
American J. of Engineering and Applied Sciences 3 (4): 757-764, 2010
ISSN 1941-7020
© 2010 Science Publications

Corresponding Author: Yazan Samir Algnabi, Department of VLSI Design, Institute of Microengineering and Nanoelectronics IMEN,
University Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia

757

On-Chip Implementation of Pipeline Digit-Slicing Multiplier-Less

Butterfly for Fast Fourier Transform Architecture

1Yazan Samir Algnabi, 1,2Rozita Teymourzadeh, 1Masuri Othman,
1Md Shabiul Islam and 2Mok Vee Hong

1Department of VLSI Design, Institute of MicroEngineering and Nanoelectronics IMEN,
University Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia

2Department of Electrical and Electronic Engineering,
Faculty of Engineering, Architecture and Built Environment,

UCSI University, Kuala Lumpur, Malaysia

Abstract: Problem statement: The need for wireless communication has driven the communication
systems to high performance. However, the main bottleneck that affects the communication capability
is the Fast Fourier Transform (FFT), which is the core of most modulators. Approach: This study
presented on-chip implementation of pipeline digit-slicing multiplier-less butterfly for FFT structure.
The approach taken; in order to reduce computation complexity in butterfly, digit-slicing multiplier-
less single constant technique was utilized in the critical path of Radix-2 Decimation In Time (DIT)
FFT structure. The proposed design focused on the trade-off between the speed and active silicon area
for the chip implementation. The new architecture was investigated and simulated with MATLAB
software. The Verilog HDL code in Xilinx ISE environment was derived to describe the FFT Butterfly
functionality and was downloaded to Virtex II FPGA board. Consequently, the Virtex-II FG456 Proto
board was used to implement and test the design on the real hardware. Results: As a result, from the
findings, the synthesis report indicates the maximum clock frequency of 549.75 MHz with the total
equivalent gate count of 31,159 is a marked and significant improvement over Radix 2 FFT butterfly.
In comparison with the conventional butterfly architecture, design that can only run at a maximum
clock frequency of 198.987 MHz and the conventional multiplier can only run at a maximum clock
frequency of 220.160 MHz, the proposed system exhibits better results. The resulting maximum clock
frequency increases by about 276.28% for the FFT butterfly and about 277.06% for the multiplier.
Conclusion: It can be concluded that on-chip implementation of pipeline digit-slicing multiplier-less
butterfly for FFT structure is an enabler in solving problems that affect communications capability in
FFT and possesses huge potentials for future related works and research areas.

Key words: Pipelined digit-slicing multiplier-less, Fast Fourier Transform (FFT), Verilog HDL, Xilinx

INTRODUCTION

 FFT plays an important role in many Digital
Signals Processing (DSP) applications such as in
communication systems and image processing. It is an
efficient algorithm to compute the Discrete Fourier
Transform (DFT). DFT is the main and important
procedure in data analysis, system design and
implementation (Oppenheim et al., 1999). In order to
reduce the complexity computation of the FFT
algorithm many modules have been designed and
implemented in different platforms. These modules
focus on the radix order or twiddle factors to perform a
simple and efficient algorithm which includes the

higher radix FFT (Bergland, 1969), the mixed-radix
FFT (Singleton, 1969), the prime-factor FFT (Kolba
and Parks, 1977), the recursive FFT (Varkonyi-Koczy,
1995), low-memory reference FFT (Wang et al., 2007),
Multiplier-less based FFT (Zhou et al., 2007;
Prasanthi et al., 2005; Mahmud and Othman, 2006)
and Application-Specific Integrated Circuits (ASIC)
system such as stated by Baas (1999). ASIC-based
systems are able to fit real low-power or high
performance applications; however the function is very
solid to be modified (Hsu and Lin, 2008). The study of
the digit-slicing technique has been dealt by Bin Nun
and Woodward (1976); Peled and Liu (1976) and
Sharrif (1980) for the digital filters.

Am. J. Engg. & Applied Sci., 3 (4): 757-764, 2010

758

The design and implementation of Digit-slicing FFT
has been discussed by Samad et al., (1998). This study
proposed a similar idea with the ones put forth by
Samad et al (1998); but having a difference by the use
of a different algorithm and different platform, which
helps to improve the performance and achieve higher
speed. Recently, FPGAs Field Programmable Gate
Array have become an applicable option to direct
hardware solution performance in the real time
application. In this study, digit-slicing architecture was
proposed in designing the pipeline digit-slicing
multiplier-less butterfly. The FFT butterfly
multiplication is the most crucial part in causing the
delay in the computation of the FFT. In view of the
fact, the twiddle factors in the FFT processor were
known in advance hence we proposed to use the
pipeline digit slicing multiplier-less butterfly to replace
the traditional butterfly in FFT.
 The study structure is organized as follows;
describes the FFT architecture in brief, explains the
butterfly conventional architecture, discuses the digit
slicing architecture, explicates the design of the pipeline
digit-slicing multiplier-less butterfly architecture in
detail and finally the implementation result and
conclusion respectively.

MATERIALS AND METHODS

Fast Fourier Transform (FFT): A useful method to
transform domains from the time domain to the
frequency domain and the reverse for the
implementation on digital hardware is the DFT. For N-
point DFT of a complex data sequence x(n) is defined
in Eq. 1:

N 1
kn
N

n 0

X(k) x(n)W ,k 0,1,.......,N 1
−

=

= = −∑ (1)

Where:
 x(n) and X(k) = Complex numbers

kn j2 / N
NW e− π= = The twiddle factor

 The DFT of N-point finite sequence represents
harmonically related frequency components of x(n).
The direct computation of Eq. 1 requires the order of N2
operations where N is the transform size. Cooley and
Tukey (1965) found this new technique to reduce the
order of complexity operations of DFT from N2 to
(Nlog2N). Consequently, a huge number of FFT
algorithms have been developed such as Radix-2, radix-4
and split radix algorithms. These algorithms are mostly
used for practical applications due to their simple
structure and constant butterfly geometry.

 In general, higher-radix FFT algorithm has fewer
numbers of complex multiplications, whereas radix-2
FFT algorithm is the simplest form in all FFT algorithms.
Furthermore, it has a regularity mode that makes it
suitable for VLSI implementation as shown in the
fallowing Eq. 2:

N N

1 1
2 2

nm m nm
N N N

n 0 n 02 2

X[m] x[2n]W W x[2n 1]W

− −

= =

= + +∑ ∑ (2)

 FFT algorithm relies on a ‘divide-and-conquer’
methodology, which divides the N coefficient points
into smaller blocks in different stages. The first stage
computes with groups of two coefficients, yielding N/2
blocks, each computing the addition and subtraction of
the coefficients scaled by the corresponding twiddle
factors, called a butterfly for its cross-over appearance
as shown in Fig. 1. These results are used to compute
the next state of N/4 blocks, which will then combine
the results of two previous blocks, combining four
coefficients at this point. This process is repeated until
one main block is formed, with a final computation of
all N coefficients. Fig. 2 shows the 8-point radix-2 DIT
FFT.

Fig. 1: Butterfly structure

Fig. 2: 8-points FFT radix-2 decimation in time

Am. J. Engg. & Applied Sci., 3 (4): 757-764, 2010

759

Fig. 3: Radix-2 DIT FFT butterfly architecture

Fig. 4: Complex multiplier structure

Fig. 5: Complex adder structure

Conventional butterfly architecture The conventional
radix-2 DIT butterfly architecture consists of complex
data I/O, complex multiplier and complex adder and
subtraction as shown in Fig. 3.
 Consider A and B as the complex input data and
the complex twiddle factor is considered as:

W = Wr-jWi

 Hence finally the complex output are X and Y.
 The index r and i represent the real and imaginary
parts respectively:

X A WB= + (3)

Y A WB= − (4)

(Xr jXi) (Ar jAi) (Wr jWi) (Br jBi)+ = + + + × +   (5)

(Yr jYi) (Ar jAi) (Wr jWi) (Br jBi)+ = + − + × +   (6)

 The implementation of the complex multiplier is
required for four real multipliers and two real adders as
shown in Fig. 4. The complex multiplier is determined
in Eq. 7:

(Br jBi) (Wr jWi) (Br Wr) (Br jWi)

(jBi Wr) (jBi jWi) [(Br Wr) (jBi jWi)]

[(Br jWi) (jBi Wr)] [(Br Wr) (Bi Wi)]

[(Br jWi) (jBi Wr)]

+ × + = × + ×
+ × + × = × + ×
+ × + × = × − ×
+ × + ×

 (7)

 The real and imaginary parts of the multiplication
result is [(Br Wr) (Bi Wi)]× − × and

[(Br jWi) (jBi Wr)]× + × respectively.
 The complex adder is required for two real adders
to perform addition functionality as shown in Fig. 5:

(Ar jAi) (Br jBi) (Ar Br) j(Ai Bi)+ + + = + + + (8)

Digit-slicing architecture: The concept behind the
digit-slicing architecture is any binary number that can
be sliced into a few blocks of shorter binary numbers,
with each block carrying a different weight. In this
study, the fixed-point 2’s complements arithmetic has
been chosen to represent the input data, which are
singed numbers with absolute value less than one. The
absolute value of the input data x with length of B bits
(x0,x1,x2,….,xB-1) has been represented in 2’s
complement as:

B 1
j j

k 0

x 2 x
−

−

=

=∑ (9)

 To represent the sliced data, there are many
different algorithms. Depending on the data type and
word length, different structures can be introduced. In
this study, where the fundamental sliced algorithm will
be presented as following:

b 1
pk (pb 1)

k
k 0

x 2 X 2
−

− −

=

 
=  
 
∑ (10)

Where:
x = Sliced into b blocks
p = Bit widths per block

p 1
j

k k, j
j 0

X 2 X
−

=

=∑ (11)

Am. J. Engg. & Applied Sci., 3 (4): 757-764, 2010

760

where, Xk,j are all either ones or zeros except and Xk = b-

1, j = p-1 which is zero or minus one.
 The algorithm in Eq. 10 applies when the sliced
data word length is 2x such as 22 = 4, 23 = 8, 16… bits.

 Thus, let us consider the decimal number -0.65625
of which we would like to demonstrate how digit
slicing operates accordingly (Fig. 6):

x = 1.010 11002 = -0.6562510

where, the suffix 2 refers to a binary fixed point two’s
complement number 8 bits and the suffix 10 refers to a
decimal number, if x is sliced into two blocks, of each
four bits wide, that is b = 2 and p = 4:

3

j 3 2
0 0, j

j 0

3
j 3 1

1 1, j
j 0

X 2 X 2 2 12

X 2 X 2 2 6

=

=

= = + =

= = − + = −

∑

∑

1

4k (8 1)
k

k 0

x 2 X 2− −

=

 
=  
 
∑

4 0 4 1 7

7
10

x 2 12 2 (6) 2

84
x (12 96) 2 0.65625

128

× × −

−

 = × + − × 

−= − × = = −

 Another algorithm that represents the sliced data
with a word length 2x+1 such as 22 +1=5, 9, 17…bits
can be dealt as the following:

p 1 kp
k

k 0

x 2 X
− −

=

 =  ∑ (12)

where, x is a decimal number whose absolute value is
less than one and is sliced into b blocks each of p bits
wide.

Fig. 6: The digit-slicing first algorithm for -0.65625

 The most significant block is k = 0 where this
contains the only sign bit of x plus leading dummy zeros
to make up a block of length p bits (Samad et al., 1998):

k 0

p 1
j

k k, j k, j
j 0

X 0 or 1 only

X 2 X ; X 0 or 1 only for k 0

=

−

=

= −

= = ≠∑
 (13)

 Let us assume that the decimal number - 0.328125
is represented as nine bits two’s complement number:

k2
4

k
k 0

4 0 4 1 3 1 4 2 3 2

1 3 5 6
10

x 2 X

x [2] [1] [2] [2 2] [2] [2 2]

1 2 2 2 2 -0.328125

−

=

− − −

− − − −

 =  

= − + + + +
= − + + + + =

∑

 As a comparison between the first and the second
algorithms, the second algorithm requires one extra
block to deal with the sign bit which makes the design
more complicated and requires more hardware for the
implementation. In this study, the first digit-slicing
algorithm has been chosen to build the digit-slicing FFT
butterfly structure. Therefore, any complex numbers, F,
can be sliced into smaller blocks b, each having a
shorter word length, p, as illustrated in following
equations:

R IF F jF= + (14)

b 1 b 1

pk (pb 1) pk (pb 1)
R k Ik

k 0 k 0

F 2 F 2 j 2 F 2
− −

− − − −

= =

   
= +   
   
∑ ∑ (15)

p 1

j
R k R k, j

j 0

F 2 F
−

=

=∑ (16)

p 1

j
Ik Ik, j

j 0

F 2 F
−

=

=∑ (17)

where, the values of FIk,i and FRk,I are either zero or
one.

Pipeline digit-slicing multiplier-less butterfly
architecture: The butterfly is the smallest component
to build the FFT. As mentioned in the explanations
prior to this, the butterfly structure contains one
complex multiplier, one complex adder and one
complex subtractor.
 The digit-slicing architecture has been applied for
the butterfly input to slice the data into four groups each
carrying four bits as shown in Fig. 8.

Am. J. Engg. & Applied Sci., 3 (4): 757-764, 2010

761

Fig. 7: The digit-slicing 2nd algorithm for -0.328125

Fig. 8: Digit-slicing structure for the input A

Fig. 9: Digit-Slicing Single Constant Multiplier

(DSSCM) structure

b 1
pk (pb 1)

k
k 0

A 2 A 2
−

− −

=

 
=  
 
∑ (18)

p 1

j
k k, j

j 0

A 2 A
−

=

=∑ (19)

where, Ak,j are all either ones or zeros except for
Ak=b-1,j=p-1 which is zero or minus one.
 The same applies for the input B:

b 1
pk (pb 1)

k
k 0

B 2 B 2
−

− −

=

 
=  
 
∑ (20)

p 1

j
k k, j

j 0

B 2 B
−

=

=∑ (21)

where, Bk,j are all either ones or zeros except for the
value Bk=b-1,j=p-1 which is zero or minus one.

 The multiplication functionality is regarded as the
most important operation for most signal processing
systems, but it is a complex and expensive operation.
Many techniques have been introduced for reducing the
size and improving the speed of multipliers. Some
applications require Constant Coefficient Multipliers
such as digital signal processing, image processing and
multiple precision arithmetic in the design of compilers.
Constant Coefficient Multipliers is one of the most
common solutions to speed up the multiplication
process.
The multiplier can be designed for one constant which
is termed as Single Constant Multiplier (SCM) or for
many constant and is termed as Multiple Constant
Multiplier (MCM). Since the twiddle factor in FFT
processor are known in advance, a special design of
SCM has been proposed to perform the multiplication
function with the twiddle factor without using the
traditional multiplier, which is termed as Single
Constant Multiplier Less (SCML). The design of the
SCML consists of four lookup tables (ROMs) and adder
to perform the output as shown in Fig. 9. To generate
the lookup tables data (the multiplication result
possibilities), which are 16 different results for each
ROM, a special MATLAB program has been written by
applying the digit-slicing algorithm for all the possible
numbers for the input data (4 bits) from “0000” to
“1111” to perform all the possibilities for the
multiplication result. The result for the SCML has been
optioned by simple addition for all the lookup tables’
results. In the hardware implementation, the addition
logic has been reduced. During the addition of the four
products obtained from the look-up tables, the least
significant digit (4 bits) for each level is always added
to zero. These bits will not be affected, or changed and
will be carried into the next column. The storage of all
these possibilities in four different ROMs allows the
design to perform the multiplication process without
any real multiplier.
 From Eq. 10 and 11, the digit-slicing multiplier is
represented as the following:

3
4k (7)

k
k 0

BW 2 WB 2−

=

 
=  
 
∑ (22)

3

j
k k, j

j 0

WB 2 WB
=

=∑ (23)

where, WBk,j are all either ones or zeros except for
WBk=b-1,j=p-1 which is zero or minus one and where W is
the constant.

Am. J. Engg. & Applied Sci., 3 (4): 757-764, 2010

762

Fig. 10: MATLAB design of digit-slicing single

constant multiplier-less for the butterfly

Fig. 11: MATLAB design of digit-slicing butterfly

 The result of the multiplication will be added and
subtracted with the complex inputs Ar+jA i for the
butterfly to perform the butterfly outputs.
 The butterfly output X has been defined as:

b 1

pk (pb 1)
k

k 0

X 2 X 2
−

− −

=

 
=  
 
∑ (24)

p 1

j
k k, j

j 0

X 2 X
−

=

=∑ (25)

where, Xk,j are all either ones or zeros except for
Xk=b-1,j=p-1 which is zero or minus one.
 By applying Eq. 18, 20 and 22 into Eq. 3:

3 3
4k (pb 1) 4k (pb 1)

k k
k 0 k 0

3
4k (pb 1)

k
k 0

k k k

X A WB

2 X 2 2 A 2

2 WB 2

X A WB

− − − −

= =

− −

=

= +

   = +   
   

 
 
 

= +

∑ ∑

∑

k

k rk ik

rk k r k

ik k i k

X iscomplex number

X X jX

Realpart of X A WB

Imag partof X A WB

= +
= +

= +

 The same step for the output X has been applied to
get the output Y:

b 1 b 1
pk (pb 1) pk (pb 1)

k k
k 0 k 0

b 1
pk (pb 1)

k
k 0

k k k

Y A WB

2 Y 2 2 A 2

2 WB 2

Y A WB

− −
− − − −

= =

−
− −

=

= −

   = −   
   

 
 
 

= −

∑ ∑

∑
 (26)

k

k rk ik

rk k r k ik k i k

Y iscomplex number

Y Y jY

Realpart of Y A WB Imagpartof Y A WB

= +
= − = −

 Finally, the complex output is represented as the
following:

rk rk rk ikX A WB WB= + + (27)

ik ik ik rkX A WB W B= + − (28)

rk rk rk ikY A WB WB= − − (29)

ik ik ik rkY A WB WB= − + (30)

 The full digit-slicing single constant multiplier-less
has been designed and tested in MATLAB as shown in
Fig. 10 and 11, of which the result is then compared
with the normal multiplier.
 For the addition and subtraction, the parallel-prefix
Koggie and Stone Ling adder were used for high speed
and better performance. The pipeline technique was
applied for the full design for better performance.

RESULTS AND DISCUSSION

 Two different modules were implemented for radix-
2 DIT butterfly. The first module uses the conventional
architecture for the butterfly where the twiddle factors
are stored in ROM and called by the butterfly to be
multiplied with the inputs by utilising the dedicated high
speed multiplier equipped with the Virtex-II FPGA.

Am. J. Engg. & Applied Sci., 3 (4): 757-764, 2010

763

Fig. 12: Simulation result of the pipeline digit-slicing

single constant multiplier-less for the butterfly

Fig. 13: Simulation result of digit-slicing butterfly

Table 1: Hardware specifications of the digit-slicing butterfly
Xilinx Virtax-II Total equivalent gate Maximum
FPGA XC2v250-6FG456 count for design frequency MHz
Conventional butterfly 18.408 198.987
Pipeline digit-slicing 31.159 549.750
multiplier-less butterfly
Conventional 16 bits multiplier 4.131 220.160
Pipeline digit-slicing single 6.483 609.980
constant multiplier-less 16 bits
for the butterfly

The other module uses the pipelined digit-slicing single
constant multiplier-less architecture to perform the
multiplication with the twiddle factor. Both modules
were built and tested in MATLAB as indicated in Fig. 9
and 10 and is then coded in Verilog and synthesized by
using the XST-Xilinx Synthesis Technology tool. The
target FPGA was Xilinx Virtex-II XC2V500-6-FG456
FPGA (Sharrif et al., 1991). The ModelSim simulation
result of pipelined digit-slicing multiplier-less radix-2 DIT
butterfly is shown in Fig. 12 and 13, while the synthesis
results for the two models are presented in Table 1, which
demonstrates the hardware specifications for the design.
It indicates the maximum clock frequency of 549.75
MHz for Pipelined digit-slicing Multiplier-less Butterfly
as well as the Pipelined Digit-slicing Single Constant
Multiplier-less for the butterfly with a performance
of the maximum clock frequency of 609.980 MHz.

Fig. 14: RTL schematic for the pipeline digit-slicing

single constant multiplier-less for the butterfly

Fig. 15: RTL schematic for the pipeline digit-slicing

single constant multiplier-less lookup table
(ROM) for the butterfly

Meanwhile, Fig. 14 and 15 shows the RTL schematic for
the Pipeline Digit-Slicing Single Constant Multiplier-less
for the Butterfly.

CONCLUSION

 This study presented an on-chip implementation
of pipeline digit-slicing multiplier-less butterfly for
FFT structure. The implementation has been coded in
Verilog hardware descriptive language and was
tested on Xilinx Virtex-I1 XC2V500-6- FG456
prototyping FPGA board. A maximum clock
frequency of 549.75 MHz has been obtained from the
synthesis report for the pipeline digit-slicing
multiplier-less butterfly that is 2.77 time faster than
the conventional butterfly. It can be concluded that
on-chip implementation of pipeline digit-slicing
multiplier-less butterfly for FFT structure is an
enabler in solving problems that affect
communications capability in FFT and possesses
huge potentials for future related works and research
areas.

Am. J. Engg. & Applied Sci., 3 (4): 757-764, 2010

764

REFERENCES

Baas, B.M., 1999. A low-power, high-performance,
1024-point FFT processor. IEEE J. Solid-State
Circ., 34: 380-387. DOI: 10.1109/4.748190

Bergland, G., 1969. A radix-eight fast-Fourier
transform subroutine for real-valued series. IEEE
Trans. Audio Electroacoust., 17: 138-144. DOI:
10.1109/TAU.1969.1162043

Bin Nun, M.A. and M.E. Woodward, 1976. A modular
approach to the hardware implementation of digital
filters. Radio Elect. Eng., 46: 393-400. DOI:
10.1049/ree.1976.0063

Cooley, J.W. and J.W. Tukey, 1965. An algorithm for
the machine calculation of complex Fourier series.
Math. Comput., 19: 297-301.
http://www.jstor.org/pss/2003354

Hsu, Y.P. and S.Y. Lin, 2008. Parallel-computing
approach for FFT implementation on Digital Signal
Processor (DSP). World Acad. Sci. Eng. Technol.,
42: 587-591.

 http://www.waset.org/journals/waset/v42/v42-
111.pdf

Kolba, D. and T. Parks, 1977. A prime factor FFT
algorithm using high-speed convolution. IEEE
Trans. Acoust. Speech Sign. Process, 25: 281-294.
DOI: 10.1109/TASSP.1977.1162973

Mahmud, B. and M. Othman, 2006. FPGA
implementation of a canonical signed digit
multiplier-less based FFT Processor for wireless
communication applications. Proceeding of the
IEEE International Conference on Semiconductor
Electronics, Oct. 29-Dec. 1, IEEE Xplore Press,
Kuala Lumpur, pp: 641-645. DOI:
10.1109/SMELEC.2006.380712

Oppenheim, A.V., R.W. Schafer and J.R. Buck, 1999.
Discrete-Time Signal Processing. 2nd Edn.,
Prentice-Hall, Upper Saddle River, NJ., ISBN:
0137549202, pp: 870.

Peled, A. and B. Liu, 1976. Digital Signal Processing
Theory, Design and Implementation. 1st Edn., John
Wiley and Sons, inc., New York, pp: 319.

Prasanthi, R., V. Anuradham, S.K. Sahoo and C.
Shchar, 2005. Multiplier less FFT processor
architecture for signal and image processing.
Proceedings of the International Conference on
Intelligent Sensing and Information Processing,
Jan. 4-7, IEEE Xplore Press, USA., pp: 326-330.
DOI: 10.1109/ICISIP.2005.1529470

Samad, S.A., A. Ragoub, M. Othman and Z.A.M.
Sheriff, 1998. Implementation of a high speed fast
Fourier transform VLS I chip. Microelect. J.,
29: 881-887. DOI: 10.1016/S0026-2692(98)00048-2

Sharrif, Z.A.M., 1980. Digit slicing architecture for real
time digital filters. Ph.D. Thesis. Loughborough
University.

Sharrif, Z.A.M., M. Othman and T.S. Theong, 1991.
Noise analysis for digit slicing FFT. IEE Proc.

Radar Sign. Process., 138: 509-512.
Singleton, R., 1969. An algorithm for computing the

mixed radix fast Fourier transform. IEEE Trans.
Audio Elect., 17: 93-103. DOI:
10.1109/TAU.1969.1162042

Varkonyi-Koczy, A.R., 1995. A recursive fast Fourier
transform algorithm. IEEE Trans. Circ. Syst.,
42: 614-616.

Wang, Y., Y. Tang, Y. Jiang, J.G. Chung and S.S. Song
et al., 2007. Novel memory reference reduction
methods for FFT implementation on DSP
processors. IEEE Trans. Sign Process., 55: 2338-2349.
DOI: 10.1109/TSP.2007.892722

Zhou, Y., J.M. Noras and S.J. Shephend, 2007. Novel
design of multiplier-less FFT processors. Sign.
Proc., 87: 1402-1407. DOI:
10.1016/j.sigpro.2006.12.004

