
Journal of Computer Science 2 (8): 615-618, 2006
ISSN 1549-3636
© 2006 Science Publications

Corresponding Author: Abdallah Boukerram, Department of Informatique, University F. Abbas, 19000 Sétif, Algérie
615

Parallelisation of Algorithms of Mathematical Morphology

Abdallah Boukerram and Samira Ait Kaci Azzou

Department of Informatique, University F. Abbas, 19000 Sétif, Algérie

Abstract: The tools of mathematical morphology developed within the framework of the image
processing, require of big capacity of data and the very high costs of execution. So today, the limits of
the sequential machines are not to be any more to show, the passage in the new parallel machines of
type Simd, Mimd, clusters or grids is imperative. This paper deals with problems related to the
parallelisation of the algorithm of mathematical morphology and highlights the resources influencing
over the computing time. This study leans on the various levels of parallelisable calculation to evaluate
the awaited profits then in term of processing time. An implementation of a whole of algorithms of
reference is carried out on a cluster and a simd computer.

Key words: Mathematical morphology, parallel algorithms, time of processing, clusters, simd

computer

INTRODUCTION

 The developers of parallel systems hesitate
between two approaches: it is necessary to conceive
computers from the classes of algorithms or then to
conceive architecture to determine then, the
applications the best adapted to these machines. The
first approach results generally in a high-performance
machine in a domain restricted by applications; the
second has the advantage to be able to answer needs of
more diversified applications. To answer at this
problem, as regards the tools of the mathematical
morphology; one must determine all calculations which
can make object of a parallelism. This study, made a
projection on the existing parallel architectures on the
market so as simd processors, mimd processors,
vectoriel processors, clusters and grid computing[1].

Characteristics of the morphological operators: The
mathematical morphology is an ensemblist theory used
in image processing. This theory is built from two basic
operators who are the erosion and the dilatation.
Without for it give an exhaustive list of all the
algorithms of the mathematical morphology, we remind
that the mathematical morphology was developed from
two basic operations which are the Erosion and the
Dilatation[2,3]:

Erosion: We call morphological Erosion of an image
X, according to a structuring element B, the set E,
formed by points x � X, satisfying the condition of
inclusion {Bx⊂X }.
Bx = structuring element centred in the point x
Notation: E (X, B) = {x � X: / Bx included in X}

Dilatation: We call morphological Dilatation of an
image X, according to a structuring element B, the set
D, constituted by points x � X such as the intersection
of Bx (B centred in x) with X, is not empty.
Notation: D (X, B) = {x: (Bx � X � Ø}
 Notion of structuring element: the structuring
element constitutes the basic element of the
mathematical morphology. Of flat geometrical shape
(disk, squared, segment, etc.), he is defined by a
reference point or origin, one or several directions and a
dimension
 The algorithms of image processing used since the
acquisition of the data until the final phase of
processing are very varied. A simplistic classification
given in the literature lists them in two big families; the
low-level algorithms and the high-level algorithms.
 This classification is established according to the
structures of treated data and the used operators. We
group together in the low treatments level, the
algorithms manipulating arithmetic or logic operators,
applied to images organized according to regular wefts.
We group in treatments high level, the algorithms
treating structures of more complex data so as list,
arborescence or graph. The algorithms of morphology
are low treatments level which manipulate data images
presented in the form of two dimensionally structures of
pixels.
* The punctual operators: this class contains the

algorithms of threshold and all the ensembles
operators applied to the binary images.

* The local operators: all the transformations making
use of structuring elements is local operations
(erosion, dilation, skeleton, outlines, etc...): the
processing of a pixel depends on this one and on a
certain number of her definite neighbours formed it
and the dimension of the structuring element.

J. Computer Sci., 2 (8): 615-618, 2006

 616

* The iterative operators: let us remind that the
morphological basic transformation are iterative:
erode or dilate an object by an element structuring
of dimension n, mean eroding it or dilating it, n
time by the same element structuring of dimension
1. We also count the algorithms constituted by
successive suites of iterations, such as the skeleton
by the method of thinning down, the calculation of
centre of gravity (successive erosions). The
reconstruction of an image damaged from the other
one (series of conditional dilations) as iterative
algorithms.

 We codify advantageously these iterative
algorithms, when the number of iterations to be made is
known at the time of the analysis of the application. It is
the case of the algorithms of filtering from which often,
the number of iterations is determined by the dimension
of structuring elements according to objects to extract
or to eliminate in a given scene. On the other hand for
the algorithms the number of iterations of which
depends on the context of the image, the number of
iterations is not known. Two possibilities offer
themselves for their coding:
 According to probability methods, we estimate the
number necessities of iterations for the obtaining of the
aimed results. Often, we tend to foresee more iterations
than one needs. Consequence: it results from it, of the
wastes of time caused by the useless operations.
 We observe the result obtained after every step of
iteration until obtaining of the waited results.
Consequence: method punished by the number too
much of input-output.

MATERIALS AND METHODS

 Although, the morphological operators are simple.
But their integration in a complete chain of image
processing take fast big proportions in times of
processing. It is thus necessary to think of the
parallelism: simultaneous execution of number of spots,
which we can envisage at several levels (bit,
neighbourhood, operator and program or level data).

Parallelism at the level spaces pixels: A
morphological application is constituted by a
succession of elementary alterations, which often,
consist in applying the same process or the operator to
all the pixels of the image. Algorithms appearing under
the shape:
begin
 for any pixel "x" of the image do
 {
 Calculation of "x" on a neighborhood Vi
 }
 endfor;
endbegin
 We just measure a phase of iteration to
(K*256*103) cycles of operations for an image

(512*512) pixels with K the number of instructions
necessary for the pixel processing.
 The morphological operators are local. For a given
operator we make the same processing on all the points
of the image. Of more the treatments of a point
embellish with images is independent from the context
of the image. Intrinsically, we think of the massive
parallelism on pixels: computer consisted of elementary
processors (EPs), working in mode Simd (simple
stream of instruction, multiple stream of data),
correspond perfectly to this mode of parallelism[4].

Example: Processing of an image (M*N) pixels on a
system of (Px*Py) EPs working in synchronous mode.
The image is partitioned blocks of dimensions equal to
those of the processor who are in charge of in the local
memories of various EPs. The functioning Simd, made
that an elementary operation is made in parallel on
every EP, on each of the pixels who is attributed to him.
 Once the processing of a block ended we pass in
the following block until the image is completely
treated[5]. So, the complete realization of an operator
necessitates K cycles of operations by pixel would take:
K (M / Px) * (N / py) = K (M*N) / (Px*Py) cycles of
instructions, instead of: (K*M*N) in the case of a
sequential treatment.
 In these times of calculation, add the times
necessary for the loads of data in the memories of EPs
and possibly the time of adaptation of the data on the
geometry of processors. But at this level already, we
can suspect the influential features on the performances
of such a system:
* The size of the computer in number of EP
* The power of calculation and the set of instructions

which offers the system
* The functions of access to the nearby processors

which offers the network of interconnection
* The management of input-output is often

penalizing in the transfers times of data.

Parallelism concerning the operators: Significant
earnings of calculation can be waited, if we parallelise
the operators enjoying a big frequency of use. In
mathematical morphology, we think of the local
operators leaning on the notion of structuring element.
In the classic computers, the ALU work generally on
two operands of data in entry to deliver a result from it
in release. To realize a local operation on a
neighbourhood (Vx*Vy) pixels, it would be necessary
to realize exactly [log2 (Vx*Vy)] under elementary
operations operating each on a pair of data.
 There is two solutions, for operators parallelism:
The multi-operators or the technique of the pipeline The
multi-operators is exploited well in supercomputers and
techniques of the pipeline is widely integrated into the
architecture of the current computers.

J. Computer Sci., 2 (8): 615-618, 2006

 617

Approaches macro-pipeline of the parallelism: This
technique is similar to the pipeline method. The
operators apply to streams of images instead of data.
The system is configured in macro-pipeline: put in
waterfall of processors some following the others. The
images are introduced one after the other and circulate
of a processor in a neighbour according to the
producing/consumer mode. In every passage in a
processor, the image undergoes a treatment and passes
on its result in the following processor. The processor
composing the last floor of the macro-pipeline supplied
the final result of processing.
 Once the macro begun pipeline, a theoretical
earning of a report of p (p=number of processors of the
system) can be expected, if the following hypotheses
are satisfied:
* Continuous streams of images in entry, with

sequential chain of treatments
* Quantum of time of execution of the various equal

or rather homogeneous modules
* Space out memory being enough in each of the

processors for containing data and program
* Compatibility of the structures of data presented to

the entry and to the exit of a processor, with points
of synchronization on buffers used in the
exchanges of data.

Method of parallelism: We decompose the program
into a suite of modules where the enchainment of
execution respects the sequential of the initial
algorithm.
 For the operators on which is made certain number
of iterations (erosion, dilation, thinning down,
conditional alterations, etc...), it will be a question of
distributing the total number of iterations on all the
processors. So on a computer in p processors, a
morphological transformation according to a structuring
element B of dimension n, would decompose p
elementary alterations according to an element
structuring of dimension 1. Each of the processors will
have the same load of calculation and will make (n/p)
operations.

Example: We configure advantageously a system in
four floors, for the algorithms of filtering, skeleton,
transformation top hat or the others. The algorithm
FILTRE+(B, n, m) described by Serra[2], distributes in a
optimal way with a load balancing of of calculations
(number of iterations by operator) on a cycle in four
processors as follows :
operator EROSION n iterations
operator DILATION (n+m)/2 iterations
operator EROSION (n+m)/2 iterations
operator DILATION m iterations

The algorithmic parallelism: We decompose a
program a set of processes. Then, we isolate the
independent processes to be treated in parallel.

 A process is a module, a procedure or simply a
sequence of executables instructions by a processor.
Two processes are said independents if they can be
executed in parallel.
 Two processes arisen from a decomposition of a
program can use common resources of type files, space
out memory or the others. To be divided these
resources, the processes need to communicate between
them and to synchronize[6,7].
 The mechanisms of synchronization are of order
multiple (semaphores, events, acknowledgement of
receipt ...). They differ from a machine in the other one
according to the used operational systems[1]. The rival
programming brings a solution of the codification of the
parallelism algorithmic. We can quote the following
languages, the C Parallel, the Fortran Parallel,
OCCAM3 or ADA[8]. In the rival programming, there is
no general method to determine the processes
independent from a given algorithm, the methods
heuristics remains the only appeal to the users.

Method
* Decompose the algorithm a set of processes
* Determine the exchanges of data to inter-processes
* Isolate the independent processes
* Allocation of the logical processes in the physical

entities
* Execution simultaneous of the rival processes.

Example: The algorithm “morphological gradient”
decomposes easily into two independent processes to
know the operator INF and SUP who are respectively
the operators EROSION and DILATION of images at
several levels of grey.

Parallelism at the level of the data: The parallelism of
data is not specific to the treatment of images; he can be
envisaged for any application called to process or to
manipulate big files or big data base. We divided a file
of data a set of sub-files or an image in sub-images to
be treated in parallel on system multi-processors. Each
of these processors has a unit of calculation and a local
memory where are stored programs and data such as
clusters[8,9].

Method of parallelisation: The image is partitioned in
blocks according to the geometry of the network
interconnection of the system. Then we load these
blocks in the local memoirs of the various processors to
be treated in parallel: models known under the name of
"geometrical parallelism ".
 For the morphological algorithms, we apply the
same processing to each of the parts of the image:
parallelism Spmd (simple stream of program, multiple
streams of data) model says. For the processing, the
same copy of a program is loaded with in each of the
processors. The various sub-images are treated so
simultaneously on all the processors of the system.

J. Computer Sci., 2 (8): 615-618, 2006

 618

Material constraints
* Local memory of a processor of a capacity of at

least equal to the size of the window to be treated
for the punctual operators and with twice the size
of the window for the local operators.

* Correspondence of the geometry of processors with
those of the image or the mechanism of adaptation
of data on the geometry of the processors of the
system.

Estimation of the time of processing: To consider
time of calculation of architecture spmd, we settle the
same hypotheses as those used by J.L Basile for the
estimation of system multi-processors[10].
p= number of processors of the system
Tc= time of calculation of a par of the image
Tt= time of transfer of a part of the image
R= number of regions of the partitioned image
TT= time of total processing of the image
R= K*p (K integer > = 1)
 The time of processing of a sub-image is
determined by time necessary for its load followed by
the time of calculation necessary for its treatment
followed by time taken by the transfer of the results.
 Time of a cycle sub-embellish with images = (Tt +
Tc + Tt) = (Tc + 2*Tt)

Case 1: In the case or the system has a network of
interconnection, in measure to be able to load the data
in parallel on all the processors. The time of complete
treatment of a requiring image K iterations will be
equal to: (R/p) * (time of a cycle of treatment of one
under-image).
Total time of execution of an image = (R/p) * (Tc +
2*Tt) = K (You + 2*Tt).

Case 2: In the case of simple configuration, or
processors are connected by a unique bus, it is
necessary to add time necessities in transfers of data
and to conjugate the waits caused by the last processors
served in data. We distinguish two possibilities:

a. Tc < (p-1) *Tt: In that case handbook, we have a
total covering of the time of calculation by that of the
transfers of data. The complete treatment of P regions,
takes then just the time necessary for the transfers of p
regions. Let be a time: (p*Tt) + (p*Tt) = (2p*Tt)

b. Tc > = (p-1) *Tt: The time of calculation taken by
the last processor covers the totality of time necessary
for the transfers of (p-1) regions of the antecedent
processors. The time of treatment of p regions is then
given by:
(p-1) Tt + Tt + Tc + Tt) = Tc + (p+1)* Tt
The total time of an image processing:
TT = K(Tc+ (p+1)*Tt) if Tc/Tt > = (p-1)
 = 2 (K*p*Tt) else
 To make profitable such systems, it is necessary to
envisage solutions of load balancing which nowadays
are in the research state[12].

CONCLUSION

 The parallelism on the algorithms of mathematical
morphology can be envisaged at several levels. Each of
the levels requires particular architecture:
* Parallelism on pixels of the image: Simd

architecture
* Parallelism on parts of the images: Cluster or spmd

computer
* Technique of the pipeline for the local operators
* Macro-pipeline for a parallelism of streams of data.
 The federation in a grid computing of the unit of
these heterogeneous system simd computer and cluster
is a possible solution for the optimal parallelism of
morphological algorithms. We shall also underline the
many dependences of the algorithmic to the architecture
of machines (instruction set, interconnected network,
geometry of processors and the management of the
input-output), observed along this study.

REFERENCES

1. Hwangs, B., 1984. Computer Architecture and

Parallel: Processing. McGraw Hill.
2. Serra, J., 1998. Image Analysis and Mathematical

Morphology. Academic Press London .
3. Soila, P., 1999. Morphological Image: Analysis.

Springer Verlag, Berlin.
4. Han, J. and P. Jonker, 2004. From massively

parallel image processors to fault-tolerant
nanocomputers pattern recognition. ICPR 2004.
Proc. 17th Intl. Conf., 3: 2-7.

5. Kontoghiorghes, E., A. Sameh and D. Trystram,
2002. Parallel Matrix Algorithms and Applications.
Elsevier.

6. Le Cun, B., S. Rajopadhye, J.L. Roch and , C.
Roucairol, 2000. Algorithme parallele in: IHPerf.
Applications Paralleles Hautes Performances:
Analyse, Conception et Utilisation de Grappes
Homogènes ou Hétérogènes de calculateurs, J.R.J,
L. Pazat, S.Rajopadhye CNRS Aussois, France.

7. Csajkowski, K. and I. foster, 2002. A ressource
management architecture of metacomputing
system. Lectures Notes in Computer Science.

8. Boukerram, A., 1991. Morphologie mathématique
et architectures parallèles en traitement d'images:
implantation d'algorithmes et comparaison de
performances. Ph. D. Thesis. University of L.
Pasteur Strasbourg, France.

9. Aumage, A. and G. Mercier, 2003. A cluster of
clusters enabled MPI implementation. In 3°
IEEE/ACM Intl. Symp. Cluster Computing and the
Grid, Tokyo.

10. Basile, J.L., S. Castan and J.Y. Latil, 1994.
Structures Paralleles en traitement d'Images. Prem
Colloque Image, Biarritz.

11. Jiming, L., J. Xialing and W. Yuanshi, 2005. Agent
based load balancing on homogenious mini-grids.
IEEE Trans. Parallel and Distribted System, 16: 6.

12. Foster, I. and C. Kesselman. Clobus: A
Metacomputing Infrastructure Toolkit.
http://www.globus.org/

