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Abstract: Continuous Stirred Tank Reactor (CSTR) is one efdbmmon reactors in chemical plant.
Problem statement: Developing a model incorporating the nonlinearatyits of the system warrants
lot of computation. An efficient control of the mphact concentration can be achieved only through
accurate modelApproach: In this study, attempts were made to alleviate abeve mentioned
problem using “Artificial Intelligence” (Al) techhiues. One of the Al techniques namely Atrtificial
Neural Networks (ANN) was used to model the CST&iporating its non-linear characteristics. Two
nonlinear models based control strategies namegrrial model control and direct inverse control
were designed using the neural networks and apmi¢ide control of isothermal CSTResults: The
simulation results for the above control schemeshwset point tracking were presented.
Conclusion: Results indicated that neural networks can leaourmte models and give good non-
linear control when model equations are not known.

Key words: Artificial neural networks, isothermal continuousrred tank reactor, modeling, non-
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INTRODUCTION is involved in the controlled process, a nonlinear
control scheme will be more useful. Nowadays, neura
The Continuous Stirred Tank Reactor systemnetworks have been proved to be a promising approac
(CSTR) is a complex nonlinear system. Due to itsto solve complex nonlinear control problems.
strong nonlinear behavior, the problem of idendifion The wuse of neural networks in chemical
and control of CSTR is always a challenging task fo engineering field offers potentially effective meaof
control systems engineer. Usually the industriatters  handling three difficult problems: Complexity, non
are controlled using linear PID control configuoats linearity and uncertainties. The variety of avaiab
and the tuning of controller parameters is basethen neural network architectures permits us to deah it
linearization of the reactor models in a smallwide range of process control problems in compariso
neighborhood around the stationary operating polfits to other empirical models. Neural networks are
the process is subjected to larger disturbanceoariid/ relatively less sensitive to noise and incomplete
operates at conditions of higher state sensitivitlg  information and deal with higher levels of uncertgi
state trajectory can considerably deviate from thevhen applied in process control probléfishe
aforementioned neighborhood and consequentlynultiiayer feed forward neural networks offer
deteriorates the performance of the controller. interesting possibilities for modeling any nonlinea
The economic objectives generally require theprocess without a priori knowled§e Thus, self-
reactor design for operation in the area of itshbig learning ability of neural networks eliminates tree of
state sensitivity and in some cases even at theebor complex and difficult mathematical analyses, whigh
of its stability or in the vicinity of an unstabd¢éationary = dominant in traditional modeling methods. Basedhen
point, which might even induce the periodic gradient descent optimization, back propagation is
oscillations. As a result, the nonlinear naturetleé  probably the most popular training algorithm foede
reactor acquires more relevance in control systenas forward networks in the field of chemical
creates difficult control problems. If severe noslirity  engineerin§!. The basic back propagation algorithm
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has several drawbacks. The most critical one’skne These modeling equations assume a constant
convergence, the possibility of becoming struclotal  volume. The equations for :Cand Cp are neglected
minima and computational complexity. Many variation because gis not dependent on them. The manipulated
of the basic algorithm that improves its perforn&nc input in this system is dilution rate. The parameiaf
have been suggested by Bflakhe use of momentum the reactor are given in Table 1.

term generally speeds up the convergence and sewoth ~ The steady state equations are:

the trajectory of the weights during the update
procedure. During training both learning rate and

2
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momentum can be modified in order to improve (K +st (Kd_vJ +4K3(5)
{k.+

convergence.
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This study describes the modeling and control of aCa oKa + oKa (6)

isothermal CSTR using neural networks. Multilayer
feed forward neural networks with back propagation
algorithm have been used for modeling. Comparidon o KiChe
ANN based control schemes are illustrated usingrerr Ces= = )
analysis. v Tk

CSTR modeling: The Continuous Stirred Tank
Reactor with single input and single output is show the CSTR as shown in the Fig. 2. For an isothermal

In Fig. 1. Here |soth_erma_1l series -parallel reactio CSTR steady state input-output can be obtained by
(Van de vusse reaction) is considered to_study th?elatin dilution rate and concentration of compari.
steady state and dynamic behavior of CSTR. The two 9 '

reactions are:

These results lead to the steady-state response of

A0Og-BOQ-C W
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Cyclopentaddiene v
Cyclopentenol —
Cyclopentanediol
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The desired product in the reaction is spiceshB, t

intermediate product in the primary reaction, which Fig. 1: Isothermal CSTR
increases the difficulty to control.

1.4
The rates of formation of A and B are assumed
to be: 1.2
om
Th ==K Cy = k30A2 (2) 2? iy
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%208
ls =KiCp = KyCq (3) *E —
o
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where, k, k> ,k; are the reaction rate constants. The feed S
stream consists of pure A. The mass balances famdA 0.4
B are given by the following Eq. 2 and 3:
0.2
d(CA)=£(CAf_CR)_ KlO\_&O-\z (4) 0 | | | | | | 1 1 L |
d Vv 0 1 2 3 4 5 6 7 8 9 1IC
Dilution rate (min'?)
diG)__F _
a oy oK KeCea () Fig. 2: Steady-State response of the CSTR
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Table 1: CSTR Parameters x10*
Parameter Value

Ky 50 k!

Ky 100 H*

Ks 1/6 mol L*min

Cas 10 gmol L*

From Fig. 2 it is clear that a nonlinear relatioips
exists between steady-state dilution rate (F/V) tred
steady-state concentration of B. The reactor cabeot
controlled at maximum point because the process
gain is zero. The steady-state concentration offB o
1.117 gmol [* can be obtained fromy¥ = 0.5714 or
FJV = 2.8744 min', showing the presence of input
multiplicity®™. % 25 3 35 4 45 5 55 6

The Complexity involved in conventional No. of hidden neurons
modeling of CSTR increases due to the presence of
nonlinearities like input multiplicity, gain sigrhange, Fig. 3: Variation of error with hidden neurons
asymmetric response and transformation from
minimum to non- minimum phase behavior and time
lag in measuring instruments forcing to make many
assumptions, sacrificing the accuracy due to the
negligence of uncertainty. Inaccuracy in the maugli
due to various assumptions gives degraded perfa@nan Y1kl
of controller. In the present work Atrtificial nedira
network is used to develop better and more efficien
non linear model of CSTR.

Error
[

U1(k-1)

Y2(k)

Output Layer

Y2(k-1

i . Input Layer
Neural network modeling: An artificial neural

network is massive, parallel interconnected netwafrk

simple elements whose hierarchical are reminisoént Fig. 4: ANN model of isothermal reactor

biological neural systems. By looking only at theut ) _
and output data a neural network can model norafine The lowest error corresponds to 4 neurons in ttddn
systems. ANNs provide an analytical alternative tolayer. Hence it is selected as optimal architeciofre
conventional techniques, which are often limited byANN. The ANN selected here consists of 3 neurons in
strict assumptions of normality, linearity and wite  the input layer, 4 neurons in the hidden layer and
independence The three steps involved in the ANNeuron in the output layer. The ANN architecturedis
model development are (1) Generation of input-outpuin the present work is shown in Fig. 4.

data (2) Network Architecture selection (3) Model ~ The training algorithm used in the CSTR modeling
validation is back propagation algorithm. Before training the

process weights are initialized to small random
Generation of input-output data: The data generated numbers. The weights are adjusted till error gets
to train the network should contain all the relgvan minimized for all training sets. When the error fhe
information about the dynamics of the CSTR. Theutnp entire set is acceptably low, the training is stxpp
was given to the conventional model of the CSTR and Table 2 shows the parameters used in developing
from the conventional model, the input and outpatev  the ANN model for the CSTR
sampled for 0.01 sampling instants and the required

sampled data are obtained to train the network. Model validation: The final step in developing the
model is validation of the model. Validation is

Network Architecture selection: The feed forward performed by evaluating the model performance using
network topology with sigmoidal activation function trained data and test data. The input and targeé we
was chosen based on the trials with different stines  presented to the network and the network was tdaine
of multilayer perceptron. The variation of errortlwi using Levenburg-Marquardt algorithm. The goal was
number of hidden neurons is shown ifg. B. set at 10°and the same was achieved in 9478 iterations.
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Table 2: ANN Parameters for CSTR modeling

Parameters Value
Input neurons 3

Output neurons 1

Hidden layers 1

Hidden layer neurons 4
Activation function Sigmoidal
Training algorithm Levenberg-Marquardt algorithm
Initial value of p 0.001

U decrease factor 0.1

U increase factor 10

Initial bias 1

Initial weights 1
Iterations 10000

Architecture Feed forward
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Fig. 5: Validation of ANN Model with trained data
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Fig. 6: Validation of ANN model with test data

The ANN model was first validated using the trained
data which is shown in Fig. 5. The ANN model
validation with test data is shown in the Fig. 8oriR
the Fig. 5 and 6, It is seen that there is a pedeerlap
between actual output and neural network output.
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Fig. 8: Validation of inverse ANN Model with tesaik

Inverse ANN model: Inverse models are basically the
neural net structure representing the inverse ef th
system dynamics at the completion of training .The
training procedure in this case is called inverse
modeling. The principle of this is that if the pess can
be described by:

y(n) = g(y(n-1), y(n-2), u(n-1), u(n-2)) (8)
A network is trained as the inverse of the process
u(n) = g-1(y(n+1), y(n), y(n-1),u(n-1)) 9)

The validation of the inverse ANN model with
train data and test data is shown in the Fig. 7&nrad
Fig. 8, the error between the actual output and the
output obtained from test data is very less.

RESULTSAND DISSCUSION

Conventional internal model control scheme:
Internal Model Control (IMC) scheme is one of the
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control strategies emanating from model based abntr A step change in concentration of B from
schemes. The classical design technique for the IM@.26-1.115 mol [ is given as the set point and the
scheme uses a process model (Gm) and the plant (Gpyrresponding closed-loop response is shown in the
as shown in Fig. 9. The model mismatch (Gp-Gm) ig-ig. 10. Figure 11 shows the controller output that
compensated using the tuning parametein the IMC indicates the change in dilution rate to track disired

scheme the controller is the process inverse misdel St Point. The closed-loop response shows theesiet
with the filter. of peak overshoot during the transitiorronf

1 .
In the conventional IMC control scheme the 1.26-1.115 mol L[ that can be reduced in ANN based

differential equation model of CSTR is taken as theIMC (AIMC) control scheme.

process and the process model is the linearizedfee  ANN based IMC scheme (AIMC): The control signal
function. The IMC controller with the proper tuning jg synthesized by a forward model of the processam
parameter is used to track the desired set pom@®  jnverse model. An attractive property of this desig
in concentration of component B. The transfer fiomct hat it provides an off-set free response if thecpss is

model of the CSTR is given as: affected by a constant disturbance. The ANN based
IMC scheme is shown in the Fig. 12.
Gu(s)= 2‘1-11705* 3.1472 (10) _ The first order filter is used in the control sote
s* + 4.6429% 5.382 with the filter tuning parameter as 2.44 s. The

corresponding closed loop response is shown in the
The inversion of the process model is theFig. 13. For a negative step change in the conagoir
controller, but the inversion of GM leads to anof component B. The controller output in the Fig. 1
unrealizable predictor or an unstable controlleicwh does not have peak overshoot and inverse behasior a
will violate the stability requirement. Therefoieis not  in the case of conventional IMC.
feasible to use the exact inversion of the procasgel,

GM to design @s). Instead, the ‘GM’ is split into two 14 — Setpoint
parts: one, G +, containing zeroes in the right bak- R ) ==="Plant output
plane and other, G -, containing the remaining $eof 514 - Y
GM: s ' .'! \'\_‘
S 11 :'
Gu(s)= G+ ()G (s (11) T
o H
§ o
G.(s)= -1.1170st+ 3.147: (12) i
1.1170s+ 3.1472 0.8%
. 0.7 ' . ) " . . . N y
GIMC(S): G (3)1 G (S‘ (13) 0 10 20 30 Tziltr]ne 50 60 70 80 90 10C
G-(s)= 1.1170s+ 3.1472 (14) Fig. 10: Closed loop response with IMC
s’ + 4.64293 5.382 14
The IMC controller is given as: 12
2
Gme(8)=S +4.6429% 53821 1 (15) s
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Fig. 9: Block diagram representation of IMC scheme Fig. 11: IMC controller output
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Fig. 16: Closed loop response with direct inverse
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Direct inverse control: The most fundamental neural
network based controllers are probably those usieg Fig. 17: Controller output of direct inverse coftro
“inverse” of the process as the controller. Thepdast Table 3 itati ] ) formindi
concept is called direct inverse control. The blockl22le3: Quantitative comparison using performandees

. . . . . Controller ISE IAE ITAE
diagram of direct inverse control is shown in the

. . . . Conventional IMC 7.923 13.21 110.5
Fig. 15. The inverse model is subsequently appiied AnN based IMC with filter 4.826 10.74 133.1
the controller for the process by inserting theirdgs  Direct inverse control 1.232 5.20 70.2
output, the reference r(t+1), instead of the output
y(t+1). The corresponding manipulated variable in the Eig.

The process output tracks the set point for a stephanges from 1.11-0.568 minstantly at the 50th
change in concentration of B with less settlingetiand  second. The quantitative comparison using perfooman
reaches 1.115 mol 't from 1.26 mol [* in the Fig. 16. indices is shown in Table 3.
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Though the direct inverse control has less infegra
square error in the simulation work, the controiéenot
robust in the real time process. If the procesamater 1.
varies, the controller cannot be tuned accordiragiy
introduces steady state error. In the case of AWE
filter tuning parameter can be adjusted so that the.
controller is tuned to adapt to the new process
parameter. Similarly the load disturbances can be
effectively overcome in the AIMC.

3.
CONCLUSION

In this study modeling of Isothermal CSTR has
been implemented using artificial neural networkise 4.
neural model has been trained using data set @gtain
from component balance equations. Feed forward back
propagation neural network has been used to mbdel t
isothermal CSTR. The neural model has been designed
as a black box model. The simulation results fromp.
conventional model and the neural model were
compared for the given input variations and thailtes
have been found satisfactory. This study has also

developed a method to design two neural networkdas 6-

robust control schemes namely AIMC, ANN based
direct inverse control and applied it to the nareér
CSTR control system .The simulation shows that
implementation of the NN based advanced controllers
for the set-point tracking case were able to force
process output variables to their target valuesosiiyp
and within reasonable rise and settling times.slt i
evident from the Fig. 13 that the inverse behaigarot
present in the AIMC control scheme and the change i
the manipulated variable is smooth by adjusting the
filter tuning parameter.
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