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ABSTRACT 

This study presents a brief overview of the main features, theoretical formulations and validation tests of 

some Lagrangian micromixing models, currently used for estimations of the ensemble mean and the 

turbulent fluctuations of concentration. Their application fields regards several pollutant dispersion 

phenomena such as: accidents (power or production plants, terroristic attacks, hydrocarbons storage and 

transport, extraordinary emissions), odours (power plants and energy production from waste resources-

compost, dumps, incinerators, biogas storage and smokes-, high enthalpy geothermic plants-sulfide 

hydrogen-, animal farms), micro-scale dispersion from continuous or spot emissions (traffic pollutants, 

power and production plants, dispersion in aquatic environments…), industrial processes (combustion, 

pollutant treatment,…), strong non-linear relationship between concentration and damage (inflammable 

substances, explosions,..), reactions depending on instantaneous concentrations. 

 

Keywords: Micro-Scale Dispersion, Odours, Accidents, Pollutant Dispersion, Micromixing, Macromixing, 

Concentration Fluctuations, Lagrangian Micromixing Models 

1. INTRODUCTION 

Turbulent fluctuations of concentration play a key 
role in several dispersion phenomena, involving water or 
atmospheric pollutants, mainly where the pollutant fly 
time (tf) is smaller than the integral Lagrangian time 
scale (micro-scale dispersion). In particular, 
concentration fluctuations are relevant when modelling 
the transformation processes of several reactions, as 
these normally depend on the instantaneous 
concentrations rather than their mean values. Under these 
conditions, the correlation of the concentrations of reactive 
pollutants may be not negligible (second order kinetics 
reactions). Furthermore, concentration fluctuations are of 
particular interest when damage is strongly non-linear 
with respect to concentration, especially if the influence of 
its peaks or minima is crucial.  

In this context the mean concentration, defined in 

terms of Reynolds’ average concentration (commonly 

referred to as “concentration”), is generally not adequate 

to represent the time and spatial evolutions of the 

instantaneous concentration field. Numerical modelling 

should then try to reproduce concentration fluctuations in 

terms of probability density function (pdf) of 

concentration (fC or concentration pdf), or at least its first 

statistical moments. 

Several dispersion phenomena would then need to be 

studied in terms of concentration fluctuations: 

 

• Accidents: Pollutant dispersion in atmosphere or water 

bodies related to emissions from power or production 

plants, terroristic attacks, hydrocarbons storage and 

transport, inflammable substances, explosions  

• Odours: Ollutants emitted from power plants and 

waste-to-energy processes (composting, dumps, 

incinerators, biogas storage and smokes), high-

enthalpy geothermal plants (hydrogen sulfide) or 

animal farms 
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• Micro-scale: Micro-scale dispersion from 

continuous or spot emissions (from energy or 

production power plants vehicular traffic…) 

• Combustion processes: Combustion processes 

motivated the first development of micromixing 

schemes 
 

 Several numerical schemes have been developed in 
order to evaluate concentration fluctuations, based on 
Direct Numerical Simulations (DNS), Large Eddy 
Simulations (LES), pdf models, Reynolds’ Average 
Navier-Stokes models (RANS) and “fixed pdf” models 
(Amicarelli, 2009). In this context Lagrangian 
micromixing models seem to represent one of the most 
efficient approaches in terms of both accuracy and 
computational costs. 

Lagrangian micromixing models evaluate the mean 
and the higher moments of concentration, coupling a 
macromixing scheme and a micromixing scheme. The 
first evaluates the trajectories of fictitious fluid particles, 
representing the turbulent transporting flow, the latter 
simulates the molecular diffusion processes and the 
pollutant transformations. The resulting governing 
equations, someway constrained by the balance equation 
of the mean concentration, represent a Lagrangian 
stochastic system.  

Several parameters quantify the role of the 

concentration fluctuations and refer to fC: Mean ( )C , 

standard deviation (σC), intensity of fluctuations 

( C
C

Ci =
σ

), skewness (SC), kurtosis (KC), the 99th 

percentile of fC or peak concentration (C99) and the 

intermittency factor ( )χ , the latter defined as the 

probability of positive concentrations. 
 Several experimental studies, some of which 

reported in Table 1, underlines the role of concentration 
fluctuations at the micro-scale. This study continuously 
refers to the minor publication (Amicarelli, 2009). After 
a brief introduction (sec 1), sec 2 shows the main 
characteristics of the numerical formulations of these 
models, while sec 3 presents an overview of some 
reference Lagrangian micromixing studies, describing 
their numerical settings and results. Second 4 finally 
reports the general conclusions of the study. In the 
following, over-bars denote Reynolds’ averages and 
primes turbulent fluctuations, according to the Reynolds’ 
decomposition. 

2. NUMERICAL FORMULATIONS 

Lagrangian micromixing models couple a 

macromixing scheme, which estimates the particle 

trajectories, with a micromixing scheme, which takes 

into account molecular diffusion processes and pollutant 

transformations.  
A generic and simple algorithm for Lagrangian 

micromixing models could be synthesized as follows. 
Particles are released all over the numerical domain, both 
at the source locations (non-null concentration) and 
elsewhere (null concentration or other initial values). At 
each time step two numerical and sequential phases can 
be identified: the macromixing and the micromixing 
ones. During the first phase, particles move according to 
the macromixing scheme and the mean concentrations 
are computed. During the latter one, particle 
concentrations evolve according to the micromixing 
scheme. Further, the particles leaving the domain are 
replaced by new particles generated at the inflow 
sections, in order to continuously model the whole 
turbulent flow. We notice that the particles should 
represent the motion of the whole fluid mass inside the 
domain, for several realization of the same experiment. 
Under the hypothesis of Reynolds’ decomposition in 
fact, Lagrangian micromixing models simultaneously 
reproduce a great number of realizations of the turbulent 
flow. The number of particles should be then enough 
large in order to guarantee that in each cell of the 
underlying grid all the computed concentration statistics 
are enough robust. This underlying or background grid is 
not a computational mesh used to solve the governing 
equations. It represents in fact a domain partition, which 
just defines the cells where to count the statistics of the 
particle concentrations.  

The above generic algorithm is normally modified, 
to minimize the computational costs, according to the 
particular phenomenon to be simulated, as described. 

Some general considerations about macromixing and 
micromixing schemes are hereafter discussed. 

In the case of high Reynolds numbers (turbulent 
regimes), molecular diffusion does not affect concentration 
mean (Pope, 1998). This involves that we can neglect 
molecular diffusion when writing the Reynolds’ average of 
the balance equation of C Equation 1: 

 

dC
= 0

dt
 (1) 

 
We are then allowed to use conservative particles 

(with constant concentration along the trajectory) to 
represent passive pollutants, as they satisfy (1), when 
averaging according to Reynolds Equation 2: 

 

dC dC
0 0

dt dt
= ⇒ =  (2) 
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Table  1. Underlines the role of concentration fluctuations at the micro-scale 

Year Authors Boundary Layer (BL) type iC C99/ C  

1967 Csanady (1967) Report of experimental studies of other works / 2-700 

1982 Fackrell and Robins (1982) Wind tunnel Neutral BL (NBL) 0-2.5 / 

1986 Mah and Warhaft (1986) Grid turbulence, wind tunnel 0-1 / 

1994 Yee et al. (1994) Stable BL 0.8-13 3-670 

  wind tunnel NBL with building 1-47 2-96 

1995 Mylne et al. (1995) NBL 1-9 / 

1997 Chatwin and Robinson (1997) wind tunnel, buildings, passive and heavy gases 0-4 / 

1997 Chatwin et al. (1997) Report of results from other works 3-6 / 

1999 Pavageau and Schatzmann (1999) wind tunnel, buildings 0.2-3 2-22 

2004 Yee and Biltoft (2004) MUST experiment, NBL and SBL, with buildings 0.2-5 14-25 

2007 Bezpalcova (2007) MUST wind tunnel experiment, NBL, buildings 0-18 / 

2011 Klein et al. (2011) Joint Urban 2003 project (urban BL) - full scale  0-4 / 

2011 Klein and Young (2011) Joint Urban 2003 project (urban BL) - wind tunnel  0-5 / 

 

Analogously, the mean concentration conditioned to 

the Lagrangian velocity vector C U〈 〉  is independent of 

molecular diffusion (in particular (3) implies (2) 

Equation 3: 
 

d C U
0

dt

〈 〉
=  (3) 

 
Macromixing schemes can then model mean 

concentrations of passive pollutants thanks to the 
property (2), provided that their trajectories are correctly 
reproduced, as described. The resulting particle 
concentrations however are not representative of 
instantaneous concentrations, which are affected by 
molecular diffusion processes. 

Macromixing schemes in fact would provide highly 
overestimated concentration fluctuations. Further even 
the mean concentration of reactive pollutants cannot be 
properly modelled, if the transformations depend on 
concentration fluctuations (as for second order kinetics 
reactions) and not on the concentration means. 

Lagrangian micromixing models than need to couple 
a micromixing scheme to a macromixing scheme, in 
order to represent molecular diffusion phenomena and 
pollutant transformations. 

Pope (1998) lists the main properties a micromixing 
model should fill. It has: 

 

• To reduce concentration fluctuations, as they would 

result from a macromixing model 

• Not to influence the mean, the conditional mean and the 

turbulent flux of concentration for passive pollutants 

• To provide a Gaussian fC if the concentration field is 

homogeneous 

• To provide concentration values in a limited range 

(not negative, nor higher than C at source position) 

The last two properties can appear in contrast, but fC 
can be eventually cut at the origin and at the maximum 
value of C. 

A main reference for concentration fluctuations is the 

balance equation of the concentration variance in 

turbulent regimes (ui is the component of the Eulerian 

velocity with respect to the xi-axis, DM the molecular 

diffusion, T the reactive term of the balance equation of 

C; (Csanady, 1967) Equation 4: 
 

( )22 2

C C
i i i

i i i

2

M

i

C'σ σ C
+ u + u ' = -2u 'C'

t x x x

C'
-2D + 2C'T'

x

∂∂ ∂ ∂

∂ ∂ ∂ ∂

 ∂
 
∂ 

 (4) 

 
A micromixing scheme only influences the last two 

terms of (4), the dissipation rate of the concentration 

variance ( )Cε  and the reactive term ( )2R , respectively. 

We note that εC depends on the Eulerian derivatives of 

concentration fluctuations, which needs adequate 

formulations in Lagrangian modelling.  

According to the balance equations for the mean 

concentration and the concentration fluctuation Equation 5: 
 

2 2

M M2 2

i i

dC C dC' C'
= D + T, = D + T'

dt x dt x

∂ ∂
∂ ∂

  (5) 

 
From these relations and (Amicarelli, 2009) follows 

Equation 6: 
 

C

dC ' dC d C
ε = 2C ' - T ' = 2 C ' - C ' - C 'T '

d t dt d t

dC
= 2 C ' - C 'T '

dt

          

 
  
 

 (6) 
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If the reactive term is negligible the micromixing 

scheme should correctly model the term Equation 7: 

 

C

dC
ε = 2C'

dt
 (7) 

 

On the other hand, when present, the reactive terms 

can be expressed as functions of instantaneous 

concentrations (as will be highlighted). 

2.1. The Macromixing Schemes  

The most rigorous macromixing scheme, used to 

estimate particle trajectories, was developed by Thomson 

(1987). Lagrangian velocities U = (U,V,W) are updated 

every time step (whose duration is dt) Equation 8: 

 

( ) ( ) ( )
( )

0 0 0 0 0 0

0 0 0

U t + dt;x , t = U t;x , t + dU t;x , t ,

U x , t = U
 (8) 

 

The subscript “0” denotes the initial conditions. 

Integrating (8) in time we can derive particle positions X 

= (X, Y, Z) Equation 9: 

 

( ) ( ) ( )
( )

0 0 0 0 0 0

0 0 0

X t dt;x , t X t;x , t U t;x , t dt,

X x , t X

+ = +

=
 (9) 

 
We even need to define the integral Lagrangian time 

scale ( )L,ijT , which represent the integral of the 

autocorrelation matrix of the Lagrangian velocities (σu,i 

are the standard deviations of velocity) Equation 10: 
 

( ) ( )
( ) ( )0

i 0 0 j 0 0 0

L,ij

t u ,i u, j 0 0

U t;x , t U t ;x , t
T dt

X(t), t x , t

∞

≡
σ σ

∫  (10) 

 
Because the lack of data regarding the off-diagonal 

terms, this parameter TL,ij is sometimes used as a vector 

and commonly as a scalar (TL). The particle velocity at 

time t is correlated with the velocity values of the same 

particles in the immediately previous period, up to a 

certain time, approximately equal to ( )Lt - T . Fixed a 

generic point in space the norm of TL represents the 

time scale of the largest turbulent vortices passing for 

the cited point. 

Thomson (1987) then uses the relation which links TL 

with the rate of dissipation of the turbulent kinetic energy 

ε and the standard deviations of the velocity components 

Equation 11: 

 

i

2

u,i

L

0

2σ
T =

C ε
 (11) 

 

C0 is the Lagrangian Kolmogorov constant. It 

depends on the Reynolds number and usually varies 

between 2 and 6.  

In order to integrate (8), (Thomson, 1987) imposes 

the components of ( )dU  to be Markovian processes, 

composed by a deterministic term, proportional to dt and 

a stochastic term, proportional to a Wiener process 

( )idξ . This is defined as a stochastic variable with a 

Gaussian pdf, a null mean and variance dt (Einstein’s 

notation is valid hereafter for the subscript “j”) Equation 12: 

 

i i ij jdU = a dt + b dξ  (12) 

 

Kolmogorov theory provides an estimation of the 

correlation of the velocity increments, for the time 

increment ∆t tending to zero. Computing the same 

quantity, under the definition of (12), (Thomson, 1987) 

finds an expression for bij Equation 13: 

 

( ) ( ) ( ) ( )i i j j

ij 0 ij ij 0

U t t U t U t t U t

C t, t 0 b C

  + ∆ −  + ∆ − =   

= δ ε∆ ∆ → ⇒ = δ ε
 (13) 

 

In order to derive ai, (Thomson, 1987) imposes the 

so-called “well-mixed condition”. This affirms that, at 

every generic time and point and considering a 

homogeneous distribution of particles all over the 

domain, the velocity statistics of the Lagrangian 

(particle) velocity components should be equal to the 

corresponding Eulerian statistics of the main flow. 

This condition guarantees that the simulated particles 

are consistent with the velocity field of the main flow. 

Under the hypothesis of Gaussian pdfs for the 

Eulerian velocities Equation 14: 

 

( )

2

i

u,i

u1
-
2 σ

i

u,i

1
pdf u = e

2πσ

 
  
   (14) 

 

(Thomson, 1987) obtains the following 3D non 

stationary expression Equation 15:  
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'0 il
ik k

l

i i
l

l

il il
lj mi 0 i

m

i

j

' ' 'il
j lj j k

k

C 1 V
( ) U

2 2 x

u u
u

t x

1 V V
( ) udU dt C d

2 t x

u

x

1 V
U ( ) U U

2 x

−

−

−

ε ∂ − + ∂ 
 ∂ ∂
+ + 

∂ ∂ 
   ∂ ∂ += + ε ξ   

∂ ∂   +   ∂  +
  ∂  

∂ + ∂ 

1

1

1

V

V

V

 (15) 

 
where, Vij is the covariance matrix of the Eulerian 

velocity and -1

lj(V )  is the corresponding inverse matrix. 

The general formulation (15) does not seem to have 

been yet used in micromixing modelling. Several authors 

(Table  2) use some simplifying formulations (Table 2), 

as reported in the following sub-sections. 

2.2. Thomson (1987) Scheme: Stationary Regime 

and Diagonal Covariance Matrix 

In (16) we assume that (x, y, z)=(x1, x2, x3), (U, V, 

W) = (U1, U2, U3) and analogously for the Eulerian 

velocity components Equation 16: 
 

' 2 '

u

2

Lx u

2 2 2

u u u
0 u

U 1 σ U
- + +
T 2 x 2σ

σ σ σ
dU = U + V + W dt + C εdξ

x y z

u u u
+U + V + W

x y z

 ∂
 ∂ 
  ∂ ∂ ∂  

∂ ∂ ∂  
 

∂ ∂ ∂ 
 ∂ ∂ ∂ 

 

' 2 '

v

2

Ly v

2 2 2

v v v
0 v

V 1 σ V
- + +
T 2 y 2σ

σ σ σ
dV = U + V + W dt + C εdξ

x y z

v v v
+U + V + W

x y z

 ∂
 ∂ 
  ∂ ∂ ∂   ∂ ∂ ∂ 
 

∂ ∂ ∂ 
 ∂ ∂ ∂ 

 

' 2 '

w

2

Lz w

2 2 2

w w w
0 w

W 1 σ W
- + +
T 2 z 2σ

σ σ σ
dW = U + V + W dt + C εdξ

x y z

w w w
+U + V + W

x y z

 ∂
 

∂ 
  ∂ ∂ ∂  

∂ ∂ ∂  
 

∂ ∂ ∂ 
 ∂ ∂ ∂ 

 (16) 

2.3. Thomson (1987) Scheme: Grid Turbulence-

Like Solution 

With a scalar mean flow Taylor translation 

hypothesis can be assumed, so that: X = Ut and the 

macromixing scheme reduces to 1D (even assuming 

transversal homogeneity) Equation 17: 

 
2

w

2

L w

W WU σ
dW = - + dt

T 2σ x

 ∂
 

∂  
 

2

w
0 W 2

L w

W W dσ
+ C εdξ = - + dt

T 2σ dt

 
 
 

 

0 W

dX
+ C εdξ , U =

dt
 (17) 

 

2.4. Thomson (1987) Scheme: Stationary Regime, 

Diagonal Covariance Matrix, 2D Dispersion, 

Mean Velocity Aligned with Z-Axis, 

Horizontal Homogeneity 

Under these conditions Taylor translation hypothesis 

can be applied and the macromixing scheme reduces 2D 

Equation 18: 

 

( )

2

v
0 0 v2

v

2
2 2w
w 0 w2

L w

V
dV W C dt C d

z 2

W 1
dW W dt C d

T 2 z

 ∂σ
= − ε + ε ξ ∂ σ 

 ∂σ
= − + ⋅ σ + + ε ξ σ ∂ 

 (18) 

 

2.5. Thomson (1987) Scheme: Solution for 

Fluctuating Velocities 

Thomson scheme can be reformulated splitting the 

instantaneous velocity components, according to 

Reynolds’ decomposition and considering only the 

fluctuating part of velocity as a Markovian process 

Equation 19: 

 

( ) ( ) ( ) ( )

' '

i i ij i

' '

i i i i

dU = a dt + b dξ

U t + dt = u t + dt + U t + dU t
 (19) 

 

Under the hypothesis underlying (16) the 

corresponding solution for the fluctuating velocity 

increments is Equation 20: 
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Table 2. A schematic overview of some Lagrangian micromixing studies 

  Boundary Layer Macromixing   tm iC SC KC C99/ C  

  BL (model  equation Micromixing formulation min min min min 

Year Authors dimensionality) (C0 value) scheme (µor b, C) max max max max 

2004a Sawford (2004a) grid turbulence (2.17) IECM, IEM, Sawford 0 n.a. n.a. n.a. 

  (1D) (2.07-4.89) VCIEM 2004a 1.2 

     (1.2,/) 

2004b Sawford (2004b) grid turbulence (2.17) (3) IECM, IEM Sawford 2004a 0.2  -1.5  1 1.6 

  (1D)   (1.2, 1.81-3) 1.2 2.8 4.5 2.5 

2005a Cassiani et al.  homogeneous (2.18)-1D (6) IEM Cassiani et al., 0 n.a. n.a. n.a. 

 (2005a) turbulence + NBL   2005a (0.65, 2) 4.5 

  wind tunnel (1D)  

2005b Cassiani et al. Convective BL (2.24) IECM Cassiani et al. 0.5 n.a. n.a. n.a. 

 (2005b) (2D)   (2005a)  4 

     (0.7-0.8, 2) 

2005c Cassiani et al. NBL with (2.23) IECM Pope (2000) n.a. n.a. n.a. n.a. 

 (2005c) canopy (2D) (2)  (/,2) 

2005a Luhar and Sawford CBL, 2 (2.24) IECM Sawford 2004a n.a. 0.4 3.5 n.a. 

 (2005a) sources(2D) (3)  (1.1, /)  2.1 9 

2005b Luhar and Sawford CBL (2D) (2.24) IECM Sawford 2004a 0 3 18 n.a. 

 (2005b)  (3)  (0.9 for line, 10 15 100 

     0.6 for point, /) 

2006a Sawford (2006a) grid turbulence, (2.17) IECM (mixture Sawford 2004a n.a. n.a. n.a. n.a. 

  2 sources (1D) (3) fraction scheme (0.5, /) 

    for reactions) 

2006b Sawford (2006b) grid turbulence (2.17) IECM Sawford 2004a 0 -80 100 1 

  (1D) (1.4)  (0.5, /) 1 80 104 100 

2007a Cassiani et al. NBL with (2.23) IECM Cassiani et al., n.a. -0.5 2 n.a. 

 (2007a) canopy (2D) (2)  (2005a) (0.82,2)  4 15  

  Multiple sources  

2007b Cassiani et al. NBL with  (2.23)  IECM, IEM Cassiani et al., n.a. n.a. n.a. n.a. 

 (2007b) canopy (2D) (2)  (2005a) (0.8, 2) 

  Multiple sources  

2007 Dixon and Tomlin wind tunnel NBL n.a. IEM Pope (2000) 0 n.a. n.a. 1.5 

 (2007) + lid-driven  (5)   (/,2)  8 7 

  cavity (2D) 

2011a Amicarelli et al. wind tunnel (2.18) IECM, IEM Cassiani et al., 0 n.a. n.a. n.a. 

 (2011a) NBL 2D (5)  2005a (0.65,2) 2.5  

2011b Amicarelli et al. wind tunnel (2.16) IECM Amicarelli et al. 10−1 n.a. n.a. n.a. 

 (2011b) NBL, canopy  (2)  (2011b) (0.65, 2) 102 

  (3D) 

2011a Postma et al.  wind tunnel (2.18) IECM Cassiani et al., 1 n.a. n.a. n.a. 

 (2011a) NBL (2D) (6)  2005a (0.75, 2) 3.5 

2011b Postma et al.  NBL with (2.15)- IECM Cassiani et al., 0.4 n.a. n.a. n.a. 

 (2011b) canopy (3D) statio. (2)  (2005a) (0.82, 2) 1.1   

  multiple sources  

2012 Leuzzi et al. wind tunnel (2.16) IECM, IEM Amicarelli et al. 0.2 0 n.a. n.a. 

 (2012) NBL, canopy  (2)  (2011b) (0.33, 2) 1000 24  

  (3D) 

in press Amicarelli et al. wind tunnel (2.16)-2D IECM Amicarelli et al. 10−1 n.a. n.a. n.a. 

 (2012) BL, canopy(2D)  (2)  (2011b) (0.65,2) 100 
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u

2

Lx u

0 u2 2 2

u u u

U 1 U

T 2 x 2
dU' dt C d

U' V ' W '
x y z

 ∂σ
− + + ∂ σ = + ε ξ  ∂σ ∂σ ∂σ + + 

∂ ∂ ∂   
' 2 '

v

2

Ly v

0 v2 2 2

v v v

V 1 V

T 2 y 2
dV ' dt C d

U ' V ' W '
x y z

 ∂σ
− + + ∂ σ = + ε ξ  ∂σ ∂σ ∂σ + +  ∂ ∂ ∂  
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2
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W 1 W
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U' V ' W'
x y z

 ∂σ
− + + ∂ σ = + ε ξ  ∂σ ∂σ ∂σ + + 

∂ ∂ ∂   

 (20) 

 
2.6. Cassiani et al. (2007a): A Scheme for Non-

Diagonal Covariance Matrix in Surface 

Boundary Layers 

The well-mixed condition can be fulfilled, even 
assuming other velocity pdfs. The generic form of the 
solution is Equation 21: 
 

( )
i i i 0 i

i ij j ijk j k 0 i

1
dU a dt bd C U dt

2

U U U dt C d

= + ξ = − ε

+ α + β + γ + ε ξ
 (21) 

 
(Cassiani et al., 2007a) assume correlated Gaussian pdfs 
for the velocity components (surface BLs, as for canopy 
turbulence; 2D) Equation 22: 
 

( ) ( )
2 2 2 2 2

w u uw

2 2 22 2 2
u w uwu w uw

1 u w 2uw
pdf u,w exp

22

 σ + σ − σ = ⋅ −
 σ σ − σπ σ σ − σ  

 (22) 

 
The solution (20) is then modified (the vertical 

gradients of the velocity statistics are considered much 
larger of the corresponding horizontal components: 
horizontal homogeneity, (Cassiani et al., 2007a) 
Equation 23: 

 

( )

( )

2 2

0 w uw2 2 2

u w uw

2

uw
0 u2 2 2

u w uw

2 2
2 2u uw
w uw

2 2
2 2 2uw u

u uw

1
C U ' W '

2

1 1
dU ' dt C d

2 z 2

U ' W '
z z

W '
z z

 
 
 
 
 − ε σ − σ + σ σ − σ
 
  ∂σ 

= + + ε ξ   
∂ σ σ − σ  

   ∂σ ∂σ σ − σ   ∂ ∂      ∂σ ∂σ + σ − σ   ∂ ∂    
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 
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 
  ∂σ 
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∂ σ σ − σ  

   ∂σ ∂σ σ − σ +   ∂ ∂      ∂σ ∂σ σ − σ   ∂ ∂    

 (23) 

 

2.7. Luhar and Britter (1989): Simplified 2D 

Macromixing in Convective Boundary 

Layers 

Convective boundary layers are characterized by non-

Gaussian pdfs of the vertical component of velocity. 

Luhar and Britter (1989) derive a macromixing solution, 

according to the procedure described in (Thomson, 

1987), assuming homogeneous conditions for the 

horizontal standard deviation of velocity. Further the 

probability density function of the 2D velocity particle 

component is a product of 2 conditioned pdfs, one per 

velocity component. The first (horizontal) is a Gaussian 

function, whilst the vertical is a sum of two Gaussian 

functions, modelling the updraft and downdraft 

velocities. The solution (20) is then modified, even 

assuming horizontal homogeneity (aLB is described in 

detail in (Luhar and Sawford, 2005b) Equation 24: 
 

'

0 v

L

LB 0 w

V
dV' dt C d

T

dW' a dt C d

= − + ε ξ

= + ε ξ

 (24) 

 
2.8. Micromixing Schemes 

During the micromixing process, particle 

concentrations evolve because of molecular diffusion 

phenomena and physical or chemical transformations 

(reactive pollutants). The two more common 

micromixing schemes are summarized in the following 

sub-sections, which even provide references for the 

formulations of the mixing time scale tm and a 

micromixing formulation for reactive pollutants. 

Algorithm simplifications are finally presented. 
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2.9. IECM Micromixing Scheme 

The most common micromixing scheme is the 
Interaction by Exchange with the Conditional Mean 
(IECM; (Pope, 1998; Sawford, 2004a) for passive 
pollutants) Equation 25: 

  

m

C - C UdC
= -

dt t
 (25) 

 
Particles exchange pollutant mass with the 

surrounding environment depending on the difference 

between their particle (instantaneous) concentration and 

the conditional mean (fixed a point and time). 

Considering that a fluid particle should exchange 

pollutant mass only with fluid particles belonging to the 

same realization, the parameter C U  is someway 

representative of an instantaneous plume, as only the 

particles with the same velocity in the on-going 

computational point and time are involved in the 

estimation of the conditional mean.  

The diffusive exchanges are ruled by the mixing time 

scale tm. Its formulation is analysed. When tm tends to 

infinity particles behave as conservative elements 

(macromixing limit). On the other hand, when tm tends to 

zero, particle concentration tends to the conditional 

mean: the concentration fluctuations are then 

underestimated and only caused by the plume 

meandering phenomena, ruled by the largest turbulent 

vortices. Integrating (2.25) in time we obtain the particle 

concentration at the end of the time step, under the 

hypothesis that the conditional mean is constant during 

the time step. This implies that ∆t<<tm this scheme 

satisfies the conditions (a), (b) and (d), as reported at the 

beginning. The particle concentration exponentially 

decreases towards the conditional mean during the 

micromixing process. IECM then reduces the 

concentration fluctuations which would be estimated by 

a macromixing model. Further all the possible values of 

the particle concentrations lye between zero and the 

source concentration. Finally it can be demonstrated 

that the mean is unaffected by the IECM scheme 

(Sawford, 2004a).  

Replacing the Lagrangian derivative of concentration 

in (7), εC can be expressed as follows Equation 26: 
 

( )

( )

2

C
C

m m m m

2

C C

m

C C U C' C UC'C
IECM 2C' 2

t t t t

2
C' C U

t

   − σ
ε = − = − + − ⇒   

   
   

 ⇒ ε = − σ −  

 (26) 

2.10. IEM Micromixing Scheme 

A simpler micromixing scheme is represented by 

the IEM model (Interaction by Exchange with the 

Mean; Villermaux and Devillon (1972) and Dopazo 

and O’Brien (1974) Equation 27: 

 

m

dC C - C
= -

dt t
 (27) 

 

The conditional mean of the IECM equation is here 

replaced by the concentration mean, with a reduced 

computational cost during the macromixing phase, as 

IEM is equivalent to a degenerated IECM, with only one 

velocity class (requiring fewer particles to provide robust 

statistics for the means). IEM is theoretically less precise 

than IECM: Particles exchange pollutant mass even 

depending on the concentration of particles which belong 

to very different realizations (non-physical behaviour). 

Further (Sawford, 2004a) demonstrates that IEM scheme 

alters the balance equation of the mean and its turbulent 

flux. At the same time it is immediate to demonstrate 

that (3) is altered by IEM Equation 28: 

 

m

C U CdC
U 0

dt t

−
〈 〉 = − ≠  (28) 

 

The dissipation of the concentration variance can be 

expressed according to the IEM scheme Equation 29: 
 

( )
2

C
C

m m m m

2

C
C

m

C C C'C C'C
IEM 2C' 2

t t t t

2
t

   − σ
ε = − = − + − ⇒      

   

σ
⇒ ε = −

 (29) 

 
We intuitively notice that, averagely, the 

instantaneous concentration is closer to the conditional 

mean than to the mean concentration (but when 

C U and C  are equal then IECM and IEM provide the 

same results). Comparing (26) and (29) it can be shown 

that IEM overestimates the dissipation of the 

concentration variance with respect to the IECM scheme. 

A quantitative and brief demonstration of this statement 

is provided in the following, developing the term 

( )C' C U . First we notice that Equation 30: 

 

( )C'C 0 C' C U C' C U C= ⇒ = −  (30) 
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Then we consider that the mean of a parameter is 

equal to the mean of its conditional mean Equation 31: 

 

( ) ( )

( ) ( ) ( )

( )( ) ( )2

C' C U = C' C U - C = C' C U - C U

= C U - C C' U = C U - C C - C U

= C U - C C U - C = C U - C > 0

 
 

 (31) 

 

Considering (31) we can finally deduce that 

Equation 32: 

  

( ) ( )C CC' C U 0 IEM IECM≥ ⇒ ε ≥ ε  (32) 

 

Introducing (31) in (26) we even obtain a clearer 

formulation for εC, as modelled by IECM Equation 33: 

 

( ) ( ) ( )2
2 2

C C C

m m

2 2
ε IECM = - σ - C' C U = - σ - C U - C

t t

  
     

 (33) 

 

 As resulting for example from (Amicarelli et al., 

2011a; Cassiani et al., 2007b; Leuzzi et al., 2012), IECM 

is more precise than IEM. The difference in terms of 

computational costs, does not seem to justify the use of 

IEM for accurate simulations, but for preliminary 

simulations, in order to save memory and 

computational time.  

2.11. The Mixing Time Scale 

 The alternative definitions of the time scale of the 

micromixing processes, or mixing time scale (tm), share 

the same principles. The dissipation of the concentration 

variance is related to molecular diffusion, whose effects 

are appreciable, even in turbulent regimes, because the 

gradients of the instantaneous concentrations are large. 

Increasing the turbulent kinetic energy the molecular 

diffusion fluxes grow, because particles are continuously 

in contact with new surrounding particles, with different 

concentrations. Further only when the plume length 

scale is comparable with the boundary layer depth all 

the vortices contribute to the relative dispersion of 

particles. The Lagrangian derivative of concentration 

should be then someway related to the difference of 

the particle concentrations (as resulting from IECM or 

IEM), to the molecular diffusion coefficient, the 

kinetic energy, the plume and the source dimensions 

and the integral Lagrangian time scale. These last 

parameters are then involved in the formulation of tm. 

2.12. The Mixing Time Scale: Sawford (2004a) 

Formulation 

 Sawford (2004a), shows that in the near-and 

medium-field tm is substantially linear in tf (the fly time) 

and depends on the source size (D, related to the plume 

spread at source σ0) only very close to the emission point 

Equation 34: 
  

1
2 3
0

m f

σ
t = + bt

ε

 
 
 

 (34) 

 
where, b is a proportionality constant between tm and tf. 

 

2.13. The Mixing Time Scale: Cassiani et al. 

(2005a) Formulation 

 Following (Sawford, 2004a; Sykes et al., 1984), 

Cassiani et al. (2005a),  replace (34) with Equation 35: 
 

r
m

ur

σ
t = µ

σ
 (35) 

 

The plume spread (σr) is defined as the standard 

deviation of the particle positions, with respect to the 

barycentre of the corresponding instantaneous plumes, in 

case of homogeneous and isotropic turbulence. This 

definition has been extended to non-homogeneous and 

non-isotropic turbulence, assuming this parameter to 

represent the spatial scale which quantifies the 

dimensions of the instantaneous plumes. The standard 

deviation of the relative velocity (σur) is the mean root 

square of the difference between the particle velocity and 

the velocity at the barycentre of its instantaneous 

corresponding plume. Even this definition is extended to 

non-homogeneous and non-isotropic turbulence. µ is an 

empirical constant, equal to 
1

2µ =
3

 for linear 

continuous source emissions and ( )2 1µ = 0.8 µ  for point 

continuous sources. The plume spread is then computed 

as follows Equation 36: 
 

( )
( )

2
2 ∆
r 2 2

∆ 0

2 2

0 L f

σ
σ = ,

σ - σ
1+

σ + 2σ T t

 

2 2 2 2

r 0 0

2
σ (t = 0) = σ , σ = D

3
 (36) 

 

where, D is the source length scale. The separation σ∆ is 

expressed as follows Equation 37: 
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( ) ( ) ( )

( )

22 2

f f r 0 f

1

2 3
2 2 0

f 0 0

r

t t t 3C t t t,

t 0 , t
C

∆ ∆

∆

σ + ∆ = σ + ε + ∆

 σ
σ = = σ ≡  

ε 

 (37) 

 

The instantaneous plume spread grows with the fly 

time, depends on the source dimension, the Lagrangian 

time scale and the dissipation rate ε of the turbulent 

kinetic energy q. Cr is the Richardson constant (assumed 

to be 0.3 in (Cassiani et al., 2005a). 

σur is related to the plume spread, q and ε, according to 

Equation 38: 

 

( ) ( )

2

3
2 r
ur

3
2 2 2

2
u v w

2
q ,

3 L

q
L , q

2

σ σ =  
 

σ + σ + σ
≡ =

ε

 (38) 

 

 Introducing (36), (37) and (38) in (35), the mixing time 

scale can be even expressed in the form Equation 39: 

 

( )
2

3
r

m 1

3

σ3
t = µ

2
ε

 (39) 

 

Equation 36 is consistent with the similarity theory of 

the relative dispersion (Cassiani et al., 2005a) in that σr = 

σ0 for tf → 0, σr = σ∆ for ts << tf << TL, where 
2 1/3

s 0
t ( / )≡ σ ε  and 2

r L fσ = 2σ T t  for tf >> TL, where σ
2 

= 

(2/3)q. The corresponding values for tm are Equation 40: 

 
1

2 3
0

m i f

3
t , t 0

2

 σ
= µ → 

ε 
 

( )
1

3
m i r f f s f L

3
t C t bt , t t T

2
= µ ≅ << <<  

m i L f f Lt = µ 2T t , t >> T  (40) 

 

 The second equation follows from the comparison 

with equation (34) and the last equation is derived with 

the constraint σur = σ (Cassiani et al., 2005a). Close to 

the source tm does not depend on the fly time. For 

intermediate times (but much smaller than TL) tm is linear 

in tf. When the fly time is much greater than TL, tm goes 

with ft  (far field). Finally the computation of σr is 

performed during the macromixing phase, considering 

the characteristics of a sub-ensemble of the macromixing 

particles. 

2.14. The Mixing Time Scale: Simpler 

Formulations 

A simpler and faster alternative to (35) was presented 

in (Amicarelli et al., 2011b) (after a first mention in 

(Amicarelli et al., 2008) Equation 41: 

 
1 2 2 3

0
m L f1/3

3 σ
t = µ + 2T t

2 ε

  
  
   

 (41) 

 

The asymptotic behaviour of this formulation is 

compatible with the first and the last limits of (40). This 

equation makes the macromixing process faster, as the 

only additional parameter required is the fly time. On the 

other hand, however, the relationship between tm and tf is 

not linear in the mid-field. 

Another formulation would constrain the formulation 

to the first two limits of (40), as follows (providing Cr) 

Equation 42: 

 

( )
1 2 2 3 1

0 3
m r f1/3

3 σ 3
t = µ + C t

2 ε 2

  
  
   

 (42) 

 

2.15. The Mixing Time Scale in Homogeneous 

Turbulence Mixing and Uniform Scalar 

Gradient 

IECM and IEM provide the same results under 

homogenous turbulence mixing, with an uniform scalar 

gradient. Under these conditions the formulation for the 

mixing time scale, reported by Pope (2000), can be used 

Equation 43: 

 

m

φ

2q
t =

C ε
 (43) 

 

The constant CΦ is usually equal to 2. In these 

regions (far field with slight scalar gradients) all the 

turbulent vortices are involved in the mixing 

phenomenon. Further, this formulation can be used as an 

upper limit for tm, as provided by (34, 35 or 42). 

For multi-source phenomena we should estimate a 

mixing time for each source (Luhar and Sawford, 

2005a). A unique value of tm can then be roughly used, 

averaging all the source dependent estimations.  
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The influence of the molecular diffusion coefficient 
is implicitly taken into account in tm formulation, as µ 
and b depends on the main flow type. These parameters 
are even sensitive to the boundary layer type and the 
geometry of the source. The dependency on temperature 
and the pollutant species are instead usually neglected.  

2.16. IECM Scheme for Reactive Pollutants 

The IECM scheme can be adapted in order to 

represent pollutant transformations. In the case of a 

reactant (species A), subjected to a second order kinetic 

reaction ( )A B-rC C , IECM takes the following form (r: 

reaction rate for A) Equation 44: 
 

( )( )

( )

( )
( )

( )

( ) ( )( )

( ) ( )
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m m

C t dt t dt
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AC t t
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B

m m

C t dt

A

C t

adt

A A

1
dt rC

t

A A

dt
A
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C C UdC
rC C

dt t

C UdC 1
C rC

dt t t

dC
dt,

aC b

C U1
a rC , b

t t

1
ln aC b dt

a

aC t dt b e aC t b

C t dt C t e

C U
1 e

rt C 1

+ +

+

 
− +  

 

−

−
= − −

 
= − − + ⇒ 

 

⇒ =
+

 
≡ − − ≡ 
 

 + = ⇒  

+ + = + ⇒

⇒ + = +

+ −
+

∫ ∫

B
m

1
rC

t

 
+  

 
 
 
 
 

 (44) 

 
This relation requires the time step to be much 

smaller than tm and the reaction time scale, in order to 

consider C U , CB (the particle concentration of the co-

reactant) and tm constant during the time step. An 

advantage of IECM is that the reactive terms do not need 

any additional computation. So that we can model multi-

species and multi-reactions involved in complex 

pollutant dispersion phenomena, no matter about the 

reaction order, just using an analytical equation. In 

particular, concentration fluctuations can influence the 

estimation of the mean balance equation (above 

example) Equation 45: 
 

( )' '

A B A B

dC
T, T r C C C C

dt
= = − ⋅ +  (45) 

In order to quantify the importance of concentration 

fluctuations under these conditions, the segregation 

coefficient is normally evaluated Equation 46: 

 
' '

A B
s

A B

C C
I

C C
≡

⋅
 (46) 

 

On the other hand an alternative approach has been 

adopted with two reactive pollutants. Sawford (2006a) 

derives the reactive terms as functions of the “mixture 

fraction”. This parameter depends on the difference 

between the concentrations of the two reactants, which is 

a passive scalar. Then this can be computed as an 

additional passive and fictitious species, during the 

macromixing phase. 

2.17. Simplified algorithms 

Several simplifications of the generic algorithm 

discussed at the beginning of Sec. 2 have been validated, in 

order to further reduce the computational costs, according to 

the particular class of phenomena to be represented.  
When the mean plume is compact and a prevailing 

mean flow direction is present, the following procedure 
can be adopted for passive pollutants (Amicarelli et al., 
2011b; Cassiani et al., 2007a; Leuzzi et al., 2012), 
sequentially coupling a macromixing and a micromixing 
schemes, as described in the following. According to this 
procedure, we do not need to model the turbulent flow 
where the instantaneous concentration is null. 

During the macromixing phase particles can be 

released only from the sources, as clean (conservative) 

particles do not contribute to the mean concentration 

field. During this phase ∆t should be at least one order of 

magnitude lower than TL and the ratio between the grid 

resolution ∆x and the velocity scale of the main flow. 

During this phase the concentration means are computed, 

so are the other parameters required by the micromixing 

scheme. 

During the micromixing phase the simulation runs 

again from the beginning. Particles are released only 

from the up-flow edge of the plume and move according 

to the macromixing scheme. The mean concentrations 

are not computed anymore, but used in the micromixing 

equations. The higher moments of concentration are then 

estimated. 

3. LAGRANGIAN MICROMIXING 

MODELS: VALIDATIONS 

The first published studies on complete Lagrangian 

micromixing models seem to date back to 2004 
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(Sawford, 2004a). As far several research groups have 

been working on the subject. This section tries to 

synthesize some numerical solutions, which have been 

successfully investigated and validated. A corresponding 

overview is reported in Table 2. 

Lagrangian micromixing models have been 

validated on pollutant dispersion phenomena in 

homogeneous turbulence, grid turbulence, neutral 

boundary layers, even with canopy (vegetation or street-

canyons) and convective boundary layers. These studies 

refer to 2D models, even if some codes have been 

developed in 1D and 3D (Amicarelli et al., 2011a; 

Postma et al., 2011b; Leuzzi et al., 2012).  
Kolmogorov constant usually varies between 1.5 

and 5, according to the particular boundary layer 
configuration. IECM seems to represent the most 
efficient micromixing scheme, as resulting from inter-
comparisons (Sawford, 2004a; Cassiani et al., 2007b; 
Amicarelli et al., 2011b; Leuzzi et al., 2012). The 
micromixing constants for the mid-field usually varies 
within the ranges 0.3≤µ≤0.8 and 0.6≤b≤1.2, depending 
on the source configuration and the boundary layer type. 
The micromixing constant for homogeneous turbulence 
varies between 1.8 and 3.0, usually taken as 2. The 
highest simulated values of the intensity of fluctuations 
reach 10

3
. The absolute value of skewness can arise up to 

80 and kurtosis up to 10
4
. The peak concentration can be 

up to 10
2
-10

3
 times greater than the mean. Further the 

performances of these models have been sometimes 
investigated in terms of validation metrics (Leuzzi et al., 
2012), according to (VDI, 2005; Chang and Hanna, 2004). 

Generally Lagrangian micromixing models show 

several advantages, with respect to other numerical models 

for concentration fluctuations. They usually provide: 

 

• Limited computational costs 

• Neither convergence algorithm, nor computational 

mesh 

• An unique (micromixing) scheme for every 

statistical moment of concentration and a direct 

estimation of fC 

• Reliable modelling of the effect of the velocity 

autocorrelation (estimation of trajectories) 

• A reliable formulation of the mixing time scale in 

the near- and mid- field, depending on the fly time 

• A more accurate modelling of the pollutant 

reactions, related to the instantaneous (particle) 

concentrations 

 

 On the other hand the Lagrangian micromixing 

shortcomings can be synthesised as follows: 

• Transformations in 3D, complex emissions 

processes topography or bathymetry, buoyant or 

non-buotant pollutants, non-stationary velocity 

statistics have not yet been investigated, because of 

the recent development of the models 

• Lagrangian micromixing models need the Eulerian 

velocity statistics of the main flow in input from 

another code or a diagnostic tool (nevertheless they 

can be directly coupled to RANS models) 

 

The validation studies of the Lagrangian 

micromixing models and the corresponding 

experimental databases show the importance of 

concentration fluctuations for micro-scale pollutant 

dispersion phenomena, even for passive pollutants and 

in presence of obstacles or street canyons. 

Finally Lagrangian micromixing models have been 

recently coupled with Eulerian stochastic models in 

order to reproduce concentration time series. In this 

context (Cassiani et al., 2009) they have been used to 

provide the conditional mean to an Eulerian stochastic 

model for concentration time series.  

4. CONCLUSION 

Lagrangian micromixing models have been recently 

developed and applied to simulate pollutant dispersion 

phenomena, in order to estimate both the mean and the 

turbulent fluctuations of concentration. This study 

represents a synthetic overview of the main 

characteristics of these models, their numerical schemes 

and algorithms, furnishing a simple reference for model 

developers. The most rigorous macromixing scheme, 

used to estimate particle trajectories, was developed by 

Thomson (1987) and several simplified schemes have 

been proposed in literature. With regard to micromixing 

schemes, the theoretical advantages of IECM respect to 

IEM have been discussed. Some formulations of the 

mixing time, consistent with the similarity theory of the 

relative dispersion, have been presented. Furthermore, an 

IECM scheme for two reactive species has been 

proposed. The analysis of the case studies performed for 

the validation of the Lagrangian micromixing schemes 

suggests that this approach represents an efficient 

numerical tool, in order to model the mean 

concentrations and their fluctuations. The corresponding 

application fields refer to several dispersion phenomena 

such as: accidents (power or production plants, terroristic 

attacks, hydrocarbons storage and transport, 

extraordinary emissions), odours (power plants and 
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energy production from waste-compost, dumps, 

incinerators, biogas storage and smokes-, high enthalpy 

geothermic plants -sulfide hydrogen-, animal farms), 

micro-scale dispersion from continuous or spot 

emissions (traffic pollutants, power or production plants, 

dispersion in aquatic environments…), industrial 

processes (combustion, pollutant treatment,…), strong 

non-linear relationship between concentration and 

damage (inflammable substances, explosions,..), 

reactions depending on instantaneous concentrations.  
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