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Abstract: Design complexity has been increasing exponentially this last decade. In order to cope with such an
increase and to keep up designers’ productivity, higher level specifications were required. Moreover new
synthesis systems, starting with a high level specification, have been developed in corder to automate and
speed up processor design. This study presents a VHDL specification methodology aimed to extend structured
design methodelogies to the behavioral level. The goal is to develop VHDL medeling strategies in order to
master the design and analysis of large and complex systems. Structured design methodelogies are combined
with a high-level synthesis system, a VHDL based behavioral synthesis tool, in order to allow hierarchical

design and compcnent re-use.
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INTRODUCTION

Due to the increasing complexity of designs within the last
decades, designers had resort to higher level specifications.
Moreover in order to cope with time-to-market constraints,
various tools (both for simulation and synthesis} have been
developed, and thereby promoting high level specification
for VLSI[1].

The efficiency of such tools is increased on application of
structured design methodelogies. Besides, structured
design methodology allows to handle very complex design
with hierarchical approach. Hierarchical design proceeds
by partitioning a system into modules [2]. During the
design of the uppermost systemn, the implementation details
of these modules are hidden. Proper partitioning allows
independence between the design of the different parts. The
decomposition is generally guided by structuring rules
aimed to hide local design decisions, such that only the
interface of each medule is visible.

Structured design methedology for VLSI consists of 3 main
steps in the design-flow:

Partitioning of a whole system into sub-systems,
Synthesis of each resulting sub-system, and
Abstraction of each synthesized sub-system to be used
as compenent during the synthesis of systems higher in
the hierarchy.

Structured design methedologies for VLSI have been
developed at different abstraction levels: physical or circuit
[3], logic and register transfer [4] levels and some work has
been achieved for the behavioral demain [5]. Such
methodologies allow to handle complex designs with a
hierachical approach. Fig.1 illustrates the structured design
methedelogy applied at the behavioral level. Hierarchical
decomposition or partitioning  splits  the system
specification into simpler sub-systems. These units are to
be defined according to the cerrespending degree of re-
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utilization, and those that may share the same operators

may be regrouped.
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Fig. 1: Design-flow

When the hierarchical decomposition is done with respect
to the regularity of the system design, the whele synthesis
is simplified. Regularity implies that sub-systems or
specific designs will be re-used more than once and
therefore the total amount of designs needed will be
reduced [2]. As a result, regularity allows an improvement
in productivity, in general.

Models for Structured Design Methodology: The
main models used for structured design
methodology are those of the compenent and the
system. A component model is a sub-system that

will be re-used. A system is a full design made of
an  assembling of already designed components. These
two concepts will be detailed in the case of a
structured design  methodology  acting at  the
behavioral level, on a VHDL description.
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Behavioral Components: A behavioral component is an
entity able to execute a set of operations invoked in the
behavioral description. It also acts as a black box linking
the behavioral and register transfer levels. The operation(s)
executed by the behavicral component may be as simple as
predefined operations {(+, -, *, ..} or as complex as
input/output operations with handshaking or memory
access with complex addressing functions. A component
may correspond to a design produced by external tools and
metheds or to a sub-system resulting from an early design
session. Complex operations can be invoked through
precedure and function calls in the behavioral description.
Allowing the use of precedures and functions within a
HDI. (Hardware Description Language) is a kind of
extensien of this HDL. This concept is similar to the
concept of system function library in programming
languages [6]. This way a language is composed of two
parts:

* A fixed part which includes the predefined constructs,
and,

*  An exchangeable part which includes a set of
precedures and functions that can be used within the
language. These need not to be part of the language
itself.

Modeling for Re-use: the Behavioral Components: In
order to allow re-use, behavioral components have to be
abstracted. The concept of behavioral component is a
generalisation of functional unit concept, it allows the use
of existing macro-blocks in the behavioral specification. A
functional unit may execute standard operations or new
customized operaticns introduced by the user. Each
functional unit can be specified at three different
abstraction levels: the conceptual view, the behavioral view
and the implementaticn view. Figure 2 shows these three
views for a memory cell that can achieve the 2 operations:
mread and mwrite.
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(a} Conceptual View (b} Implementation View

typeRAM is array (Oto 127} of integer;
Signal M: RAM;

Procedure mread(A: in integer;B: cut integer);
Procedure mwrite(A,B : in integer);

(c) Behavioral View

Fig. 2: The Three Abstraction Levels

Prom the conceptual peint of view, the functional unit is an
object that can execute one or several operations which
may share some data (M} The implementation shows an

external view of a possible realization of the functional
unit; it thus includes the different connections of the
functional unit: inputs, outputs and selection commands
(selecting the procedure to execute). At the behavioral
level, the functional unit is described through the operation
that can be called from the behavioral description. These
may correspond to standard operations or procedures and
functions.

In order to use this kind of medel for high level synthesis, a
fourth model will be necessary. It will be called the high-
level synthesis view. Its goal is to link the behavioral and
implementation views. [t includes the interface of the
functional unit, its call-parameters (correspending to the
operation parameters}, the operation set executed by the
functional unit as well as the parameter passing protocol
for each operation. High level synthesis algorithms impose
that such protocols make use of static clock cycles: each
operation needs to have a fixed predictable execution time.
In order te overceme this constraint and te enable the use
of complex functional units that may execute operations
with data-dependent execution time, the methodolegy used
consists in spliting the operation inte a set of atomic
operations with fixed execution time. The behavicral
description will then be written according to the atomic
operations introduced.

Modular and Flexible Avrchitectural Model for
Behavioral Design for Re-use: A system is viewed as an
assembling of sub-systems coordinated through a top
controller. This is a modular and flexible architecture
model as shown in Fig. 3. It is composed of a top
controller, a set of functicnal modules and a
communication network. These last two constitute the
datapath. Functional units can be of any degree of
complexity and can themselves be the result of a synthesis
process, as we described above in the case of a fixed-point
unit synthesized by AMICAL and used as a functional unit
tc build a PID.

The network is built in order to allow the communication
between functional modules, and with the external
world.The top contreller sequences the operatiens executed
by the functional units and the communication network.
Medular design can be achieved as the functicnal modules
can be designed separately using different design methods.
This model is flexible, it allows several configurations of
functional medules and different communication schemes.
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Fig. 3: Target Architecture
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System Level Specification with VHDL: A behavioral
description of the architecture medel will give cnly a view
of the top contrel, e.g. the coordination of the different sub-
systems. In VHDL this may be described as a process that
may make use of coemplex sub-systems through procedure
and function calls. In other words, the functional units are
used as black boxes. The only pieces of information
required about each functional unit are the list of
procedures executed by the functional unit and some
informations about parameter passing protocels.

Memory with complex addressing function and specific
embedded computation and contrel can be easily described
with this scheme. The addressing functions may be realized
by an independent functional unit or may be integrated
within the memory unit. [n the same way complex [/O units
may be used. They are also accessed through function and
precedure calls. These may execute complex protocel or
data conversior.

The association between the operations of the behavioral
description (standard operators such as + and -, and
procedure and function calls) and the functicnal units is
made during the synthesis process, it may be made through
names. Operaticns may have different execution schemes
on different functional units within the library. The number
of functicnal units selected (allocated or instanciated} will
depend on the parallelism allowed by the initial
description. Of course the synthesis process tries to share
as much as possible the use of the functional units.

AMICAIL: High Level Synthesis for Hierarchical
Design: AMICAL is a high level synthesis system allowing
structured design methodology [5]. It starts with two kinds
of information: a behavicral specification given in VHDL
and an external functional unit library and allows
architectural exploration and synthesis. This corresponds to
the second step of the methodolegy introduced as above.
The first step, system analysis and partitioning, is
performed manually.

Macro-Scheduling
Functional Unit Allocation

Nicro -Schaduling
Architecture Generation

Funetional Unit Library
(Opetations, Timing,
Protocals...)

Behavioral
Dezcription

(VL)

o b B e

Architecture

Fig. 4: AMICAL Design-flow

The AMICAL design-flow is illustrated by Fig. 4. The
behavioral description is a VHDL process that may make
use of complex sub-systems through procedure and
function calls; in this case the behavioral description makes
use of a complex function DCT. However for each
precedure or function used, the library must include at least
cne functional unit able to execute the corresponding
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operation. In this case, the library includes a RAM able to
execute the mread and mwrite procedures, a DSP-unit able
to execute the dct and idct functions, and an ALU. During
the different steps involved in the high-level synthesis, the
functional units are used as black boxes, that may execute a
list of procedures. However to complete the description at
the register transfer level, the details of the functional units,
about its implementation view are required.

The different steps involved in the synthesis process are:
macro-scheduling, allecation, micro-scheduling and
architecture generation. The macro-scheduler produces a
finite state machine presented as a transition table from the
initial behavioral description. Each transition comresponds
to the execution of a control step under a given condition.
At this stage, each operation may take several clock cycles
to execute. A transition is also called macro-cycle or
macro-step. [n fact a transition corresponds to a simple
data-flow graph that has to be further synthesized using
scheduling and allocation. The goal of these steps is to
refine each macrc-cycle into a set of basic control steps
executing in one clock cycle each. These basic centrol
steps are also called micro-cycles.

After scheduling, allocation starts with two kinds of
information, namely the scheduled description (a set of
data-flow graphs) and an external functional unit library.
During the fellowing steps, both allecation and binding are
performed. The functional unit allocation step associates a
functional unit with each operation in the state table. A
second scheduling step (called micro-scheduling} is then
performed according to the execution scheme for each
operation. Bach operation is decompesed into a set of
transfers, which are scheduled into micro-cycles. Each
micro-cycle contains a set of parallel transfers that take one
basic clock cycle to execute.

The last synthesis step is a classic architecture generation.
The clock cycle level description is mapped onte an
architecture composed of a datapath and a controller. The
communication network, within the datapath, may be
composed of buses, multiplexers and registers. The number
of buses and multiplexers is fixed according to the parallel
transfers required by the architecture.

A Design Example: In order to illustrate hierarchical
design and component re-use at the behavicral level we
will use a design example: a PID (Proportional Integral
Derivative -or Differential-}.

The PID: A PID controller usually applies a ceontrol
function to an analog input and generates an analog output.
This kind of device is generally implemented as an analog
device. The use of a digital sclution allows to have a more
flexible device.

The PID used in this study forms part of a speed control
system detailed [7]. The speed contrel system includes an
ALU which performs elementary and logic operatiens, and
memories to store the state variables and coefficients. The
PID algerithm is given by:

Irefk <= (Kp*Ek) + Ki*[(Ek)dt + Kd*dEk/dt

where Kp, Ki, Kd are constants and Ek is the error change.
However only the cleose approximation given as:
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Irefk <= (Kp*Ek} + Ki*} (Ek*deltaT) + Kd*A(Ek)/deltaT
will be developped in order to be synthesized at the
behavioral level by AMICAL, for digital implementation
System Level Analysis and Partitioning: The goal of the
system level analysis and partiticning step is to structure
the description in order to allow hierarchical description
and component re-use. The result of such a step is a
behavioral description and its corresponding functional unit
library. The computation makes use of two complex fixed-
point operaticns (/ and *}. At this step the designer has to
choose between using basic operators from the library {4+, -,
shifty and building specific units to perform these
computations.

opl
mul_call inli
i { CIEED PP
- product
@ d
one

Fig. 5: Component Re-use

As the PID to be designed has nc severe timing constraint,
the multiplication and division operators will be
implemented by sequential procedures using basic
operators from the library (+, -, shift). In order to share the
basic cperators, we decided to gather all the fixed-point
operators (*, /, +, -} within a fixed-peint unit that will be
synthesized by AMICAL and re-used in order to build the
PID.

For the executicn of the complex operations by the fixed-
peint unit, as functicnal unit, a 2-step protocel is applied.
Each operation is contrelled through 2 procedure calls :

*#  Starting the operation (or computation by the
functional unit} through a first procedure call with the
corresponding parameters, and

a4

Recovering the computation results through outputs of
a second procedure call when their wvalidity is
indicated.

During its computation, the functicnal unit will be blind to
any external command. These characteristics have to be
taken into account while defining the components or
functional units used for synthesis as well as when writing
the behavicral description of the whole design. The 2-step
protocel applied to the multiplication operation may be
summarized by the Fig. 5.

Such an operation decomposition into atomic procedures
allows compenent re-use and has been applied to both
multiplication and division operations, for the design
of the fixed-peint unit. The design-flow of the PID is
shown in Fig. 6.

Specifications: The behavioral description of the PID is
given in Fig. 7. The global organization of this
description is made of an entity/architecture pair. Unlike
most existing synthesized architectures, the architecture
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accepted by AMICAL is made of a main process and a set
of nen-synthesizable statements.

VHDL

PID.Behavior
{operations
defined as
procedures}

Library

rom

fpu

AMICAL

| PID.Architecture |

Fig. 6: Partitioning results for the PID

These elements may correspond to instances of functional
units and other specific units, The main process accesses
the functional units through procedure calls. As explained
earlier the multiplication and division calls are split into a
2-step protocol. Lines 12 to 16 describe the sequence of
statements used to execute a multiplication.

The multiplication call is made using a first procedure call
("mul_call"} using as input parameters the correspending
input values (Kp and Fk}. When the multiplication will be
over, the result will be memorized within the functional
unit itself. A second procedure ("wait result”) will be
called to bring back the product obtained, Irefk. In order to
point cut when this value is ready, a validity signal called
"done" is used. This results in writing a “mul_call”
followed by a leop of “wait result” until the
result isready.

The fixed-point unit itself is described by a separate VHDL
entity that may be designed using AMICAL itself or some
other specific tools. Figure 8a shows the behavioral
description of the fixed-point unit. The corresponding
synthesis view, described in Fig. 8b, after abstraction for
re-use, gives the protocol exchange format between the top
control and the functional wunit. Fach operaticn is
decomposed into a set of scheduled cycles
made of transfers te and from the functional
urit.

The Design Process: The architectural synthesis of both
fixed-point unit and PID are realized by AMICAL. The
result of the synthesis of the fixed-point unit will be used
twice:

It will be used to create the corresponding behavieral
component that will be used for the synthesis of the
PID (abstraction of functional unit}.

It will be used during the logic synthesis of the PID as
the required structural description of the functional
unit: fixed-point unit.
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use work.types_and_functions.all;
entity pid is

port { clock, Fsignin :in bit;
HostInterrupt, PositionChange :in bit,
[refkout : out str32b),
end pid,
architecture behavioral of pid is
component fpu
port { clock :in bit;
inputl, input2 :in str32b;
sel : in bit;
com :in int3bits;
output : out str32b;
outdone : out bit),

end component;
signal sig inl, sig in2, sig out  :str32b,

signal sig sel, sig done - bit;
signal sig_com : int3bits;
begin
Inst_FU : fpu
port map (clock, reset, sig_inl, sig in2,
sig com, sig out, sig done);
main : process
variable Ik, Bk, Kp, Ki, Fref, N, Fk : str32b,
variable Ek_1, Dek, Irefk, Temp : ste32b,
variable dene : bit;
variable val_rom : ROM;
procedure mul_call {a, b : in str32b) is
begin
sig inl <=a,sig inZ2 <=b,
sig sel «="1";sig com <= 2;
wait until rising edge(clock);
end mul_call;
procedure rep_call (a : in str32b) is
begin
sig inl <=a; sig sel «="1";sig com <=1,
wait until rising_edge(clock),
end rep_call;
procedure wait._result (x: out str32b; y: out bit) is
begin
X :=sig out; y :=sig done;
wait until rising edge(clock);
end wait_result;
begin
1]
2] wait until (HostInterrupt = '0%;
[3] while (HostInterrupt = 0% loop
[4]
5] rep_call(N),
el wait_result(Fk, done);
7 while (done /="1" loop
[8] wait_result(Fk, done),
9] end loop;
[190] if (Fsignin = '0') then Ek := Fref-Fk;
[11] else Ek := Fref+Fk; end if;
[12] mul_call(Kp, Ek);
[13] wait_result{Irefk, done);
[14] while (done /="1" loop
[15] wait_result(Trefk, done);
[16] end loop,
7
(18] [refkout <= [refk + Temp;,
[19] end loop;
(20]

end process main;
end behavioral;

use work.types_and_functions.all;
entity fixedpointunit is
port { clock :in bit;
inputl, input2 s in str32b; -- input values
sel :in bit; -- enable signal
com : in int3bitg; -- operation asked
output : out str32b; -- output value
outdone : out bit); - validation signal
end fixedpeintunit,
architecture behavior of fixedpointunit is
begin
process
variable tmp : integer; --result buffer
variable vall, val2 : integer;, -- input value buffers
procedure mul_call{A,B: in integer) is begin
— shift and add al gorithm, tmp:= A *B;
end mul;
procedure rep_call{A: in integer)is begin
- restoring division algorithm; tmp:= 1/A;
end rep,
begin
wait until sel="1"
case com is
when 1 => —rep_call
outdone <= 0"
when 2 => —mul_call
outdone <= 0"
mul{input1,input2);
when 3 => - "+"
Z=A+B,
when 4 => - "-"
Z<=A-B;
when 5 => - wait_result
Z <=tmyp,

end case;

vall:=inputl; rep(vall),

vall:= inputl, valZ:= inputZ;

outdone <= 1"

end process;

end behavior,

(a) Behavioral description
(FU fpu
(AREA 30000)
(PARAMETER (Dataln A B) (DataOut Z done))
(CONNECTCR
(Dataln inputl (BIT 0 32) input2 (BIT 0 32))
(DataCut output (BIT 0 32) outdene (BIT G 1))
(Centrolln sel (BIT 0 1))
(Controlln com (BIT € 3)))
(CpType + (commutative A B)
(Cycle 1 (Transfer A inputl) (Transfer B input2)
(Transfer output Z) (active sel 1) (active com 3)))
(CpType -
(Cycle 1 (Transfer A inputl) (Transfer B input2)

(Transfer output Z) (active sel 1) (active com 4)))
(CpType mul_call (commutative A B)

(Cycle 1 (Transfer A inputl)

(Transfer B input2) (active sel 1) (active com 2)))
(OpType rep_call

(Cyele 1 (Transfer A inputl)

(Transfer B input2) (active sel 1) (active com 1))}
(OpType wait_result

(Cycle 1 (Transfer output Z)

(Transfer outdone done) (active sel 1) (active com 5))))

(b} Synthesis view

Fig. 7: PID Algerithm (VHDL Description)

Fig. 8: Fixed-point Unit
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Fig. 9: Laycut of PID

The synthesis of the PID produced an architecture where
the controller is a 22-state and 33-transition finite state
machine. The datapath obtained after scme interactive
architectural transformations is made up of 3 functional
units and 3 buses. Within the PID datapath, cne of the
components is an instance of the fixed-point unit compiled
previcusly.

The resulting RTL description has been fed to the
commercial logic synthesis and place and reute tools. The
synthesis results obtained for the PID is composed of
around 50000 transistors. The full design stands on 10.3
mm square when mapped onto a .8 CMOS technelogy.
The Fig. 9 gives the layout of the final chip.

CONCLUSION

This study dealt with structuring design in order to allow
hierarchical design and synthesis using VHDL at the
behavicral level. The use of behavioral design to build
more cemplex design corresponds to the re-use of existing
components for the design and synthesis at the behavioral
level.

The scheme detailed above is powerful as it allows for
hierarchical design based on behavioral VHDL
descriptions. This structured method enables the use of
complex sub-systems as functional units in the library
during architectural synthesis.
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