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Abstract: Problem statement: The need for wireless communication has drivenctivamunication
systems to high performance. However, the mairidratk that affects the communication capability
is the Fast Fourier Transform (FFT), which is tleeecof most modulatordApproach: This study
presented on-chip implementation of pipeline dgiting multiplier-less butterfly for FFT structure
The approach taken; in order to reduce computat@amnplexity in butterfly, digit-slicing multiplier-
less single constant technique was utilized indtitical path of Radix-2 Decimation In Time (DIT)
FFT structure. The proposed design focused onr#laetoff between the speed and active silicon area
for the chip implementation. The new architecturaswinvestigated and simulated with MATLAB
software. The Verilog HDL code in Xilinx ISE envitment was derived to describe the FFT Butterfly
functionality and was downloaded to Virtex Il FP®Aard. Consequently, the Virtex-Il FG456 Proto
board was used to implement and test the desigheneal hardwareResults: As a result, from the
findings, the synthesis report indicates the maxmulock frequency of 549.75 MHz with the total
equivalent gate count of 31,159 is a marked anaifgignt improvement over Radix 2 FFT butterfly.
In comparison with the conventional butterfly atebture, design that can only run at a maximum
clock frequency of 198.987 MHz and the conventiomailtiplier can only run at a maximum clock
frequency of 220.160 MHz, the proposed system éighifetter results. The resulting maximum clock
frequency increases by about 276.28% for the FRIetily and about 277.06% for the multiplier.
Conclusion: It can be concluded that on-chip implementatiomipkline digit-slicing multiplier-less
butterfly for FFT structure is an enabler in sotyiproblems that affect communications capability in
FFT and possesses huge potentials for future celabeks and research areas.
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INTRODUCTION higher radix FFT (Bergland, 1969), the mixed-radix
FFT (Singleton, 1969), the prime-factor FFT (Kolba
FFT plays an important role in many Digital and Parks, 1977), the recursive FFT (Varkonyi-Koczy
Signals Processing (DSP) applications such as i1995), low-memory reference FFT (Waeigal., 2007),
communication systems and image processing. Ihis aMultiplier-less based FFT (Zhowet al., 2007,
efficient algorithm to compute the Discrete Fourier Prasanthiet al., 2005; Mahmud and Othman, 2006)
Transform (DFT). DFT is the main and importantand Application-Specific Integrated Circuits (ASIC)
procedure in data analysis, system design andystem such as stated by Baas (1999). ASIC-based
implementation (Oppenheirgt al., 1999). In order to systems are able to fit real low-power or high
reduce the complexity computation of the FFT performance applications; however the functionasyv
algorithm many modules have been designed andolid to be modified (Hsu and Lin, 2008). The study
implemented in different platforms. These modulesthe digit-slicing technique has been dealt by BunN
focus on the radix order or twiddle factors to parfa and Woodward (1976); Peled and Liu (1976) and
simple and efficient algorithm which includes the Sharrif (1980) for the digital filters.
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The design and implementation of Digit-slicing FFT In general, higher-radix FFT algorithm has fewer
has been discussed by Sanehdl., (1998). This study numbers of complex multiplications, whereas radix-2
proposed a similar idea with the ones put forth bYFFT algorithm is the simplest form in all FFT aligoms.

Samadet al (1998); but having a difference by the usefuyrthermore, it has a regularity mode that makes it

of a different algorithm and different platform, iwh  gyjtable for VLSI implementation as shown in the
helps to improve the performance and achieve highegiowing Eq. 2:

speed. Recently, FPGAs Field Programmable Gate
Array have become an applicable option to direct
hardware solution performance in the real time 2 2
application. In this study, digit-slicing architace was ~ XIMI = 2 X[2n]W " +W > x[2n +1JWy" (2)
proposed in designing the pipeline digit-slicing "o 2 e 2
multiplier-less  butterfly. The FFT  butterfly
multiplication is the most crucial part in causitie FFT algorithm relies on a ‘divide-and-conquer’
delay in the computation of the FFT. In view of the methodology, which divides the N coefficient points
fact, the twiddle factors in the FFT processor werdnto smaller blocks in different stages. The fissage
known in advance hence we proposed to use theomputes with groups of two coefficients, yieldiN¢g2
pipeline digit slicing multiplier-less butterfly teeplace  blocks, each computing the addition and subtraadibn
thetraditional butterfly in FFT. the coefficients scaled by the corresponding tvéddl
The study structure is organized as follows;factors, called a butterfly for its cross-over agpace
describes the FFT architecture in brief, explaihe t as shown in F|g 1. These results are used to ctEmpu
butterfly conventional architecture, discuses th@itd the next state of N/4 blocks, which will then comebi
slicing architecture, explicates the design ofgiieline  the results of two previous blocks, combining four
digit-slicing multiplier-less butterfly architectrr in - gefficients at this point. This process is repéatatil
detail and finally the implementation result and,ne main block is formed, with a final computatioh
conclusion respectively. all N coefficients. Fig. 2 shows the 8-point ra@BIT

—~-1 ﬁ_l

MATERIALSAND METHODS FFT.

Fast Fourier Transform (FFT): A useful method to A N
transform domains from the time domain to the N
frequency domain and the reverse for the
implementation on digital hardware is the DFT. Ror X A.WB
point DFT of a complex data sequence x(n) is define
in Eq. 1:

N-1 W
X(K) =D x(MWy" ,k=0,1,....... N7 Q)

" Fig. 1. Butterfly structure
Where:
x(n) and X(k) = Complex numbers 19 Stage 2 Sage 394 Sage

Wi =e P = The twiddle factor x(0)
x(d)
X2

PN
RNV
S
e
=

The DFT of N-point finite sequence represents
harmonically related frequency components of x(n).
The direct computation of Eq. 1 requires the oafey? x(6)

operations where N is the transform size. Cooley an | .

XXX
AN
AN
S/

Tukey (1965) found this new technique to reduce the
order of complexity operations of DFT from?No )
(Nlog:N). Consequently, a huge number of FFT | z3
algorithms have been developed such as Radix-&X-4ad

and split radix algorithms. These algorithms arestiyo

used for practical applications due to their simple
structure and constant butterfly geometry. Fig. 2: 8-points FFT radix-2 decimation in time
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(Xr +jXi) =(Ar +Ai) +[Wr Wi) (Br +4Bi) ] (5)

Delay unit

A

YYVYY

e

Delay unit

(Yr +jYi) =(Ar +jAi) —[Wr +Wwi) Br 4Bi) | (6)

The implementation of the complex multiplier is

] required for four real multipliers and two real adslas

GE _,lT' shown in Fig. 4. The complex multiplier is deteredn
in Eq. 7:

’%‘ ’%‘ (Br + jBi) x(Wr +jWi) =(Br xWr) +(Br xjWi)

+(jBi xWr) +(jBi xjwi) 4(Br "Wr) +jBi §Wi)]
Fig. 3: Radix-2 DIT FFT butterfly architecture +[(Br xjWwi) +(jBi XWr)] (Br XWr) «Bi »Wi)]
H(Br x jWi) +(jBi xXWr)]

The real and imaginary parts of the multiplication

Complex

L= >
multiplier
=

YYVYY

()

{  Multiplier

Complex
subtractor

) Multiplier

result is [(Br xWr) —(Bi xWi)] and
Multiplier _ [(Br xjwi) +(jBi xWr)] respectively.
‘g‘gi The complex adder is required for two real adders
23

to perform addition functionality as shown in Fig.

Fig. 4: Complex multiplier structure (Ar +jAi) +(Br +jBi) =Ar 4Br) +(Ai -Bi) (8)

Digit-dicing architecture: The concept behind the

- > s digit-slicing architecture is any binary numberttiban
= - Ar+Br . N .
>l > be sliced into a few blocks of shorter binary nursbe
A | = with each block carrying a different weight. In ghi

study, the fixed-point 2's complements arithmetas h
been chosen to represent the input data, which are

Br [ |
- = P singed numbers with absolute value less than ohe. T
IE k- > i absolute value of the input data x with length obiBs
= CxE ... 8" has been represented in  2's
— complement as:
Fig. 5: Complex adder structure Bl
x=> 2% 9)
Conventional butterfly architecture The conventional 0
radix-2 DIT butterfly architecture consists of cdemp To represent the sliced data, there are many
data 1/O, complex multiplier and complex adder andgifferent algorithms. Depending on the data type an
subtraction as shown in Fig. 3. _ word length, different structures can be introduded
Consider A and B as the complex input data andhis study, where the fundamental sliced algorithith
the complex twiddle factor is considered as: be presented as following:
- _iWi b-1
W = Wr-Wi y {zzpkxk} o (10)
k=0

Hence finally the complex output are X and Y.
The index r and i represent the real and imaginaryWhere:
parts respectively: x = Sliced into b blocks
p = Bit widths per block
X =A+WB (3)

X =Y 29X, | 11
Y =A-WB (4) k JZ; ki (11)
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where, X are all either ones or zeros except and X The most significant block is k = 0 where this
1,j=paWhich is zero or minus one. contains the only sign bit of x plus leading dumzeyos
The algorithm in Eq. 10 applies when the slicedto make up a block of length p bits (Sanetdl., 1998):
data word length is*such as 2= 4, =8, 16...bits.
Thus, let us consider the decimal number -0.65625,_, =0 or -1 only
of which we would like to demonstrate how digit Pl (13)
slicing operates accordingly (Fig. 6): X :Z(:,Z'Xk,ﬁ X,;=0orlonlyfork# 0
=
x = 1.010 110¢=-0.65625 Let us assume that the decimal number - 0.328125
is represented as nine bits two’s complement number
where, the suffix 2 refers to a binary fixed pdiwb’s
complement number 8 bits and the suffix 10 refera t 2
decimal number, if x is sliced into two blocks, exich X =;}[24]
four bits wide, thatisb =2 and p = 4: X S[2T] +[29 T2 421 +[2 1 f2 %2 1
=-1+2"+ 2%+ 2%+ 2°= -0.328125

k
Xk

3
Xo=Y 21X, =2 +2° =12
’;0 As a comparison between the first and the second
X,=)2IX, =22 +2'=-6 algorithms, the second algorithm requires one extra
i=0 block to deal with the sign bit which makes theiges
more complicated and requires more hardware for the

implementation. In this study, the first digit-stig

1
X :{z 24kxk}2‘(8‘1) algorithm has been chosen to build the digit-stidifr T
k=0 butterfly structure. Therefore, any complex numpes
X =[24X°x12+ 2“”(—6)]x 27 can be sliced into smaller blocks b, each having a
84 shorter word length, p, as illustrated in following
X =(12-96)x 2’ =——=-0.65625 equations:
128
F=F+ R (14)

Another algorithm that represents the sliced data
with a word length 21 such as 2+1=5, 9, 17...bits

[ [
can be dealt as the following: F:{izpk Ek} Z(pb-1) {zl ok ||:k:| 7 (1) (15)
k=0 k=0
p-1 -
X= |:2p] Xk (12) p-1
k=0 Pk = 2. 2 Ry (16)
j=0
where, x is a decimal number whose absolute vaue i
less than one and is sliced into b blocks each loitg 1
wide. Fic :Z;,ZJ Ric. 17
=
1= T 0

where, the values off and Ry, are either zero or
one.

Lol rfofifrfo]ol]

Pipeline digit-slicing multiplier-less butterfly

architecture: The butterfly is the smallest component
T T to build the FFT. As mentioned in the explanations

prior to this, the butterfly structure contains one
complex multiplier, one complex adder and one

Signbit, if a one Binary point complex subtractor.
denotes minus The digit-slicing architecture has been applied fo
the butterfly input to slice the data into four gps each
Fig. 6: The digit-slicing first algorithm for -0.625 carrying four bits as shown in Fig. 8.
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k> 0 1 2 The multiplication functionality is regarded a®th
== most important operation for most signal processing
'_Ej_fj_f ! | | ! ‘ 0 | ! |0 | | ! | ! ‘ 0 | 0 | systems, but it is a complex and expensive operatio
Leading dummy zeros Many techniques have been introduced for redudieg t
X =242 Xi=242 size and improving the speed of multipliers. Some
applications require Constant Coefficient Multipfie
Fig. 7: The digit-slicing %' algorithm for -0.328125 such as digital signal processing, image processiry
multiple precision arithmetic in the design of cdlers.
4 bits Constant Coefficient Multipliers is one of the most
7> A0 common solutions to speed up the multiplication
4 bits process.
16 bits Al The multiplier can be designed for one constanictvhi
A _Z»| Digit slicing unit _ is termed as Single Constant Multiplier (SCM) or fo
16-4 bits 4 bits many constant and is termed as Multiple Constant
The input data Multiplier (MCM). Since the twiddle factor in FFT
for the butterfly : processor are known in advance, a special design of
16 bits 4 bits L2
/A3 SCM has been proposed to perform the multiplication
function with the twiddle factor without using the
traditional multiplier, which is termed as Single

Xp=-1

Y

Fig. 8: Digit-slicing structure for the input A Constant Multiplier Less (SCML). The design of the
— —— SCML consists of four lookup tables (ROMs) and adde
AN T AR to perform the output as shown in Fig. 9. To geteera
) mt: . the lookup tables data (the multiplication result
wous | ROM: possibilities), which are 16 different results feach
B > . s A ROM, a special MATLAB program has been written by
1NN applying the digit-slicing algorithm for all the psible
Theinputdeta forthe 3 numbers for the input data (4 bits) from “0000” to
1atits abits 16 bits “1111" to perform all the possibilities for the
b o > multiplication result. The result for the SCML hasen

optioned by simple addition for all the lookup &4l
Fig. 9: Digit-Slicing  Single  Constant  Multiplier results. In the hardware implementation, the adldliti

(DSSCM) structure logic has been reduced. During the addition offtue
products obtained from the look-up tables, the tleas
bot L - : )
- Pk ~(pb-1) significant digit (4 bits) for each level is alwaggded
A LZ;Z Ak}z (18) to zero. These bits will not be affected, or chahged

will be carried into the next column. The storadelb
Pl these possibilities in four different ROMs allowset
A =D 2A (19)  design to perform the multiplication process withou
=0 any real multiplier.

_ From Eq. 10 and 11, the digit-slicing multiplier i
where, A, are all either ones or zeros except forrepresented as the following:

Ay=p-1,j=p-1Which is zero or minus one.
The same applies for the input B:

3
BW = {Z 2% WBK}Z'”) (22)
b-1 -
B= {z 20 Bk} 27 (po-t) (20) -
k=0
3
. WB, => 2/ WB, | (23)
B.=Y 2B, (21) =0

where, WR; are all either ones or zeros except for
where, R; are all either ones or zeros except for theWBy=p.1 j=p1Which is zero or minus one and where W is
value Bp.1j=p-1 Which is zero or minus one. the constant.
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T X iscomplex number

DiEHE& = > [0 homal ]| BB e B & @ E e .
Xy =X X
== Realpartof X, = A + WB ,

Result for the normal multiplier
Imagpartof X, = A + WB ,

The same step for the output X has been applied to
get the output Y:

Result for the Digit Slicing multiplier

aaaaaaa

This module to show that the digit slicing multiplication Y = A - W B
get the same resulr with the normal multiplication

R R ok (oo-1) = | 3 ok (¢ 1)
p ~(p _ pl p -
XY, (27PN = Y 2MA, |2
o= k=0

Fig. 10:MATLAB design of digit-slicing single [b-
constant multiplier-less for the butterfly {

(26)

» O

2 WBK} 2%

k=0

Y, =A, -WB,

NETE] s »oafor e Eebe- REBE

Y, iscomplex number
Y=Y +iYq
Realpartof Y, = A—- WB, Imagpartof Y= A- WB,

Finally, the complex output is represented as the

following:
- Xy A tWB, +WB, (27)
Fig. 11: MATLAB design of digit-slicing butterfly X =A +WB. -WB (28)
ik — Mk ik rk

The result of the multiplication will be added and

subtracted with the complex inputs+4; for the Y =Au = WB, ~WB,, (29)
butterfly to perform the butterfly outputs.
The butterfly output X has been defined as: Y, =A, -WB, +WB,, (30)
b-1
X {ZZkak}Z“pH’ (24) The full digit-slicing single constant multipliéess
k=0 has been designed and tested in MATLAB as shown in
Fig. 10 and 11, of which the result is then comgare
-1 ) I
X, =32/, | (25) with the normal multiplier.

For the addition and subtraction, the parallefipre
Koggie and Stone Ling adder were used for highdpee
and better performance. The pipeline technique was
applied for the full design for better performance.

=0

where, X; are all either ones or zeros except for
Xi=b-1,j=p-1Which is zero or minus one.
By applying Eq. 18, 20 and 22 into Eq. 3:
RESULTSAND DISCUSSION

X=A+WB

3 ~ 3 ~ Two different modules were implemented for radix-
|:;)24kxk:|2 (pm){;)zl‘kAk}Z oDt 2 DIT butterfly. The first module uses the convendl

s architecture for the butterfly where the twiddletéas
{ZZ‘WWBK}Z‘“"*“ are stored in ROM and called by the butterfly to be
k=0 multiplied with the inputs by utilising the dediedthigh
X =A +WB, speed multiplier equipped with the Virtex-1l FPGA
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Fig. 12: Simulation result of the pipeline digitehg  Fig. 14:RTL schematic for the pipeline digit-stigi
single constant multiplier-less for the butterfly single constant multiplier-less for the butterfly

ow

16bits_tF_t/clk 1 Multiplier_less_4bits_Rom_case_03_2009:1
et

drom_Y_mux00011

_Y_mux00011

Fig. 13: Simulation result of digit-slicing buttirf

Fig. 15:RTL schematic for the pipeline digit-stigi

Table 1: Hardware specifications of the digitisiichutterfly single constant multiplier-less lookup table
Xilinx Virtax-1l Total equivalent gate  Maximum (ROM) for the butterfly

FPGA XC2v250-6FG456  count for design frequency MHz

Conventional butterfl 18.408 198.987 . - .
Pipe\llineldigit-sliucing y 31.159 549.750 Meanwhile, Fig. 14 and 15 shows the RTL schematic f
multiplier-less butterfly the Pipeline Digit-Slicing Single Constant Multgiiless
Conventional 16 bits multiplier 4.131 220.160 for the Butterfly.

Pipeline digit-slicing single 6.483 609.980

constant multiplier-less 16 bits

for the butterfly CONCLUSION

The other module uses the pipelined digit-slicimgle
constant multiplier-less architecture to performe th
multiplication with the twiddle factor. Both modgle
were built and tested in MATLAB as indicated in Fiy

This study presented an on-chip implementation
of pipeline digit-slicing multiplier-less butterfljor
FFT structure. The implementation has been coded in

; ; : . Verilog hardware descriptive language and was
and 10 and is then coded in Verilog and synthediged S )
using the XST-Xilinx Synthesis Technology tool. Thetested on Xilinx Virtex-I1 XC2V500-6- FGA456
target FPGA was Xilinx Virtex-l XC2V500-6-FG456 Prototyping FPGA  board. A maximum  clock
FPGA (Sharrifet al., 1991). The ModelSim simulation frequency of 549.75 MHz has been obtained from the
result of pipelined digit-slicing multiplier-lesadix-2 DIT ~ Synthesis report for the pipeline digit-slicing
butterfly is shown in Fig. 12 and 13, while the thgsis multiplier-less butterfly that is 2.77 time fastdran
results for the two models are presented in Tabkehich ~ the conventional butterfly. It can be concludedttha
demonstrates the hardware specifications for tlsggde On-chip implementation of pipeline digit-slicing
It indicates the maximum clock frequency of 549.75multiplier-less butterfly for FFT structure is an
MHz for Pipelined digit-slicing Multiplier-less Btarfly ~ enabler in  solving problems that affect
as well as the Pipelined Digit-slicing Single Camét communications capability in FFT and possesses
Multiplier-less for the butterfly with a perfmance huge potentials for future related works and resear
of the maximum clock frequency of 609.98HM  areas.
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