
Journal of Computer Science 2 (2): 171-179, 2006
ISSN 1549-3636
© 2006 Science Publications

Corresponding Author: Sabah Mohammed, Department of Computer Science, Lakehead University, Thunder Bay, Ontario
P7B 5E1, Canada

171

Developing a Secure Web Service Architecture for SVG Image Delivery

1Sabah Mohammed, 1Jinan Fiaidhi, 2Hamada Ghenniwa and 1Marshall Hahn

1Department of Computer Science, Lakehead University, Thunder Bay, Ontario P7B 5E1, Canada
2Department of Electrical and Computer Engineering, University of Western Ontario

London, Ontario N6A 5B9, Canada

Abstract: Web Services are substantially growing and become vital for businesses and organizations.
A major concern, especially for mission-critical applications is Security. This study focuses on
developing Scalable Vector Graphics (SVG) as Web services. In particular, we develop a service-
oriented architecture that securely manages SVG Web services using the intermediary design pattern.
In the proposed architecture we introduced two kinds of specialized security intermediaries to enforce
SVG signature/authentication and encryption/decryption. A prototype of the proposed architecture has
been implemented based on Apache Axis.

Key words: Web service security, SVG, apache axis, image security

INTRODUCTION

 The Scalable Vector Graphics (SVG) promises to
revolutionize the Web through the introduction of
standards-based vector graphics, animation and
interactivity. The broad support behind SVG comes
from its many advantages. SVG has sophisticated
graphic features, which is naturally important for a
graphic format, but it also benefits from being an XML
grammar. SVG has all the advantages XML brings such
as internationalization (Unicode support), wide tool
support, easy manipulation through standard APIs (e.g.,
the Document Object Model, DOM API, Batik API)
and easy transformation (e.g., through XML style sheet
Language Transformations, XSLT). In the graphical
arena and especially compared to raster graphics
formats (such as GIF, JPEG or PNG images), SVG has
the advantage of being:

* Lightweight. For many types of graphics, an SVG

graphic will be more compact than its raster
equivalent

* Zoomable. SVG content can be viewed at different
resolutions, e.g., enlarged or shrunk without losing
quality.

* Searchable. Because SVG content is XML, it
becomes possible to search the content of an SVG
image for text elements, comments or any kind of
meta-data.

* Structured and Accessible. Graphic objects can be
grouped and organized hierarchically.

 It is natural for Web Services to accommodate
SVG for graphical based services. In addition to being
open and XML, SVG has a rich structure and preserves

semantic because of its descriptive element and
metadata. This richness provides an opportunity to Web
Services to generate, modify or search rich graphical
content[1].
 Traditionally SVG has been used as a flexible
imaging viewer only, which limited its’ potential for
advanced imaging applications. Security issues have
been the main challenge in SVG applications. Indeed,
there are variety of Web Service composition languages
such as PDL, XPDL, BPSS, EDOC, BPML, WSCI,
ebXML and BPEL4WS are available today, but there
are very little work on Web Services Workflow engines
that can be used for achieving security[2]. A key
challenge, therefore, is to enable the interoperability
between Web Services to take place seamlessly and
securely. Generally there are two standards for
enforcing security of the Workflow:

Security at the transport level or REST
(Representational State Transfer): Security at the
transport level uses the inbuilt security features of
transport technologies like HTTP, IBM WebSphere
MQSeries. Most first-generation Web services use this
type of security and have been deployed behind a Web
Site's firewall. SSL provides adequate confidentiality
for such first-generation Web services. Using SSL the
channel over which two parties communicate can be
kept confidential - data is encrypted by the sender and
decrypted by the recipient. In this direction, delivering
SVG Web services can be as simple as using HTTP
request then it can be incorporated into a client side
view with a single DOM mutation. Prescod[3] reported
many technical advantages of implementing SVG Web
services built upon REST those built upon SOAP.
However, using SSL to support security at this level

J. Computer Sci., 2 (2):171-179, 2006

 172

does not provide complete protection for deploying
Web services that expose internal systems, especially
mission-critical, over the Internet to external entities[4,5].

Security at the messaging level or SOAP (Simple
object access protocol): The security at the message
level is currently being extensively researched and
specifications are being developed by several groups
like OASIS and W3C. This involves usage of digital
signatures, XML encryption, certificates. The approach
is based on creating a layered architecture for the Web
services security specifications[6] shown in Fig. 1. On
top of SOAP the security model (WS-Security) can be
constructed to provide the basis for the other security
specifications, such as Web service endpoint policy
(WS-Policy), a trust model (WS-Trust) and a privacy
model (WS-Privacy). Collectively, these components
can be utilized to provide cure interoperable Web
services that are more secure than REST based
approaches.

Fig. 1: Web services security specifications road map[6]

 However, treating security at the SOAP level
presents more challenges than that REST because[4]:

* Soap messages are independent of the transport

layer. Hence, the development of the security
service should accommodate and not rely on the
different security degrees that might be supported
by the transport protocols.

* SOAP is designed to be flexible and able to bypass
firewalls. However, this is unacceptable feature
from a security point of view and need to be
restricted or even sacrificed.

 However, one interesting aspect of extending
SOAP, is to gain access to the actual network stream
before it is decentralized into objects and vice versa.
For instance, through these extensions encryption
algorithms can be developed on top of the Web Service
call. However, most of the SOAP extensions are
transport Protocols dependent, especially for
multimedia applications, such as RTP
(<http://www.ietf.org/rfc/rfc1889.txt>.), Multicast and
UDP. To deal with this issue, brokering-based
architectures can be used. For example,
NaradaBrokering[7] extension is based on JMS that

provides Web services-sharing and collaboration, as
shown in Fig. 2.

Fig. 2: Indiana University NaradaBrokering SOAP

extension[7]

 The NaradaBrokering SOAP extension has been
used to provide transparent message-related capabilities
for SVG Web services[8]. Indeed this can be extended to
deal with SVG security, but NaradaBrokering SOAP
lacks the widespread support. There are some recent
attempts to extend SOAP via more popular publish-
subscribe message brokering systems like the IBM
WebSphere Business Integration Message Broker
(<http://www-306.ibm.com/software/info/ecatalog/en_
US/products/ Z106022I73024W93. html>) and the Sun
Microsystems JXTA (www.jxta.org) . In particular the
JXTA-SOAP bridge project as developed by the Reptile
(<http://reptile.openprivacy.org>) is very promising
direction to support Web services security.
 The work presented in this article is another
attempt to extend SOAP using intermediary pattern and
Apache AXIS Web. The security has been treated at the
architecture by injecting Intermediaries in the Web
service architecture supported by Apache AXIS. The
Intermediaries can be programmed for securing SVG
Web services (SVG signature/authentication and SVG
Encryption/Decryption).

SOAP intermediaries via apache axis: In this study,
we’ll be using Apache Axis as our Web Services
engine. Axis Web Services can be thought of, at their
most basic level, as blocks of code that are assembled
and executed according to a particular configuration.
Even the Axis engine itself is built out of smaller pieces
that are sewn together. This is why Axis is one of the
most configurable and extensible engines available. The
basic building blocks of a Web Services application are
called handlers or intermediaries. Each handler
represents a specific piece of functionality that is to be
executed on the message-processing path.

J. Computer Sci., 2 (2):171-179, 2006

 173

Handlers are then stitched together into groups called
chains. A chain is a particular processing path from the
requestor to a Web Service and back again. The object
which is passed to each Handler invocation is a
MessageContext. A MessageContext is a structure
which contains several important parts: 1) a "request"
message, 2) a "response" message and 3) a bag of
properties. Axis is all about processing
MessagesContext via handlers and chains. The handlers
and chains represent Web Services intermediaries
which can be programmed. Hence, these Web services
intermediaries are computational entities that can be
positioned anywhere along an information stream
between the Web services and are programmed to
tailor, customize, personalize, or otherwise enhance
data as they flow along the stream. A Web Service
Intermediary therefore lies between the Web Service
Client and the Web Service Provider as shown below:

 However, it is possible to combine Intermediaries
in several ways. As we see below, a chain of
Intermediaries (A and B) intercepts the HTTP Request
from the Web Service client. Another Intermediary, C,
further intercepts the HTTP Response from the Web
Service.

 This means that Web intermediaries can be added
in a horizontal as well as vertical way. Instead of
adding layers to a single service, SOAP can be used to
determine which service among a collection of
available services is the intended recipient of a
particular message and route the message accordingly.
Rather than require the client application to have
knowledge of two different service endpoints that
provide the same functionality, the service should be
able to determine from the request, which service
should be used to handle the request. Hence, Axis helps
in creating these intermediaries and SOAP gives us an
easy way to deal with routing a message between
intermediaries.
 However, in order to extend SOAP and program
the Axis Web intermediaries, it is important to know
which is the Web service invocation to be used.
Basically, these are two invocation models: RPC and
Document style. Many good articles are available that

address the differences of these two models in detail,
but the main differences are quite straightforward[9].
RPC-style encoding is conceptually the same as other
implementations architects and developers have worked
with over the years, such as CORBA or RMI. In this
direction SOAP RPC support complex object
serialization and deserialization. As long as the object
complies with the Java Bean specification, the object
could be turned into XML and handled transparently to
the developer. This was wonderfully seductive -- in a
few simple lines of code, real business data objects
were sailing over the wire with little concern for
underlying implementation. But as it turns out, there are
drawbacks to using complex objects over RPC. This
approach often leads to integration issues. One
implementation's serialization might not match
another's deserialization, since the Java Bean to XML
SOAP encoding process is ambiguous and not well-
defined. Suddenly open technology comes to a
screeching halt -- an Apache SOAP service had trouble
working with .NET because of discrepancies in their
implementations and thus drove the need to keep
services more open. Document-style offers a satisfying
mix of well-defined structures and interoperability. This
is achieved through standard XML-Schemas for
defining complex objects. In contrast to the simple
SOAP encoding, XML-Schema is a rigorous and well-
understood standard for defining structures. XML-
Schemas provide a great deal of flexibility in defining
complex structures while ensuring all the promises of
Web services. Document style, which gains all the
benefits of XML-Schema, seems to be the solution to
all your Web service headaches. However, Document
style has some trade-offs. One of the trade-off problems
the programmer is faced with is increased complexity.
Suddenly, the developer has the arduous task of parsing
an XML document and performing the necessary
transformations to populate other data beans or method
requests with the incoming data. This is true both for
the server and client. For the brave of heart, this means
writing a custom SAX handler. And SAX handlers
aren't known for being particularly user friendly or easy
to maintain.
 With Apache Axis we can use a hybrid of both
RPC and Document-style services and hence
maximizing the invocation style advantages. As with
any Document-style service, you still have the task of
handling the incoming XML data somehow (e.g.
Transcoding and Rendering SVGs). Axis and the other
surrounding Apache utilities includes a handy tools to
help solve this arduous task, such as WSDL2Java API,
the Java Beans Activation Framework (JAF), Xalan,
Web Service Security Suite and the Apache Batik.
WSDL2Java can generate both code stubs for the client
and server for your methods and actual beans to model
your data from the model defined in the XML-Schema.
With the JAF extension, developers who use Java

J. Computer Sci., 2 (2):171-179, 2006

 174

technology can take advantage of standard services to
determine the type of an arbitrary piece of data,
encapsulate access to it, discover the operations
available on it and to instantiate the appropriate bean to
perform said operation(s). Xalan-Java is an XSLT
processor for transforming XML documents into
HTML, text, or other XML document types. It
implements XSL Transformations (XSLT) and XML
Path Language (XPath). Xerces2 is the next generation
of high performance, fully compliant XML parsers. The
XML Security Suite is a tool that provides security
features such as digital signature, encryption and access
control for XML documents and finally Batik is a
Java(tm) technology based toolkit for applications or
applets that want to use images in the SVG format for
various purposes, such as viewing, generation or
manipulation.

Apache axis invocations: The traditional definition of
a Service Oriented Architecture (SOA) is centered
around distributed which include services, messages
and the dynamic discovery of available Web Services
(http://www.service-architecture.com/). With Axis Web
intermediaries another component can be added to these
ingredients. The invocations of the intermediaries
follow certain order. The particular order is determined
by two factors - deployment configuration and whether
the Axis engine is a client or a server. There are two
basic ways in which Axis is invoked:
1. As a server, a Transport Listener will create a

MessageContext and invoke the Axis processing
framework.

 Notice that the small cylinders represent Handlers
and the larger, enclosing cylinders represent Chains. A
message arrives (e.g. Http) at a Transport Listener. It's
the Listener's job to package the protocol-specific data
into a Message object (org.apache.axis.Message) and
put the Message into a MessageContext. The
MessageContext is also loaded with various properties
by the Listener. The Transport Listener also sets the
transportName String on the MessageContext , in this
case to "http". Once the MessageContext is ready to go,
the Listener hands it to the AxisEngine.
 The AxisEngine's first job is to look up the
transport by name. The transport is an object which
contains a request Chain, a response Chain, or perhaps
both. If a transport request Chain exists, it will be

invoked, passing the MessageContext into the invoke()
method. This will result in calling all the Handlers
specified in the request Chain configuration. After the
transport request Handler, the engine locates a global
request Chain, if configured and then invokes any
Handlers specified therein. At some point during the
processing up until now, some Handler has hopefully
set the serviceHandler field of the MessageContext
This field determines the Handler we'll invoke to
execute service-specific functionality, such as making
an RPC call on a back-end object. Services in Axis are
typically instances of the "SOAPService" class
(org.apache.axis.handlers.soap.SOAPService), which
may contain request and response Chains and must
contain a provider, which is simply a Handler
responsible for implementing the actual back end logic
of the service. For RPC-style requests, the provider is
the org.apache.axis.providers.java.RPCProvider class.
This is just another Handler that, when invoked,
attempts to call a backend Java object whose class is
determined by the "className" parameter specified at
deployment time. It uses the SOAP RPC convention for
determining the method to call and makes sure the
types of the incoming XML-encoded arguments match
the types of the required parameters of the resulting
method.
2. As a client, the message path on the client side is

similar to that on the server side, except the order
of scoping is reversed, as shown below.

 The service handler, if any, is called first - on the
client side, there is no "provider" since the service is
being provided by a remote node, but there is still the
possibility of request and response Chains. The service
request and response Chains perform any service-
specific processing of the request message on its way
out of the system and also of the response message on
its way back to the caller. After the service request
Chain, the global request Chain, if any, is invoked,
followed by the transport. The Transport Sender, a
special Handler whose job it is to actually perform
whatever protocol-specific operations are necessary to
get the message to and from the target SOAP server, is
invoked to send the message. The response (if any) is
placed into the responseMessage field of the
MessageContext and the MessageContext then
propagates through the response Chains - first the
transport, then the global and finally the service.

J. Computer Sci., 2 (2):171-179, 2006

 175

Developing an axis SVG secure image delivery SOA
system (ASSIDS): In the two types of invocations,
Axis job is simply to pass the resulting MessageContext
through the configured set of Handlers, each of which
has an opportunity to do whatever it is designed to do
with the MessageContext. Thus, the SOA system
developed in this article consists of two invocation
components: the Axis client (service requestor) and
Axis server (service provider). Utilizing the Axis client
invocation, a user can search and obtain a list of SVG
files available for download from the Axis server. Once
the client decides on one of the available SVG files, the
client can then securely download and view that SVG
file. Axis handlers/intermediaries on both the client
side and server side automatically encrypt and sign the
body tag of every message exchanged by the client and
server (except for the first pair messages exchanged,
which are used by the client to obtain the servers public
key). Figure 3 illustrates the general layout of our
SOA.

Client (Requestor)

…
svgCall.setOperation(
portName,
new QName("", "getSVG"));

doc = (Document)
svgCall.invoke(new
Object[]{“imagename.svg”});
...

Type
Encoding

Type
Decoding

HandlerCl
ientEncryp
tion.class

HandlerCl
ientDecryp
tion.class

Default Handlers

Default Handlers

Server (Provider)

...
Public Document getSVG(
String fileName) throws
Exception
{
…
}
...

Type
Decoding

Type
Encoding

HandlerSe
rver.class

HandlerSe
rver.class

Default Handlers

Default Handlers

Service
Chain

Global
Chain

Transport

TransportGlobal
Chain

Service
Chain

SVGClient.class

SVGServer.class

Fig. 3: General layout of our SOA

 The Class SVGserver provides three methods
which can be called remotely. To deploy such class on
the Web you need to follow the Apache Axis Web
site[10]. The constructor creates an
org.w3c.dom.Document containing an X509 certificate
(which contains the servers public key) and assigns it to
the instance reference variable certDoc. The
getCertificate() method simply returns the
org.w3c.dom.Document referenced by certDoc. The

getFileList() method returns a string array in which
each entry is the name of a file within the directory
ASSIDS\ jakarta-tomcat-5.5.9\bin\svg. The
getSVG(String fileName) method parses the SVG
image indicated by the fileName argument into an
org.w3c.dom.Document. It then returns this document.
All SVG files are contained within the directory
ASSIDS\ jakarta-tomcat-5.5.9\bin\svg. The basic
structure of the SVGServer class is illustrated below:

public class SVGserver
{
 Document certDoc;
 public SVGserver() {…}
 public Document getCertificate(String arg) {…}
 public String[] getFileList(String dirName) {…}
 public Document getSVG(String fileName) throws
Exception {…}
}

 When the service requestor (class SVGClient)
invokes an operation provided by the SVG web service
(For Example, method getSVG() in class SVGServer),
both the data provided as an argument to the invocation
(For example, imagename.svg) and the method name
(For example, getSVG) are encoded in XML format.
The result of this process is a complete SOAP envelope
that’s ready for delivery to the service provider. Before
the envelope is sent to the provider, it must first
traverse a pair of handler chains. A handler chain is a
list of handlers, each of which is given a chance to
process the message in whatever way it sees fit. There
are two of these chains, one specific to the particular
service requestor and one that’s global for the entire
Axis runtime on that requestor side. As shown in Fig. 2,
the two service handlers on the requestor side are
HandlerClientEncryption and HandlerClientDecryption.
After the envelope has been processed by the two
chains, it’s sent to a transport protocol(HTTP) that
takes care of delivering the message to the service
provider.
 After the service provider transport receives the
message, the Axis engine then gets the envelope out of
the transport and passes it through a pair of handler
chains. This time the order of the handler chains is
reversed. Moreover, the service handler on provider
side is called HandlerServer. After the envelope exits
the service-specific chain, the contents of the message
undergo type decoding, which creates Java objects that
correspond to the data in the envelope. These objects
are then passed to the method name specified in the
message. Once the service code has executed and
produced a result, the entire process reverses itself. The
return type is encoded in XML format and so on. The
details of the HandlerServer class is illustrated below:

public class HandlerServer extends BasicHandler
{
static KeyInfo currentCertificate;

J. Computer Sci., 2 (2):171-179, 2006

 176

 public void invoke(MessageContext msgContext)
throws AxisFault
 {
 …
 if(!msgContext.getPastPivot())//Request
message
 {
 …
 }
 else//Response message
 {
 …
 }
}
}

 As previously shown, class HandlerServer is
deployed as both a request flow service handler and
response flow service handler. Using the same class for
both handlers allows the response message processing
code to utilize information extracted from the request
message (more details on this later). The method
msgContext.getPastPivot()) allows the handler to
determine whether its invoke method has been called
during request message processing or response message
processing.
 The SVGclient class is fairly simple. Most of its
code involves setting up the GUI. The GUI listener
methods are responsible for performing remote
procedure calls using Axis. The body of this class is
illustrated below:

public class SVGclient implements ActionListener,
SVGDocumentLoaderListener,
 GVTTreeBuilderListener, GVTTreeRendererListener,
ItemListener
{
 …
 private void init() throws Exception { ... }
 public void actionPerformed(ActionEvent ae) { … }
 public void itemStateChanged(ItemEvent ie) { … }
 …
}

 Most of the Axis related code has been explained[8]
except for the code related to client side handlers which
will be illustrated briefly in the following sequel:

init()
{
…
reqHandler=new HandlerClientEncryption();
respHandler=new HandlerClientDecryption();
….
listCall.setClientHandlers(reqHandler,respHandler);
//org.apache.axis.client.Call
…
}

 The init() will invoke the two client handlers(
HandlerClientEncryption and

HandlerClientDecryption). These handlers will perform
the client side encryption and decryption of SVG SOAP
Message. The details of these handlers are given briely
bellow:

public class HandlerClientEncryption extends BasicHandler
{
KeyInfo keyInfo;
public void setKeyInfo(Document doc) throws Exception {
… }
…
}

public class HandlerClientDecryption extends BasicHandler {
… }

 The combined function of these two classes used
on the client side of ASSIDS is similar to that of class
HandlerServer. The main difference regards how the
X509 certificate is obtained. Before any other methods
of class SVGserver can be remotely called, the
getCertificate() method must be called. This method
returns an org.w3c.dom.Document containing an X509
Certificate (which contains the server’s public key).
Using the setKeyInfo() method, class SVGclient can
inform the class HandlerClientEncryption the public
key of the server. Obviously, the messages generated by
getCertificate() remote procedure call cannot be
encrypted (or at least on the client end). Therefore, the
getCertificate() method is deployed as a separate Axis
web service in which none of the previously mentioned
handlers are deployed.

The techniques used for SVG security: The SVG
security is enforced through they way the
communication is made between the SVGServer and
SVGclient classes. There are two scenarios in this
direction:
In the case of a request message:

1. The SOAPEnvelope object (extracted from

msgContext) will be converted to an
org.w3c.dom.Document.

2. The contents of body tag within this Document will
be decrypted.

3. The signature contained in the header will be
verified (On the client side of ASSIDS, the body
tag was signed).

 The sign method of class Secure always includes
an X509 certificate along with the signature it produces.
The verify method of class Secure extracts this X509
certificate and returns it within a KeyInfo object (and
uses it to verify the signature as well). The static
variable currentCertificate is set equal to this object.
The public key in the object referenced
currentCertificate is later used to encrypt the response
message.

J. Computer Sci., 2 (2):171-179, 2006

 177

4. The Document will be converted back to a
SOAPEnvelope object which will replace the
original SOAPEnvelope object.

In the case of a response message:

1. The SOAPEnvelope object will be converted to an

org.w3c.dom.Document.
2. The contents of body tag within this Document will

be encrypted.
3. The body tag will be signed.
4. The Document will be converted back to a

SOAPEnvelope object which will replace the
original SOAPEnvelope object.

 During this type of communication the SVG
security is maintained via using the class Secure which
provides six static methods
(encrypt,decrypt,sign,verify,…) that provide SVG
Security support for the previously mentioned service
handlers. Moreover, the class
KeyAndCertKeyInfoResolver is instantiated within the
sign method of class Secure. It is used to extract the
public key contained within an X509 certificate(X509
certificates are sent along with all signatures created by
ASSIDS).

public class Secure
{
public static void encrypt(Document doc, KeyInfo keyInfo,
String entry) throws Exception { … }
public static void decrypt(Document doc, String file, String
ksPass, String alias, String aliasPass) throws Exception { … }
public static void sign(Document doc, String file, String
ksPass, String alias, String aliasPass) throws Exception { … }
 public static KeyInfo verify(Document doc) throws
Exception { … }
public static SOAPEnvelope
getDocumentAsSOAPEnvelope(Document
doc,MessageContext msgContext,String type) throws
Exception { … }
public static Document
getSOAPEnvelopeAsDocument(SOAPEnvelope env,
MessageContext msgContext) throws Exception { }
}

 The encrypt() method encrypts the contents of the
body tag using 3DES symmetric encryption algorithm.
The 3DES key used is randomly generated and is
encrypted using RSA asymmetric encryption before
being sent to the receiver along with the encrypted body
tag. The RSA public key used is extracted from the
KeyInfo object referenced by the keyInfo parameter.
The entry parameter is equal to the alias of the
public\private key pair. The decrypt() method decrypts
the contents of the body tag using a private key
extracted from the java keystore file specified.
Parameter ksPass specifies the password needed to
access the keystore. Parameter alias is the alias of the
private key and parameter aliasPass is the password

needed to access the private key. The sign() method
signs the body tag using a private key extracted from
the java keystore file specified. All other parameters
are similar to those of the decrypt method. An X509
certificate containing the public key is sent along with
the signature. The verify() method verifies the signature
found in the header of the SOAP Envelope using the
public key that was sent along with the signature. The
remaining two methods do what their names suggest.
In fact, within method
getDocumentAsSOAPEnvelope() is the only time that
the Apache XML Security library is used by ASES.
Both of these methods are based upon example code
that can be found in
samples\security\SignedSOAPEnvelope.java of Axis
Release 1.2.
 The Secure class utilizes the Apache WSS4J API
for SVG Signature and Encryption[11,12]. WSS4J can be
used as a library to provide an API for WS-Security
processing. However, the WSS4J is primarily used to
sign and verify SOAP Messages with WS-Security
information. The WSS4J contains the following classes
and primitives:

* WSSecurityEngine <http://ws.apache.org/ws-fx/wss4j/>
* WSBaseMessage <http://ws.apache.org/ws-fx/wss4j/>
* WSSignEnvelope <http://ws.apache.org/ws-fx/wss4j/>
* WSAddTimestamp <http://ws.apache.org/ws-fx/wss4j/>
* WSEncryptBody <http://ws.apache.org/ws-fx/wss4j/>
* WSAddUsernameToken<http://ws.apache.org/ws-fx/wss4j/>
* WSSAddSAMLToken<http://ws.apache.org/ws-fx/wss4j/>

 The way the WSS4J is used in signing an SVG
SOAP Message can be illustrated as follows from the
client and server sides:

Using WSS4J at the client side
1. A client application wants to add a security token

to a SOAP message for authentication. The client
authors the complete SOAP Body, passes the
SOAP Envelope along with a security token to
WSS4J and asks WSS4J to attach the security
token to the SOAP message. There are many types
of tokens (e.g. Binary Certificate, Username
Tokens, Timestamps, SAML Tokens). In our case
we used the X509 certificate, the client application
will simply pass the X509 certificate byte array to
WSS4J. WSS4J will author the complete WSS
compliant XML/SVG structure of the security
token, wrap the security token inside a WSS header
and return the completed WSS message back to the
client application. The X.509 standard defines what
information can go into a certificate and describes
how to write it down (the data format). All X.509
certificates have the following data, in addition to
the signature: (Version, Serial Number, Signature
Algorithm Identifier, Issuer Name, Validity Period,
Subject Name, Subject Public Key Information).

J. Computer Sci., 2 (2):171-179, 2006

 178

2. A client application wants to sign a portion of a
SOAP message using a private cryptographic key
associated with an X509 certificate. The client
application has already added the certificate to the
SOAP message inside a WSS header as a security
token. The client application asks WSS4J to sign a
particular portion of the WSS message using the
private key associated with the certificate.

3. A client application wants to encrypt a particular
portion of a SOAP message. The client application
first adds the certificate of the intended recipient of
the message as a WSS token. It then provides the
fragment identifier and asks the application to
produce XML encrypted version of the message.
WSS4J produces the encrypted portion of the
message and returns the completed message back
to the requesting client application.

Using WSS4J at the server side
1. A server SVG application has received a WSS

message with a number of security tokens. The
XML/SVG firewall needs to extract a list of all
tokens from the WSS message. So it asks WSS4J
to extract the tokens from the WSS message.
WSS4J extracts all the tokens and returns them to
the requesting server application.

2. The server will need to provide a secret key to
WSS4J for decryption of encrypted portions of a
WSS message. If the author of the WSS message
used a public key to encrypt a portion of the
message, the corresponding private key is required
to decrypt the encrypted portion. Similarly, if the
client signed a portion of the message using a
session key inside a Kerberos ticket, the server will
need a password to decrypt the ticket and extract
the session key, without which the server cannot
verify the signature. Therefore, the server may
provide a secret to WSS4J corresponding to each
token in a WSS message.

3. The server also ask the WSS4J to provide a list of
all XMLDS signatures in the WSS message. After
WSS4J has provided a list of all signatures, the
server SVG application ask WSS4J to process any
individual signature.

4. Similarly, the server also ask WSS4J to provide a
list of all encrypted elements in a WSS message.
After WSS4J has provided a list of all encrypted
elements, the server application can ask WSS4J to
decrypt any individual encrypted element.

CONCLUSION

 Traditionally Web Services have been deployed in
client-server like settings. Services are generally hosted
within specialized containers and service requestors
directly access these services. With this type of
approach, security is basically achieved via the

transportation layer (e.g using SSL). The major
downside to this approach is that it can’t protect
documents outside the network the transport layer
safeguards. However, when a distributed middleware
substrate, such as Apache Axis and Web Services
leverage each other’s capabilities the resultant system
can facilitate the development. This article used the
Apache Web intermediaries to implement the W3C
XML Signature and Encryption specifications to protect
SVG Web services. For this purpose the SVG image
delivery system is composed of two Apache Axis
components (SVGClient and SVGServer) and
incorporates variety of APIs that helps in
signing/verification, encrypting/decrypting and for
rendering SVG images. The developed system is part
of an ongoing research to construct a secure SVG
medical imaging consultation system[13]. There are
many other challenges and concerns remain to be
answered: (1) What are the mechanisms to discover and
invoke Web Services securely and dynamically using a
UDDI Client, for example and (2) What are the
mechanisms for optimizing the workflow performance
by choosing Web Services from those available.
Figure 4 shows a screen shot from the developed AXIS
SVGClient.

Fig. 4: A screen shot from the developed AXIS

SVGClient

REFERENCES

1. Vincent Hardy, 2003. Using SVG to create

compelling user interfaces for web services. XML
Europe 2003 Conf., London, England May 5-8.
http://www.idealliance.org/papers/dx_xmle03/pape
rs/02-04-05/02-04-05.pdf

J. Computer Sci., 2 (2):171-179, 2006

 179

2. Lican Huang et al., 2005. Dynamic Invocation,
Optimisation and Interoperation of Service-
Oriented Workflow, Cluster Computing and Grid
(CCGrid2005), May 9-12, Cardiff, UK.

3. Paul Prescod, 2003. Anatomy of dynamic SVG
web services. SVG Open 2003 Conf., Vancouver,
Canada, Jul. 13-18.
http://www.svgopen.org/2003/papers/AnatomySV
GWebServices/

4. Evans, S. and O. Dowling, 2002. Is SSL enough
security for first-generation web services?
Published at WebServices.org
<http://www.webservices.org/index.php/article/arti
cleview/529/1/1/>, Jun. 18.
<http://www.vordel.com/news/articles/02-07-
18.html>

5. Gopalakrishnan, U. and R.K. Ravi, 2003. Web
services security: Part 1. IBM Res. J., 25 Feb.,
http://www-
106.ibm.com/developerworks/webservices/library/
ws-sec1.html

6. Microsoft-IBM Joint White Paper, Security in a
Web Services World: A Proposed Architecture and
Roadmap, April 7, 2002,
http://msdn.microsoft.com/library/default.asp?url=/librar
y/enus/dnwssecur/html/securitywhitepaper.asp

7. Fox, G., S. Pallickara and S. Parastatidis, 2004.
Towards flexible messaging for SOAP based
Services. SCI2004 High Performance Computing,
Networking and Storage Conf. Pittsburgh, PA,
USA, Nov. 6-12.

8. Qiu, X., B. Carpenter and G. Fox, 2003.
Collaborative SVG as a web service. SVG Open
2003 Conf., Vancouver, Canada, Jul. 13-18.

9. Gibbs, K., B.D. Goodman and E. Torres, 2003.
Create web services using apache axis and castor.
IBM Res. J., 30 Sep., http://www-
106.ibm.com/developerworks/webservices/library/
ws-castor/

10. Leung, T.W., 2004. Professional XML
Development with Apache Tools: Xerces. Xalan,
FOP, Cocoon, Axis, Xindice. Wrox Press.

11. Siddiqui, B., 2003. Using XSS4J for XML
encryption. O’Reilly Web Service J., Nov. 25.
http://webservices.xml.com/pub/a/ws/2003/11/25/j
wss.html

12. Siddiqui, B., 2004. Signing message with XSS4J.
O’Reilly Web Service J., Jun. 02.
http://webservices.xml.com/pub/a/ws/2004/06/02/
wss4j.html

13. Mohammed, S. and J. Fiaidhi, 2005. Developing
secure transcoding intermediary for SVG medical
images within peer-to-peer ubiquitous
environment. IEEE 3rd Ann. Conf.
Communication Networks and Services Research
Conf. (CNSR2005), Halifax, Nova Scotia, Canada,
May 16-18.

