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Abstract: Problem statement: The need for wireless communication has driven the communication 
systems to high performance. However, the main bottleneck that affects the communication capability 
is the Fast Fourier Transform (FFT), which is the core of most modulators. Approach: This study 
presented on-chip implementation of pipeline digit-slicing multiplier-less butterfly for FFT structure. 
The approach taken; in order to reduce computation complexity in butterfly, digit-slicing multiplier-
less single constant technique was utilized in the critical path of Radix-2 Decimation In Time (DIT) 
FFT structure. The proposed design focused on the trade-off between the speed and active silicon area 
for the chip implementation. The new architecture was investigated and simulated with MATLAB 
software. The Verilog HDL code in Xilinx ISE environment was derived to describe the FFT Butterfly 
functionality and was downloaded to Virtex II FPGA board. Consequently, the Virtex-II FG456 Proto 
board was used to implement and test the design on the real hardware. Results: As a result, from the 
findings, the synthesis report indicates the maximum clock frequency of 549.75 MHz with the total 
equivalent gate count of 31,159 is a marked and significant improvement over Radix 2 FFT butterfly. 
In comparison with the conventional butterfly architecture, design that can only run at a maximum 
clock frequency of 198.987 MHz and the conventional multiplier can only run at a maximum clock 
frequency of 220.160 MHz, the proposed system exhibits better results. The resulting maximum clock 
frequency increases by about 276.28% for the FFT butterfly and about 277.06% for the multiplier. 
Conclusion: It can be concluded that on-chip implementation of pipeline digit-slicing multiplier-less 
butterfly for FFT structure is an enabler in solving problems that affect communications capability in 
FFT and possesses huge potentials for future related works and research areas. 
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INTRODUCTION 

 
 FFT plays an important role in many Digital 
Signals Processing (DSP) applications such as in 
communication systems and image processing. It is an 
efficient algorithm to compute the Discrete Fourier 
Transform (DFT). DFT is the main and important 
procedure in data analysis, system design and 
implementation (Oppenheim et al., 1999). In order to 
reduce the complexity computation of the FFT 
algorithm many modules have been designed and 
implemented in different platforms. These modules 
focus on the radix order or twiddle factors to perform a 
simple and efficient algorithm which includes the 

higher radix FFT (Bergland, 1969), the mixed-radix 
FFT (Singleton, 1969), the prime-factor FFT (Kolba 
and Parks, 1977), the recursive FFT (Varkonyi-Koczy, 
1995), low-memory reference FFT (Wang et al., 2007), 
Multiplier-less based FFT (Zhou et al., 2007; 
Prasanthi et al., 2005; Mahmud and Othman, 2006) 
and Application-Specific Integrated Circuits (ASIC) 
system such as  stated by Baas (1999). ASIC-based 
systems are able to fit real low-power or high 
performance applications; however the function is very 
solid to be modified (Hsu and Lin, 2008). The study of 
the digit-slicing technique has been dealt by Bin Nun 
and Woodward (1976); Peled and Liu (1976) and 
Sharrif (1980) for the digital filters.  
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The design and implementation of Digit-slicing FFT 
has been discussed by Samad et al., (1998). This study 
proposed a similar idea with the ones put forth by 
Samad et al (1998); but having a difference by the use 
of a different algorithm and different platform, which 
helps to improve the performance and achieve higher 
speed. Recently, FPGAs Field Programmable Gate 
Array have become an applicable option to direct 
hardware solution performance in the real time 
application. In this study, digit-slicing architecture was 
proposed in designing the pipeline digit-slicing 
multiplier-less butterfly. The FFT butterfly 
multiplication is the most crucial part in causing the 
delay in the computation of the FFT. In view of the 
fact, the twiddle factors in the FFT processor were 
known in advance hence we proposed to use the 
pipeline digit slicing multiplier-less butterfly to replace 
the traditional butterfly in FFT. 
 The study structure is organized as follows; 
describes the FFT architecture in brief, explains the 
butterfly conventional architecture, discuses the digit 
slicing architecture, explicates the design of the pipeline 
digit-slicing multiplier-less butterfly architecture in 
detail and finally the implementation result and 
conclusion respectively. 
 

MATERIALS AND METHODS 
 
Fast Fourier Transform (FFT): A useful method to 
transform domains from the time domain to the 
frequency domain and the reverse for the 
implementation on digital hardware is the DFT. For N-
point DFT of a complex data sequence x(n) is defined 
in Eq. 1: 
 

N 1
kn
N

n 0

X(k) x(n)W ,k 0,1,.......,N 1
−

=

= = −∑  (1) 

 
Where: 
 x(n) and X(k) = Complex numbers 

kn j2 / N
NW e− π=  = The twiddle factor 

 
 The DFT of N-point finite sequence represents 
harmonically related frequency components of x(n). 
The direct computation of Eq. 1 requires the order of N2 
operations where N is the transform size. Cooley and 
Tukey (1965) found this new technique to reduce the 
order of complexity operations of DFT from N2 to 
(Nlog2N). Consequently, a huge number of FFT 
algorithms have been developed such as Radix-2, radix-4 
and split radix algorithms. These algorithms are mostly 
used for practical applications due to their simple 
structure and constant butterfly geometry.  

 In general, higher-radix FFT algorithm has fewer 
numbers of complex multiplications, whereas radix-2 
FFT algorithm is the simplest form in all FFT algorithms. 
Furthermore, it has a regularity mode that makes it 
suitable for VLSI implementation as shown in the 
fallowing Eq. 2: 

 
N N

1 1
2 2

nm m nm
N N N

n 0 n 02 2

X[m] x[2n]W W x[2n 1]W

− −

= =

= + +∑ ∑  (2) 

 
 FFT algorithm relies on a ‘divide-and-conquer’ 
methodology, which divides the N coefficient points 
into smaller blocks in different stages. The first stage 
computes with groups of two coefficients, yielding N/2 
blocks, each computing the addition and subtraction of 
the coefficients scaled by the corresponding twiddle 
factors, called a butterfly for its cross-over appearance 
as shown in Fig. 1. These results are used to compute 
the next state of N/4 blocks, which will then combine 
the results of two previous blocks, combining four 
coefficients at this point. This process is repeated until 
one main block is formed, with a final computation of 
all N coefficients. Fig. 2 shows the 8-point radix-2 DIT 
FFT. 

 

 
 
Fig. 1:  Butterfly structure 

 

 
 
Fig. 2: 8-points FFT radix-2 decimation in time 



Am. J. Engg. & Applied Sci., 3 (4): 757-764, 2010 
 

759 

 
 

Fig. 3: Radix-2 DIT FFT butterfly architecture 
 

 
 

Fig. 4: Complex multiplier structure 
 

 
 

Fig. 5: Complex adder structure 
 
Conventional butterfly architecture The conventional 
radix-2 DIT butterfly architecture consists of complex 
data I/O, complex multiplier and complex adder and 
subtraction as shown in Fig. 3. 
 Consider A and B as the complex input data and 
the complex twiddle factor is considered as: 
 

W = Wr-jWi 
 
 Hence finally the complex output are X and Y.  
 The index r and i represent the real and imaginary 
parts respectively: 
 
X A WB= +  (3) 

 
Y A WB= −  (4) 

(Xr jXi) (Ar jAi) (Wr jWi) (Br jBi)+ = + + + × +    (5) 

 
(Yr jYi) (Ar jAi) (Wr jWi) (Br jBi)+ = + − + × +    (6) 

 
 The implementation of the complex multiplier is 
required for four real multipliers and two real adders as 
shown in Fig. 4. The complex multiplier is determined 
in Eq. 7: 
 

 

(Br jBi) (Wr jWi) (Br Wr) (Br jWi)

( jBi Wr) ( jBi jWi) [(Br Wr) ( jBi jWi)]

[(Br jWi) ( jBi Wr)] [(Br Wr) (Bi Wi)]

[(Br jWi) ( jBi Wr)]

+ × + = × + ×
+ × + × = × + ×
+ × + × = × − ×
+ × + ×

 (7) 

 
 The real and imaginary parts of the multiplication 
result is [(Br Wr) (Bi Wi)]× − ×  and 

[(Br jWi) ( jBi Wr)]× + ×  respectively. 
 The complex adder is required for two real adders 
to perform addition functionality as shown in Fig. 5: 
  
(Ar jAi) (Br jBi) (Ar Br) j(Ai Bi)+ + + = + + +    (8) 

 
Digit-slicing architecture: The concept behind the 
digit-slicing architecture is any binary number that can 
be sliced into a few blocks of shorter binary numbers, 
with each block carrying a different weight. In this 
study, the fixed-point 2’s complements arithmetic has 
been chosen to represent the input data, which are 
singed numbers with absolute value less than one. The 
absolute value of the input data x with length of B bits 
(x0,x1,x2,….,xB-1) has been represented in 2’s 
complement as: 
 

B 1
j j

k 0

x 2 x
−

−

=

=∑   (9)  

 
 To represent the sliced data, there are many 
different algorithms. Depending on the data type and 
word length, different structures can be introduced. In 
this study, where the fundamental sliced algorithm will 
be presented as following: 
 

b 1
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k
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=
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Where: 
x = Sliced into b blocks 
p = Bit widths per block 
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where, Xk,j are all either ones or zeros except and Xk = b-

1, j = p-1 which is zero or minus one. 
 The algorithm in Eq. 10 applies when the sliced 
data word length is 2x such as 22 = 4, 23 = 8, 16… bits. 

 Thus, let us consider the decimal number -0.65625 
of which we would like to demonstrate how digit 
slicing operates accordingly (Fig. 6):  

 
x = 1.010 11002 = -0.6562510 

 
where, the suffix 2 refers to a binary fixed point two’s 
complement number 8 bits and the suffix 10 refers to a 
decimal number, if x is sliced into two blocks, of each 
four bits wide, that is b = 2 and p = 4: 
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 Another algorithm that represents the sliced data 
with a word length 2x+1 such as 22 +1=5, 9, 17…bits 
can be dealt as the following: 
 

p 1 kp
k

k 0

x 2 X
− −

=

 =  ∑  (12) 

 
where, x is a decimal number whose absolute value is 
less than one and is sliced into b blocks each of p bits 
wide.  
 

 
 
Fig. 6: The digit-slicing first algorithm for -0.65625 

 The most significant block is k = 0 where this 
contains the only sign bit of x plus leading dummy zeros 
to make up a block of length p bits (Samad et al., 1998): 
 

k 0

p 1
j

k k, j k, j
j 0

X 0 or 1 only

X 2 X ; X 0 or 1 only for k 0

=

−

=

= −

= = ≠∑
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 Let us assume that the decimal number - 0.328125 
is represented as nine bits two’s complement number: 
 

k2
4

k
k 0

4 0 4 1 3 1 4 2 3 2

1 3 5 6
10

x 2 X

x [2 ] [ 1] [2 ] [2 2 ] [2 ] [2 2 ]
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−

=

− − −

− − − −
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= − + + + +
= − + + + + =

∑

 

 
 As a comparison between the first and the second 
algorithms, the second algorithm requires one extra 
block to deal with the sign bit which makes the design 
more complicated and requires more hardware for the 
implementation. In this study, the first digit-slicing 
algorithm has been chosen to build the digit-slicing FFT 
butterfly structure. Therefore, any complex numbers, F, 
can be sliced into smaller blocks b, each having a 
shorter word length, p, as illustrated in following 
equations: 
 

R IF F jF= +  (14) 
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R k Ik

k 0 k 0

F 2 F 2 j 2 F 2
− −

− − − −

= =

   
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p 1

j
R k R k, j

j 0

F 2 F
−

=

=∑  (16) 

 
p 1

j
Ik Ik, j

j 0

F 2 F
−

=

=∑  (17) 

 
where,  the values of FIk,i and FRk,I are either zero or 
one.  
 
Pipeline digit-slicing multiplier-less butterfly 
architecture: The butterfly is the smallest component 
to build the FFT. As mentioned in the explanations 
prior to this, the butterfly structure contains one 
complex multiplier, one complex adder and one 
complex subtractor. 
 The digit-slicing architecture has been applied for 
the butterfly input to slice the data into four groups each 
carrying four bits as shown in Fig. 8.  
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Fig. 7: The digit-slicing 2nd algorithm for -0.328125 
 

 
 
Fig. 8: Digit-slicing structure for the input A 
 

 
 
Fig. 9: Digit-Slicing Single Constant Multiplier 

(DSSCM) structure 
 

b 1
pk (pb 1)

k
k 0

A 2 A 2
−

− −

=

 
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p 1

j
k k, j

j 0

A 2 A
−

=

=∑  (19) 

 
where, Ak,j are all either ones or zeros except for      
Ak=b-1,j=p-1 which is zero or minus one. 
 The same applies for the input B: 
 

b 1
pk (pb 1)

k
k 0

B 2 B 2
−

− −

=

 
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 
∑  (20) 

 
p 1

j
k k, j

j 0

B 2 B
−

=

=∑  (21) 

 
where, Bk,j are all either ones or zeros except for the 
value Bk=b-1,j=p-1 which is zero or minus one. 

 The multiplication functionality is regarded as the 
most important operation for most signal processing 
systems, but it is a complex and expensive operation. 
Many techniques have been introduced for reducing the 
size and improving the speed of multipliers. Some 
applications require Constant Coefficient Multipliers 
such as digital signal processing, image processing and 
multiple precision arithmetic in the design of compilers. 
Constant Coefficient Multipliers is one of the most 
common solutions to speed up the multiplication 
process.  
The multiplier can be designed for one constant which 
is termed as Single Constant Multiplier (SCM) or for 
many constant and is termed as Multiple Constant 
Multiplier (MCM). Since the twiddle factor in FFT 
processor are known in advance, a special design of 
SCM has been proposed to perform the multiplication 
function with the twiddle factor without using the 
traditional multiplier, which is termed as Single 
Constant Multiplier Less (SCML). The design of the 
SCML consists of four lookup tables (ROMs) and adder 
to perform the output as shown in Fig. 9. To generate 
the lookup tables data (the multiplication result 
possibilities), which are 16 different results for each 
ROM, a special MATLAB program has been written by 
applying the digit-slicing algorithm for all the possible 
numbers for the input data (4 bits) from “0000” to 
“1111” to perform all the possibilities for the 
multiplication result. The result for the SCML has been 
optioned by simple addition for all the lookup tables’ 
results. In the hardware implementation, the addition 
logic has been reduced. During the addition of the four 
products obtained from the look-up tables, the least 
significant digit (4 bits) for each level is always added 
to zero. These bits will not be affected, or changed and 
will be carried into the next column. The storage of all 
these possibilities in four different ROMs allows the 
design to perform the multiplication process without 
any real multiplier. 
 From Eq. 10 and 11, the digit-slicing multiplier is 
represented as the following: 
 

3
4k (7)

k
k 0

BW 2 WB 2−

=

 
=  
 
∑  (22) 

 
3

j
k k, j

j 0

WB 2 WB
=

=∑  (23) 

 
where, WBk,j are all either ones or zeros except for 
WBk=b-1,j=p-1 which is zero or minus one and where W is 
the constant. 
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Fig. 10: MATLAB design of digit-slicing single 

constant multiplier-less for the butterfly 
 

 
 
Fig. 11: MATLAB design of digit-slicing butterfly 
 
 The result of the multiplication will be added and 
subtracted with the complex inputs Ar+jA i for the 
butterfly to perform the butterfly outputs. 
 The butterfly output X has been defined as: 
 

 
b 1

pk (pb 1)
k

k 0

X 2 X 2
−

− −

=

 
=  
 
∑  (24) 

 
p 1

j
k k, j

j 0

X 2 X
−

=

=∑  (25) 

 
where, Xk,j are all either ones or zeros except for     
Xk=b-1,j=p-1 which is zero or minus one. 
 By applying Eq. 18, 20 and 22 into Eq. 3: 
 

3 3
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k k
k 0 k 0

3
4k (pb 1)

k
k 0

k k k
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 
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k

k rk ik

rk k r k

ik k i k

X iscomplex number

X X jX

Realpart of X A WB
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= +
= +

= +

 

 
 The same step for the output X has been applied to 
get the output Y: 
 

b 1 b 1
pk (pb 1) pk (pb 1)

k k
k 0 k 0

b 1
pk (pb 1)

k
k 0

k k k

Y A WB

2 Y 2 2 A 2
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=
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 
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∑ ∑
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k

k rk ik

rk k r k ik k i k

Y iscomplex number

Y Y jY

Realpart of Y A WB Imagpartof Y A WB

= +
= − = −

  
 Finally, the complex output is represented as the 
following: 
 

rk rk rk ikX A WB WB= + +  (27) 

 

ik ik ik rkX A WB W B= + −  (28) 

 

rk rk rk ikY A WB WB= − −  (29) 

 

ik ik ik rkY A WB WB= − +  (30) 

 
 The full digit-slicing single constant multiplier-less 
has been designed and tested in MATLAB as shown in 
Fig. 10 and 11, of which the result is then compared 
with the normal multiplier.  
 For the addition and subtraction, the parallel-prefix 
Koggie and Stone Ling adder were used for high speed 
and better performance. The pipeline technique was 
applied for the full design for better performance. 

 
RESULTS AND DISCUSSION 

 
 Two different modules were implemented for radix-
2 DIT butterfly. The first module uses the conventional 
architecture for the butterfly where the twiddle factors 
are stored in ROM and called by the butterfly to be 
multiplied with the inputs by utilising the dedicated high 
speed  multiplier  equipped with the Virtex-II FPGA.  
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Fig. 12: Simulation result of the pipeline digit-slicing 

single constant multiplier-less for the butterfly 
 

 
 
Fig. 13: Simulation result of digit-slicing butterfly 
 
Table 1:  Hardware specifications of the digit-slicing butterfly 
Xilinx Virtax-II Total equivalent gate Maximum 
FPGA XC2v250-6FG456 count for design frequency MHz 
Conventional butterfly 18.408 198.987 
Pipeline digit-slicing 31.159 549.750 
multiplier-less butterfly 
Conventional 16 bits multiplier 4.131 220.160 
Pipeline digit-slicing single 6.483 609.980 
constant multiplier-less 16 bits 
for the butterfly 

 
The other module uses the pipelined digit-slicing single 
constant multiplier-less architecture to perform the 
multiplication with the twiddle factor. Both modules 
were built and tested in MATLAB as indicated in Fig. 9 
and 10 and is then coded in Verilog and synthesized by 
using the XST-Xilinx Synthesis Technology tool. The 
target FPGA was Xilinx Virtex-II XC2V500-6-FG456 
FPGA (Sharrif et al., 1991). The ModelSim simulation 
result of pipelined digit-slicing multiplier-less radix-2 DIT 
butterfly is shown in Fig. 12 and 13, while the synthesis 
results for the two models are presented in Table 1, which 
demonstrates the hardware specifications for the design. 
It indicates the maximum clock frequency of 549.75 
MHz for Pipelined digit-slicing Multiplier-less Butterfly 
as well as the Pipelined Digit-slicing Single Constant 
Multiplier-less  for  the  butterfly  with a performance 
of  the  maximum  clock  frequency  of   609.980  MHz. 

 
 
Fig. 14: RTL schematic for the pipeline digit-slicing 

single constant multiplier-less for the butterfly 
 

 
 
Fig. 15: RTL schematic for the pipeline digit-slicing 

single constant multiplier-less lookup table 
(ROM) for the butterfly 

 
Meanwhile, Fig. 14 and 15 shows the RTL schematic for 
the Pipeline Digit-Slicing Single Constant Multiplier-less 
for the Butterfly. 

 
CONCLUSION 

 
 This study presented an on-chip implementation 
of pipeline digit-slicing multiplier-less butterfly for 
FFT structure. The implementation has been coded in 
Verilog hardware descriptive language and was 
tested on Xilinx Virtex-I1 XC2V500-6- FG456 
prototyping FPGA board. A maximum clock 
frequency of 549.75 MHz has been obtained from the 
synthesis report for the pipeline digit-slicing 
multiplier-less butterfly that is 2.77 time faster than 
the conventional butterfly. It can be concluded that 
on-chip implementation of pipeline digit-slicing 
multiplier-less butterfly for FFT structure is an 
enabler in solving problems that affect 
communications capability in FFT and possesses 
huge potentials for future related works and research 
areas. 
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