]. Thus, self-
learning ability of neural networks eliminates the use of 
complex and difficult mathematical analyses, which is 
dominant in traditional modeling methods. Based on the 
gradient descent optimization, back propagation is 
probably the most popular training algorithm for feed 
forward networks in the field of chemical 
engineering[3]. The basic back propagation algorithm 
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has several drawbacks. The most critical one’s are slow 
convergence, the possibility of becoming struck in local 
minima and computational complexity. Many variation 
of the basic algorithm that improves its performance 
have been suggested by Bhat[4].The use of momentum 
term generally speeds up the convergence and smoothes 
the trajectory of the weights during the update 
procedure. During training both learning rate and 
momentum can be modified in order to improve 
convergence. 
 This study describes the modeling and control of a 
isothermal CSTR using neural networks. Multilayer 
feed forward neural networks with back propagation 
algorithm have been used for modeling. Comparison of 
ANN based control schemes are illustrated using error 
analysis. 
 
CSTR modeling: The Continuous Stirred Tank 
Reactor with single input and single output is shown 
in Fig. 1. Here isothermal series -parallel reaction 
(Van de vusse reaction) is considered to study the 
steady state and dynamic behavior of CSTR. The two 
reactions are: 
 

K1 K2

K3

A B C

2A D

→ →
→

 (1) 

 
A: Cyclopentaddiene 
B: Cyclopentenol 
C: Cyclopentanediol 
D: Dicyclopendtadiene 
 
 The desired product in the reaction is spices B, the 
intermediate product in the primary reaction, which 
increases the difficulty to control. 
 The  rates  of  formation  of  A and B are assumed 
to be: 
 

2
A 1 A 3 Ar k c k c= − −  (2) 

 

B 1 A 2 Br k c k c= −   (3) 

 
where, k1, k2 ,k3 are the reaction rate constants. The feed 
stream consists of pure A. The mass balances for A and 
B are given by the following Eq. 2 and 3: 
 

A 2
Af A 1 A 3 A

d(C ) F
(C C ) K C K C

dt V
= − − −   (4)  

 
B

B 1 A 2 Ba
d(C ) F

C K C K C
dt V

= − + −   (5) 

 These modeling equations assume a constant 
volume. The equations for CC and CD are neglected 
because CB is not dependent on them. The manipulated 
input in this system is dilution rate. The parameters of 
the reactor are given in Table 1. 
 The steady state equations are: 
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 These results lead to the steady-state response of 
the CSTR as shown in the Fig. 2. For an isothermal 
CSTR steady state input-output can be obtained by 
relating dilution rate and concentration of component B. 
 

 
 

Fig. 1: Isothermal CSTR 
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Fig. 2: Steady-State response of the CSTR 
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Table 1: CSTR Parameters 
Parameter  Value 

K1  50 h−1  
K2 100 h−1  
K3 1/6 mol L−1 min  
CAf 10 gmol L−1  

 
 From Fig. 2 it is clear that a nonlinear relationship 
exists between steady-state dilution rate (F/V) and the 
steady-state concentration of B. The reactor cannot be 
controlled  at  maximum  point  because the process 
gain is zero. The steady-state concentration of B of 
1.117 gmol  L−1 can be obtained from Fs/V = 0.5714 or 
Fs/V = 2.8744 min−1, showing the presence of input 
multiplicity[5]. 
 The Complexity involved in conventional 
modeling of CSTR increases due to the presence of 
nonlinearities like input multiplicity, gain sign change, 
asymmetric response and transformation from 
minimum to non- minimum phase behavior and time 
lag in measuring instruments forcing to make many 
assumptions, sacrificing the accuracy due to the 
negligence of uncertainty. Inaccuracy in the modeling 
due to various assumptions gives degraded performance 
of controller. In the present work Artificial neural 
network is used to develop better and more efficient 
non linear model of CSTR. 
 
Neural network modeling: An artificial neural 
network is massive, parallel interconnected network of 
simple elements whose hierarchical are reminiscent of 
biological neural systems. By looking only at the input 
and output data a neural network can model non linear 
systems. ANNs provide an analytical alternative to 
conventional techniques, which are often limited by 
strict assumptions of normality, linearity and variable 
independence The three steps involved in the ANN 
model development are (1) Generation of input-output 
data (2) Network Architecture selection (3) Model 
validation  
 
Generation of input-output data: The data generated 
to train the network should contain all the relevant 
information about the dynamics of the CSTR. The input 
was given to the conventional model of the CSTR and 
from the conventional model, the input and output were 
sampled for 0.01 sampling instants and the required 
sampled data are obtained to train the network.  
 
Network Architecture selection: The feed forward 
network topology with sigmoidal activation function 
was chosen based on the trials with different structures 
of multilayer perceptron. The variation of error with 
number   of   hidden   neurons   is   shown  in   Fig.  3. 
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Fig. 3: Variation of error with hidden neurons 
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Fig. 4: ANN model of isothermal reactor 
 
The lowest error corresponds to 4 neurons in the hidden 
layer. Hence it is selected as optimal architecture of 
ANN. The ANN selected here consists of 3 neurons in 
the input layer, 4 neurons in the hidden layer and one 
neuron in the output layer. The ANN architecture used 
in the present work is shown in Fig. 4. 
 The training algorithm used in the CSTR modeling 
is back propagation algorithm. Before training the 
process weights are initialized to small random 
numbers. The weights are adjusted till error gets 
minimized for all training sets. When the error for the 
entire set is acceptably low, the training is stopped.  
 Table 2 shows the parameters used in developing 
the ANN model for the CSTR 
 
Model validation: The final step in developing the 
model is validation of the model. Validation is 
performed by evaluating the model performance using 
trained data and test data. The input and target were 
presented to the network and the network was trained 
using Levenburg-Marquardt algorithm. The goal was 
set at 10−8 and the same  was  achieved in 9478 iterations. 
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Table 2: ANN Parameters for CSTR modeling 
Parameters  Value 
Input neurons 3  
Output neurons 1  
Hidden layers 1  
 Hidden layer neurons 4 
Activation function Sigmoidal  
 Training algorithm Levenberg-Marquardt algorithm 
Initial value of µ 0.001  
µ decrease factor 0.1  
µ increase factor 10  
Initial bias 1 
Initial weights 1  
Iterations 10000  
Architecture Feed forward  

 

 
 
Fig. 5: Validation of ANN Model with trained data 
 

 
 
Fig. 6: Validation of ANN model with test data 
 
The ANN model was first validated using the trained 
data which is shown in Fig. 5. The ANN model 
validation with test data is shown in the Fig. 6. From 
the Fig. 5 and 6, It is seen that there is a perfect overlap 
between actual output and neural network output.  

 
 
Fig. 7: Validation of inverse ANN Model with trained 

data 
 

 
 
Fig. 8: Validation of inverse ANN Model with test data 
 
Inverse ANN model: Inverse models are basically the 
neural net structure representing the inverse of the 
system dynamics at the completion of training .The 
training procedure in this case is called inverse 
modeling. The principle of this is that if the process can 
be described by: 
 
y(n) = g(y(n-1), y(n-2), u(n-1), u(n-2)) (8) 
 
 A network is trained as the inverse of the process: 
 
u(n) = g-1(y(n+1), y(n), y(n-1),u(n-1)) (9) 
 
 The validation of the inverse ANN model with 
train data and test data is shown in the Fig. 7 and 8. In 
Fig. 8, the error between the actual output and the 
output obtained from test data is very less. 
 

RESULTS AND DISSCUSION 
 
Conventional internal model control scheme: 
Internal Model Control (IMC) scheme is one of the 
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control strategies emanating from model based control 
schemes. The classical design technique for the IMC 
scheme uses a process model (Gm) and the plant (Gp) 
as shown in Fig. 9. The model mismatch (Gp-Gm) is 
compensated using the tuning parameterfλ . In the IMC 
scheme the controller is the process inverse model if 
with the filter. 
 In the conventional IMC control scheme the 
differential equation model of CSTR is taken as the 
process and the process model is the linearized transfer 
function. The IMC controller with the proper tuning 
parameter is used to track the desired set point change 
in concentration of component B. The transfer function 
model of the CSTR is given as: 
 

M
2

1.1170s 3.1472
G (s)

s 4.6429s 5.3821

− +=
+ +

  (10) 

 
 The inversion of the process model is the 
controller, but the inversion of GM leads to an 
unrealizable predictor or an unstable controller which 
will violate the stability requirement. Therefore, it is not 
feasible to use the exact inversion of the process model, 
GM to design Gc(s). Instead, the ‘GM’ is split into two 
parts: one, G +, containing zeroes in the right half of s-
plane and other, G -, containing the remaining terms of 
GM: 
 

MG (s) G (s)G (s)+ −=  (11) 
 

1.1170s 3.1472
G (s)

1.1170s 3.1472
+

− +=
+

 (12) 

 
1

IMC fG (s) G (s) G (s)−

−=  (13) 

 

2

1.1170s 3.1472
G (s)

s 4.6429s 5.3821

+− =
+ +

 (14) 

 
 The IMC controller is given as: 
 

f

2

IMC
s 4.6429s 5.3821 1

G (s)
1.1170s 3.1472 s 1

+ += ×
+ λ +

  (15) 

 

 
 
Fig. 9: Block diagram representation of IMC scheme 

 A  step   change   in   concentration  of B from 
1.26-1.115 mol L−1 is given as the set point and the 
corresponding  closed-loop response is shown in the 
Fig. 10. Figure 11 shows the controller output that 
indicates the change in dilution rate to track the desired 
set point. The closed-loop response shows the existence 
of  peak  overshoot  during   the    transition   from 
1.26-1.115 mol L−1 that can be reduced in ANN based 
IMC (AIMC) control scheme. 
 
ANN based IMC scheme (AIMC): The control signal 
is synthesized by a forward model of the process and an 
inverse model. An attractive property of this design is 
that it provides an off-set free response if the process is 
affected by a constant disturbance. The ANN based 
IMC scheme is shown in the Fig. 12. 
 The first order filter is used in the control scheme 
with the filter tuning parameter as 2.44 s. The 
corresponding  closed loop response is shown in the 
Fig. 13. For a negative step change in the concentration 
of component B. The controller output in the Fig. 14 
does not have peak overshoot and inverse behavior as 
in the case of conventional IMC. 
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Fig. 10: Closed loop response with IMC 
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Fig. 11: IMC controller output 
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Fig. 12: Block diagram representation of ANN based 

IMC scheme 
 
 

0 10 20 30 40 50 60 70 80 90 100 
0 

0.2 

0.4 

0.6 

0.8 

1 

1.115 

1.26 

1.4 

Time (sec) 

C
b

 (m
ol

es
 L

−1
) 

Process output 

Set point 

 
 

Fig. 13: Closed loop response with AIMC with filter 
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Fig. 14: AIMC output with filter 
 
Direct inverse control: The most fundamental neural 
network based controllers are probably those using the 
“inverse” of the process as the controller. The simplest 
concept is called direct inverse control. The block 
diagram of direct inverse contro l  is shown in the 
Fig. 15. The inverse model is subsequently applied as 
the controller for the process by inserting the desired 
output, the reference r(t+1), instead of the output 
y(t+1).  
 The process output tracks the set point for a step 
change in concentration of B with less settling time and 
reaches 1.115 mol L−1 from 1.26 mol L−1 in the Fig. 16. 

 
 

Fig. 15: Direct inverse control 
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Fig. 16: Closed loop response with direct inverse 

control 
 

 
 

Fig. 17: Controller output of direct inverse control 
 
Table 3: Quantitative comparison using performance indices 
Controller  ISE IAE ITAE 
Conventional IMC  7.923 13.21 110.5 
ANN based IMC with filter  4.826 10.74 133.1 
Direct inverse control  1.232 5.20  70.2 

 
The corresponding manipulated variable in the Fig. 17 
changes from 1.11-0.568 min−1 instantly at the 50th 
second. The quantitative comparison using performance 
indices is shown in Table 3. 
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 Though the direct inverse control has less integral 
square error in the simulation work, the controller is not 
robust in the real time process. If the process parameter 
varies, the controller cannot be tuned accordingly and 
introduces steady state error. In the case of AIMC the 
filter tuning parameter can be adjusted so that the 
controller is tuned to adapt to the new process 
parameter. Similarly the load disturbances can be 
effectively overcome in the AIMC.  
 

CONCLUSION 
 
 In this study modeling of Isothermal CSTR has 
been implemented using artificial neural networks. The 
neural model has been trained using data set obtained 
from component balance equations. Feed forward back 
propagation neural network has been used to model the 
isothermal CSTR. The neural model has been designed 
as a black box model. The simulation results from 
conventional model and the neural model were 
compared for the given input variations and the results 
have been found satisfactory. This study has also 
developed a method to design two neural network based 
robust control schemes namely AIMC, ANN based 
direct inverse control and applied it to the non-linear 
CSTR control system .The simulation shows that 
implementation of the NN based advanced controllers 
for the set-point tracking case were able to force 
process output variables to their target values smoothly 
and within reasonable rise and settling times. It is 
evident from the Fig. 13 that the inverse behavior is not 
present in the AIMC control scheme and the change in 
the manipulated variable is smooth by adjusting the 
filter tuning parameter. 
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