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Abstract: Problem statement: Toothed gears are some of the most used machine elements for motion 
and power transmission between rotating shafts. This fact induces the need for improved reliability and 
higher endurance, which require precise and clear knowledge of the gear tooth stress field during 
meshing. Approach: This study considered the calculation of maximum stress at gear tooth root when 
the meshing gears are loaded at their most unfavorable contact point (highest point of single-tooth 
contact-HPSTC), using both numerical and experimental methods. Finite Element Method (FEM) is 
used for the numerical stress analysis and photoelasticity is applied for the experimental investigation 
of the stress field. Results: The experimental results of the maximum dimensionless stress derived 
from the photoelasticity experiments are compared to the respective theoretical stress results of the 
finite element analysis. Conclusion: It was found that the deviation between the results of the applied 
methods falls between reasonable limits whereas it rises with increasing number of teeth of the large 
gear. 
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INTRODUCTION 
 
 First systematic attempt to calculate the position of 
critically stressed point is attributed to Lewis (1882) 
who considered that the inscribed isosceles parabola 
tangent to the dedendum of the tooth flank defines the 
critically stressed point which is located at the point of 
tangency at the side which is loaded by tensile stresses.  
 Later, it was observed that the critically stressed 
point is positioned lower than the one determined by the 
method of inscribed parabola. This finding is compatible 
with the photoelasticity experimental results.  
 The “30 degrees tangent” is another method which 
argues that the critically stressed point is independent of 
the load location and it is located at a specific point at 
the tooth root. Although this method is adopted by the 
ISO standards, (Kawalec et al., 2006), it is approximate 
and applicable only to low stressed gears.  
 

MATERIALS AND METHODS 
 
 Assuming that gear tooth is a stubby cantilever 
beam, it is derived that the transverse load PN on a gear 
tooth is not maximum when applied at the addendum 
circle as seen at Fig. 1. The complete gear tooth 

meshing cycle is illustrated in Fig. 2, where tooth 
meshing, (Spitas and Spitas, 2007; Niemann, 1960), 
begins at point A and completes at point B with these 
two points defining the ends of the contact path. It is 
obvious that between points A and A’ and points B and 
B’ two tooth pairs mesh simultaneously. On the other 
hand, between points Α’ and Β’ of contact path, only a 
single pair of gear teeth is in contact which is subject to 
the maximum load. The worst loading conditions for 
the tooth of gear 1 do not occur when the load is 
applied to the highest addendum point (point B), 
because the total load is distributed to two pairs of gear 
teeth at this point, but at point Β’ of contact path where 
only a single pair of gear teeth is meshing, (Townsend, 
1992; Spitas et al., 2006). Point Α’ defines the Lowest 
Point of Single Tooth Contact (LPSTC) and point Β’ is 
the Highest Point of Single Tooth Contact (HPSTC) for 
gear 1. In other words, during the portion Α’Β’ of the 
contact path only a single tooth of each gear is loaded, 
whereas during portions ΑΑ’ and ΒΒ’ the load is 
distributed to two teeth of each gear. Thus, we can infer 
that the maximum gear tooth loading occurs at a point 
on part Α’Β’ of the contact path, (Colbourne, 1987; 
Costopoulos and Spitas, 2009). 
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Fig. 1: Gear tooth loading 
 

 
 
Fig. 2: (a) Meshing teeth profiles of a gear 

transmission stage; (b) Positions of tooth load 
variation 

 
 
Fig. 3: Geometric determination of HPSTC 
 
 Determination of the point of maximum stresses 
during gear meshing Fig. 3, is as follows: 
 

gΑΒ ε t AC CB= ⋅ +=   (1) 

 

( )2 2 2
ο2 02 ο 02 0ΑC r m r cos α r sinα= + − ⋅ − ⋅   (2) 

 

( )2 2 2
01 01 0 01 0ΒC r m r cos α r sinα= + − ⋅ − ⋅   (3) 

 
 Substituting Eq. 2 and 3 to Eq. 1 results:  
 

( )
( ) ( )

2 2 2
ο2 02 ο

2 2 2
01 01 0 01 02 0

ΑΒ r m r cos α

r m r cos α r r sinα

= + − ⋅ +

+ − ⋅ − + ⋅  
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 HPSTC is located at point Β’. During parts AΑ’ 
and Β’B of the contact path, load is transmitted through 
two pairs of gear teeth, while during part Α’Β’ only a 
single pair of gear teeth is subjected to the total load. 
The lengths of parts AΒ’ and Α’B equal the gear 
circular pitch, tg, at the base circle. Thus, position of 
HSPTC is determined according to Fig. 3 as follows: 
 

( )2
2 2

02 02 0 02 0AC r m r cos α r sinα= + − ⋅ − ⋅   (5) 

 

g 0CB' AB' AC t AC π m cosα AC= − = = ⋅ ⋅ −−   (6) 
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Fig. 4: Geometry of the applied force P at semi-infinite 

plate 
 
 Using triangle O1Β’C, radius rΒ’ can be calculated 
according to (Spitas et al., 2005; Spitas et al., 2007) by 
the following equation: 
 

( )2 0
01 01 0

'2
B'r CB CBr 2 r ' cosα 90= + − ⋅ ⋅ ⋅ +   (7) 

 
 Cartesian coordinates of point H are: (x, y) = (rΒ’ 
sinφ, rΒ’ cosφ). 
 
The photoelastic method: A vertical force P acts on a 
horizontal straight boundary of an infinitely large plate 
Fig. 4. The stress function, (Timoshenko and Goodier, 
1970), is given as: 
 

P
Φ r sin

π
= − ⋅ ⋅ ∂ ⋅ ∂   (8) 

 
 The stresses r rσ ,σ ,σ∂ ∂  are given by the relations: 
 

2
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 According to the stress-optical law the difference 
of the principal stresses is: 
 

σ
1 2

Ν f
σ σ σ

d

⋅= − =   (12) 

 
Where: 
N = The isochromatic fringe order 
d = The thickness of the specimens 
fσ = The material fringe value or stress-optical constant 

 
 
Fig. 5: Isochromatic fringe patterns as they are plotted 

by the computer. 

 
 The stress σr, Relation 9, is a principal stress and 
thus Relation 12 becomes: 

 

σ2P cos N f

π r d

∂ ⋅=   (13) 

 
or: 
 

cos
r C

N

∂=   (14) 

 
with: 
 

σ

2 d P
C

π f

⋅ ⋅=
⋅

 (15) 

 
 Relation 14 gives the isochromatic fringe patterns. 
Fig. 5 presents the isochromatic fringe patterns which 
were plotted according to Relation 14. 
 For a disk of diameter D the difference, 1 2σ σ σ= − , 

of principal stresses at the center of the disk is given by:  
 

1 2

8 P
σ σ σ

π d D

⋅= − =
⋅ ⋅

  (16) 

 
and Relation 16 becomes: 
 

σN π f D
P

8

⋅ ⋅ ⋅=   (17) 
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 Relation 17 gives the compressive load P at the 
center of the disk, or the stress-optical constant fσ, if the 
compressive load is given. 
 
Dimensionlessness of stresses: Using the concept of 
dimensionless stress, proposed by (Townsend, 1992; 
Spitas et al., 2006), according to Eq. 18, we can 
compare the experimental results of photoelasticity to 
the respective stresses resulting from the finite element 
analyses, which have first to be reduced to a 
dimensionless form: 
 

u
u

b m b m cosα΄
σ σ σ

P P

⋅ ⋅ ⋅= =
 

(18) 

 
Here: 
σu = Dimensionless stress 
σ = Calculated (real) stress (MPa) 
b = Gear tooth length (m) 
m = Module of gearing (m) 
P = Transverse load to the gear tooth at HPSTC (N) 
Pu = Horizontal component of the previous load 

(normal to the axis of symmetry of the gear 
tooth) (N)  

α΄ = Angle between the line of action of the load and 
the horizontal (°) 

 
 The advantage of this consideration is that at all 
cases both the gear module (m) and the gear tooth 
length (b) are equal to unity, while at the same time a 
unit load (P = 1) is assumed at HPSTC. Thus, after the 
calculation of the maximum dimensionless stress using 
Eq. 18 assuming particular values for the gear tooth 
length, the module of gearing and tooth loading of a 
gear reduction stage, we are able to calculate the real 
stress for any value of each of the these three variable 
parameters. Therefore for this gear stage, useful results 
can be extracted faster by using this time-saving 
method. 
 
Photoelasticity experiments: Four specimens were 
manufactured simulating standard gears having 15, 18, 
22 and 28 teeth, respectively. A gear module of 20 mm 
and gear tooth  length,  b,  of 9.25 mm were chosen 
(Fig. 6-9). Specimen material is PSM-1 with Young 
modulus Ε = 2.5 GPa and Poisson ratio ν = 0.38. 
 Using the cyclic polariscope of Fig. 10 with 
loading at HPSTC, the maximum stresses were 
determined experimentally for each pair of the previous 
gear tooth specimens, according to Table 1. Initially 
each gear tooth is loaded with a 22.240 N (5 lb) force. 
Then, the load increases gradually until a fringe of 
integer order emerges at the critical point, first under 

monochromatic light and next under white light, as 
shown in Fig. 11-26. 
 
Table 1: HPSTC specimen tests  
Test No. of teeth No. of teeth Distance between HPSTC  
No. of gear 1 of gear 2 and specimen base (mm) 
Standard gears  
1 15 18 72.75 
2 18 15 72.07 
3 15 22 72.10 
4 22 15 70.97 
5 15 28 71.39 
6 28 15 69.98 
7 18 22 70.84 
8 22 18 70.38 

 

 
 
Fig. 6: Specimen of a standard gear with 15 teeth 
 

 
 
Fig. 7: Specimen of a standard gear with 18 teeth 
 

 
 
Fig. 8: Specimen of a standard gear with 22 teeth 
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Fig. 9: Specimen of a standard gear with 28 teeth 
 

 
 
Fig. 10: Polariscope and specimen loading apparatus 

for the photoelasticity experiments installed at 
the NTUA Machine Elements Laboratory 

 

 
 
Fig. 11: Test No. 1 (15/18)-pinion-monochromatic light 
 

 
 
Fig. 12: Test No. 1 (15/18)-pinion-white light 

 
 
Fig. 13: Test No.2-(15/18)-gear-monochromatic light 
 

 
 
Fig. 14: Test No. 2-(15/18)-gear-white light 
 

 
 
Fig. 15: Test No. 3-(15/22)-pinion-monochromatic light 
 

 
 
Fig. 16: Test No. 3-(15/22)-pinion-white light 
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Fig. 17: Test No. 4-(15/22)-gear-monochromatic light 
 

 
 
Fig. 18: Test No. 4-(15/22)-gear-white light 
 

 
 
Fig. 19: Test No. 5-(15/28)-pinion-monochromatic light 
 

 
 
Fig. 20: Test No. 5-(15/28)-pinion-white light 

 
 
Fig. 21: Test No. 6-(15/28)-gear-monochromatic light 
 

 
 
Fig. 22: Test No. 6-(15/28)-gear-white light 
 

 
 
Fig. 23: Test No. 7-(18/22)-pinion-monochromatic light 
 

 
 
Fig. 24: Test No. 7-(18/22)-pinion-white light 
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Table 2: Experimental estimations of maximum stresses of the 
specimens 

 HPSTC HPSTC  Maximum 
Test horizontal horizontal Isochromatics stress, 
No. load, Pu (lbs)  load, Pu (N) order,  σ (MPa) 
Standard gears   
1 55.0 244.652 3 4.572 
2 38.5 171.257 2 3.048 
3 37.5 166.808 2 3.048 
4 41.0 182.377 2 3.048 
5 38.0 169.032 2 3.048 
6 43.5 193.498 2 3.048 

7 40.0 177.929 2 3.048 
8 41.5 184.601 2 3.048 

 

 
 
Fig. 25: Test No. 8-(18/22)-gear-monochromatic light 
 

 
 
Fig. 26: Test No. 8-(18/22)-gear-white light 
 
 Subsequently, for the loading at HPSTC, maximum 
stresses were estimated by using Eq. 12.  Table 2 
contains the results of these calculations. 
 
Gear tooth modeling and stress analysis using the 
finite element method: Gear models with 15, 18, 22 
and 28 teeth, module of 20 mm and gear tooth length of 
b = 9.25 mm were created at Autodesk Inventor CAD 
system, using common geometry and material 
properties of the photoelasticity specimens. 
 Next, the HPSTC positions were determined for 
gear pair, using Eq. 5-7. Results are shown in Table 3. 

Table 3: HPSTC positions of all gears 
Test Number of Number of Distance between HPSTC 
No. teeth for gear 1 teeth for gear 2 and the tooth center (mm) 
Standard gears 
1 15 18 155.297 
2 18 15 185.794 
3 15 22 154.672 
4 22 15 225.695 
5 15 28 153.983 
6 28 15 285.598 
7 18 22 184.600 
8 22 18 225.126 
 

 
 
Fig. 27: Test No. 1-15/18-pinion-stress field 
 

 
 
Fig. 28: Test No. 2-15/18-gear -stress field 
 
 CAD models are imported to the ANSYS 
environment. The applied loads Pu are adapted from the 
experimental results, Table 2. Taking into account the 
angle α’ between the line of load action and the 
horizontal line, shown in Fig.1, it is clear that this angle 
is different for each tooth pair. Then the total load of 
each gear tooth pair is found, as shown in Table 4.  
 After the total load has been applied to the gear 
tooth finite element models in ANSYS environment, 
we can  find  the   maximum   stresses,  σmax, for 
each  case,  as  shown  schematically  in  Fig.  27-34. 
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Table 4: Loads applied to HPSTC of gear tooth finite element models 
   Angle between the Horizontal  Total load (normal 
 No. of teeth No. of teeth line of load and the component of  to great tooth flank) 
Test No. for gear 1 for gear 2 horizontal, α’( ο) HPSTC,Pu(N) at HPSTC, P(N) 
Standard gears 
1 15 18 19.610 244.652 259.716 
2 18 15 20.116 171.257 182.382 
3 15 22 19.091 166.808 176.517 
4 22 15 20.116 182.377 194.225 
5 15 28 18.377 169.032 178.116 
6 28 15 20.116 193.498 206.068 
7 18 22 19.265 177.929 188.484 
8 22 18 19.780 184.601 196.176 

 
Table 5: Numerical results for maximum tooth stresses  
Test No. Total load, P (N) Maximum stress, σmax (MPA) 
Standard gears 
1 259.716 4.592 
2 182.382 3.034 
3 176.517 3.076 
4 194.225 3.101 
5 178.116 2.942 
6 206.068 3.160 
7 188.484 3.092 
8 196.176 3.047 
 

 
 
Fig. 29: Test No. 3-15/22-pinion-stress field 
 

 
 
Fig. 30: Test No. 4-15/22-gear-stress field 
 
Table 5 assembles the numerical results of the stress 
analyses. Afterwards, by using Eq. 18, experimental 
and numerical values of maximum stresses, Table 6, 
become dimensionless in order to become comparable, 
(Table 7).  

Table 6: Experimental and numerical estimations of maximum gear 
tooth stresses 

 Total load Experimental Numerical estimation 
Test at HPSTC, estimation of maximum of maximum tooth 
No. P(N) tooth stress, σπ(MPA)  stress, σθ(MPA) 
Standard gears 
1 259.716 4.572 4.592 
2 182.382 3.048 3.034 
3 176.517 3.048 3.076 
4 194.225 3.048 3.101 
5 178.116 3.048 2.942 
6 206.068 3.048 3.160 
7 188.484 3.048 3.092 
8 196.176 3.048 3.047 

 

 
 
Fig. 31: Test No. 5-15/28-pinion-stress field 

 

 
 
Fig. 32: Test No. 6-15/28-gear-stress field 
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Table 7: Deviation between experimental and numerical estimations of maximum dimensionless stresses  
   Experimental estimation Numerical estimation of Deviation between 
 No. of teeth No. of teeth of maximum maximum dimensionless the estimations of 
Test No. for gear 1 for gear 2 dimensionless stress, σuπ stress, σuθ the two methods (5) 
Standard gears  
1 15 18 3.257 3.271 -0.4 
2 18 15 3.092 3.078 0.5 
3 15 22 3.194 3.224 -0.9 
4 22 15 2.903 2.954 -1.7 
5 15 28 3.166 3.056 3.6 
6 28 15 2.736 2.837 -3.5 
7 18 22 2.992 3.035 -0.4 
8 22 18 2.874 2.873 0.0 

 

 
 
Fig. 33: Test No. 7-18/22-pinion-stress field 
 

 
 
Fig. 34: Test No. 8-18/22-gear-stress field 
 

RESULTS 
 
 If we compare the results in Table 7, we can see 
that there is deviation of the maximum stress estimation 
from -3.5% to +3.6% between the experimental and the 
numerical methods. This deviation increases with the 
number of teeth of the bigger gear, keeping constant the 
number of pinion teeth. 
 

DISCUSSION 
 
 Apart from the fatigue failure at the critically 
stressed point, small cracks at tooth surface have been 

observed at gear pitch circle (where the gear tooth is 
subjected to the total load), due to high pressure 
surface fatigue. Low viscosity lubricants can enter the 
cracks at high pressures. These initially small cracks 
can easily grow under the effect of high pressures of 
penetrating fluids, causing surface fatigue cracks or 
pitting. Therefore, it is critical to take into account the 
surface fatigue strength of gear during the design 
procedure.  
 

CONCLUSION 
 
 In this study, the minimum deviation between the 
results of the applied methods was investigated. Results 
of photoelasticity experiments, which is the most 
widely applied experimental method for gear stress 
analysis, were compared to the results of the finite 
elements method using ANSYS software. Comparison 
of the results of the two applied methods proved that 
the deviations are acceptable. These deviations are 
reasonable considering the potential errors that can be 
involved during the application of the two methods.  
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