
Journal of Computer Sciences 2 (1): 29 -32, 2006
ISSN 1549-3636
© 2006 Science Publications

Corresponding Author: Bhavya Mehta, Department of Computer Science, College of Vocational Studies, University of Delhi,
India

29

JBOOM: Java Based Object Oriented Model of Software Configuration Management

1Bhavya Mehta and 2S.K.Muttoo

1Department of Computer Science, College of Vocational Studies, University of Delhi, India
2Department of Computer Science, University of Delhi, India

Abstract: Most of the present Software Configuration Management systems deal with version and
configurations in the form of files and directories, the need today is to have a Software Configuration
Management system that handles versions and configurations directly in terms of functions (program
module). A major objective of this research is the use of Java in the Software Configuration
Management systems. An object-oriented language provides both design and implementation in an
integrated manner. We have proposed a model that expresses change evolution in terms of class
hierarchies. As the changes evolve so does the class hierarchy, it can be further extended and existing
classes can be extended.

Key words: Software configuration management, object oriented modeling, versions, configurations,

change control, Java, objects, classes, interfaces, methods

INTRODUCTION

 An object-oriented model provides an abstraction
for modeling SCM entities and relationships. An object-
oriented model provides both design and behavior in an
integrated manner. An ideal way of representing
growing changes is to use objects and classes. A major
emphasis of this study is to represent the changes in
terms of an a class and its instances. Our proposed
model uses Java objects and classes to correspond to
changes that are made in the system components[1]. The
classes selected in our model reflect the most common
changes that would arise in the normal evolution of
software systems[2].

Acronyms
SCM Software Configuration Management
API Application Programming Interface
IT Information Technology
RND Research and Development

An IT consultancy organization example: Consider
an IT organization, IT Consultancy Services (ITCS).
 It has a centralized In-House Division for
maintaining a centralized control over the various
departments in the firm. Various other departments in
ITCS like Admin (for administration), Finance, Rand D
(for research and development), Networking, Products
have their own internal IT divisions. The developers at
In-House create a library ver1.0 and distribute it to all
the other departments in the organization. Now after
some time In-House department feels some new
features may be added to the same library making it
ver1.1, at this stage the changes are minor so do not
affect the application users. Later on the library

developers at In-House department add some security
final checks, deporting and archival features to the
library API, proposing a new version of the library
ver1.2, in doing so they had to change few methods and
fields that are already in use. Now the application users
cannot use this library and an inconsistency arises.
 The library developers at In-House department
must provide a solution to help avoid such situations.
Library developers must consider the following:

* Changes should be noticed, recorded and published

properly.
* Redundancy of code must be avoided while

creating new library APIs.
* A simple and an efficient way of recording these

changes must be employed.
* In a distributed system some coordination must be

maintained once the testing of the changed code
has been completed so that the changes can be
implemented into the new library and API can be
released and published.

 If we apply our JBOOM model to the above
mentioned scenario. Firstly, our model is an object
oriented SCM model and any distinguishing entity in
the organization can be simulated as an object and
further such related objects can be grouped into classes.
Extending the existing classes can create more classes.
Our SCM model has at the top of its inheritance
hierarchy a class that reflects the most common changes
that evolve during the development of a software
library. Then there are two subclasses of this class,
which again reflects changes that have been made in the
members of a class and the classes in the inheritance
chain hierarchy, respectively.

J. Computer Sci., 2 (1): 29-32, 2006

 30

Fig. 1: Company organization

Fig. 2: Version tree for the library

 The problem stated above can be efficiently
handled by applying this model and its various classes
we can extend these classes to an extent we want even
the functionality of the library can be successfully
altered and later recorded by using our SCM model[3].
As stated earlier in this section in the ver1.2 of the
developed library, changes are made to the methods and
members.
The following set of changes may occur giving rise to
inconsistencies in the system:

C1: Any public classes if deleted/added may be

referenced by other classes in the hierarchy.
C2: Any public data members have been altered

(deleted or added)
C3: Public methods have been changed/deleted or

added
C4: Final methods or members are changed.
C5: Any abstract classes and methods are deleted or

added
C6: Any interface or its methods and data members

have been added or deleted.

 We propose a model that takes care of all the
above-mentioned changes in a systematic manner.

Object oriented modeling using java: A model
essentially is responsible for generating potential
configurations of systems. Whenever a change occurs
in a real world entity it’s a two-part process firstly its

state changes and the other part involves change in its
implementation. A model provides an abstraction at
some level; it reflects only the essential required
features of a system in problem domain and avoids
others. Since a model must highlight on “what” as well
as “how” of system under development, an object
oriented model based on Java reflects both, what a
system does and how it accomplishes that. What refers
to specifications and how refers to the implementation
aspects of a system. An ideal model is one that
separates both these aspects. Abstracting away from
implementation is an important feature of modeling. It
also allows a chain of several specification-
implementation relationships, in which each
implementation defines specifications for the next
layer. Using Java as the basis for the creation of an
SCM model provides all the above-mentioned features
in addition to providing the design and the language
constructs. Another feature of Java is generalization,
which is a taxonomic relationship between a more
general description and a more specific description that
builds on it and extends it. More specific description is
fully consistent with more general one and may provide
extension to the functionality of generalized one. A sub
class in Java is said to extend a class the word extends
in itself signifies the fact that an extension to the
existing class is provided. In Java if the need is to hide
certain details from the end user interfaces are used.
This way we can have client objects access services
providing objects indirectly through an interface. A key
property of Java is that objects are manipulated
indirectly, through implicit references to explicitly
allocated storage. The JVM implementation performs
automatic garbage collection, as a background thread.
Normally interfaces provide an indirection to the
inheritance hierarchy. This indirection allows the
clients to access the service-providing object without
having to know what kind of objects they are. But if we
need to design a set of related classes that provide
similar functionality then organize common portions of
their implementation into an abstract super class.
Interface is used in place of an abstract class when there
is no default implementation to inherit i.e. no instance
variables and no default method implementation. One
benefit of using an interface is that a class can
implement as many interfaces as it needs an object
oriented model is the basis of object oriented
techniques. At its core it means to model the system
being designed as a collection of objects. An object is a
distinct self-contained entity that is an abstraction of
some aspect of the system being modeled .It has a
variable that defines its state and methods that define its
behavior. The variables are usually private to the object,
which means that the object encapsulates its internal
state making it a black box (an abstraction). Its methods
provide public access to this encapsulated unit.
Individual objects are instances of a class .A class is a
prototype, a blue print based on which objects are

J. Computer Sci., 2 (1): 29-32, 2006

 31

created. Normally classes at the top of inheritance
hierarchy are abstract super classes and interfaces are
used at lower levels relatively.

JBOOM: Java based object-oriented model of SCM:
For every change that is made in the code, our model
has corresponding classes[4,5]. Java provides the
programmer with a customized change representation in
the form of classes. Our model provides a solution to
the above-mentioned changes (C1-C6) in a systematic
and efficient manner. Java provides an organized and a
hierarchical way of simulating the above-mentioned
changes in the form of class hierarchy. Class at the top
of JBOOM is changeImplement, an abstract class that
reflects the most common changes that evolve during
the development of a software system. This is an
abstract class and has been created so that can be easily
extended (Fig. 3).

Where:
X: Fields, Methods InhFields and Constructor.
Y: Class, Chain, Abst , Final.
Z: InhIntData , InhIntMeth

Fig. 3: Class hierarchy of JBOOM

 It contains members that are used by other classes
down the SCM model class hierarchy. Sole purpose of
this class is to provide an appropriate super class from
which other classes may inherit interface and provide
their own implementation. An important feature in Java
is that related classes can be grouped together in entities
called packages. Since every item in an SCM system
has a history associated with it, complete information
about items needs to be maintained. Our proposed
model uses separate Java packages to store new and the
old SCM items. Vector class contained in java.util
package can be used to create a generic dynamic array
known as a vector that can hold objects of any type and
number.
 Method, boolean contains (Object element),this
method returns true if element is contained by the
vector and else returns false. Another method, Object
elementAt (int index), returns the element at the
location specified by the index.
 Immediate subclasses of changeImplement
(Fig. 4) class are:

* Class changeImpMember
* Class changeImpChain
* Class changeImpInterf

Above-mentioned classes are abstract classes.

Fig. 4: Abstract classes of JBOOM

Fig. 5: The class hierarchy of changeImpMember

class

Fig. 6: Class hierarchy of changeImpchain class

Fig. 7: Class hierarchy of changeImpInterf class

ChangeImpMember class contains method
checkChangeImplement()
That uses an abstract method Boolean
implementChange()
 In changeImpChain class hierarchy
implementChange() method is applied to every class.
In chageImpMember class implementChange(), returns

J. Computer Sci., 2 (1): 29-32, 2006

 32

an integer for every member that has been changed
since objects created are unique. These two classes
have very little code so that further classes down the
hierarchy can be created easily by extending the
existing classes. Class changeImpInterf checks whether
any changes have been implemented in interfaces used.

Derived classes of changeImpMember class (Fig. 5)
delFields class: Checks whether some field has been
deleted from a class or not. If so, classes are checked
where the changes have been made as a change in
class’s field’s further affects rest of the classes in the
hierarchy.

delMethods class: Checks whether any public methods
have been deleted from a class under observation, if the
members of a class are altered (changed /deleted
/added).then it affects rest of the classes in the
hierarchy.

delConstructors class: Checks for any constructors
that have been removed.

delInhFields class: Checks whether the access
privileages for any class have been altered.

Derived classes of changeImpChain class (Fig. 6)
changeClass class: Checks for any deleted public
classes as these classes may have been used by other
classes in the system.

changeChain class: Checks for any alteration in the
inheritance chain hierarchy.

changeAbst class: Records changes that have been
made to classes that have become abstract. Since the
sole motive of declaring a class as abstract is to use it
for extending other classes not for instantiating.

changeFinal class: Records changes made to those
classes that have become final.

Derived classes of changeImpInterf class (Fig. 7)
changeInhIntdata: Checks whether any data conained
in the interfaces have been changed/deleted or added,
since interfaces facilitate multiple inheritance, so the
classes that implements that interface needs to be
checked .

changeInhIntmeth: Checks whether any methods
contained in the interfaces have been altered.
 Thus these above mentioned classes describe the
structure of an object oriented Java based SCM model.

CONCLUSION

 This study proposes an object-oriented model of an
SCM system, JBOOM that simulates changes in terms
of classes and their respective objects. Since the
environment used is Java it eliminates the need of
separately implementing these changes. In the proposed
system design and implementation are integrated. Also
an ideal way of representing evolving changes is a
hierarchy. Our model is a hierarchical model, presents
changes in a step-by-step manner[6-8]. Java is the de
facto language for programming in the web and our
model captures its features and arranges them in a
hierarchy. The proposed model adopts a simple yet
systematic approach towards managing evolving
changes. The very fact that the model uses classes,
abstract at the top of the hierarchy proves that it is
simple to implement and extend which is a major
requirement with any SCM system.

REFERENCES

1. Booch, G., J. Rum Baugh and I. Jacobson. The

Unified Modeling Language. Addison -Wesley.
2. Cheon, Y. and G. Leavens, 2002. A Runtime

Assertion Checker for the Java Modeling Language
(JML).Software Engineering Research and Practice
(SERP’02), CSREA Press, pp: 322-328.

3. Hamie, A., 2004. Translating the Object Constraint
Language into the Java Modeling Language.
SAC’04, Nicosia, Cyprus.

4. Korper, Elis and S.J. Ellis, 2000. The E-Commerce
Book: Building the E-Empire, Orlando, FL:
Academic Press.

5. Leon, A., 2000. A Guide to Software Configuration
Management. Norwood, MA: Artech House.

6. Rational Software Corporation,, 2003. The Unified
Modeling Language: UML Version 2.0,
http://www.rational.com,’03

7. SEI., 2000. Capability Maturity Model.
<http://www.sei.cmu.edu>.

8. Westfechtel, et al., 2001. A layered architecture for
uniform version management. IEEE, TSE., 27: 12.

