
Journal of computer Science 2 (8): 627-633, 2006
ISSN 1549-3636
© 2006 Science Publications

Corresponding Author: Junaid Ahsenali Chaudhry, Graduate School of Information and Communications, Ajou University,
South Korea

627

Some Enabling Technologies for Ubiquitous Networks

1Junaid Ahsenali Chaudhry, 2Chaudhry Sajjad Hussain and 1Seungkyu Park

1Graduate School of Information and Communications, 2Department of Electrical and Computer
Engineering, Ajou University, South Korea

Abstract: Every new technology that makes its way in the market is supported by a collection of core
components called enabling technologies. These components play a major role in making that new
technology a success. In this paper we discuss Autonomic Computing (AC) and especially self
management and Service Discovery (SD) as the enabling technologies for ubiquitous networks. The
AC puts the ‘visible’ automation into ubiquitous networks an element which has drawn huge interest
both among the public and industry. The envisioned benefits of AC are very promising but its
applications are at their inaugural stages. Service discovery is well known for its significance in
ubiquitous environments. However practical manifestations of environments such as futuristic smart
homes and ubiquitous kitchens remains to be seen as a success. We discuss our research findings and
enlist the importance of the two enabling technologies mentioned above.

Key words: Enabling technologies, Autonomic Computing, Service Discovery, ubiquitous
networks

INTRODUCTION

 Ubiquitous services make use of service sectors
both in government and private enterprise arenas.
Healthcare, security in terms of personal safety and
community sabotage prevention and management and
smart homes all are the envisioned applications of
ubiquitous environments[1]. Service discovery
techniques allow users to discover services,
applications and devices that are available in the
network and may also facilitate service access and use.
It is useful e.g., for two scenarios. One; mobile users in
foreign networks or groups of users that form a
spontaneous (ad hoc) wireless network poised to share
services, two; the services are temporally changing
according to e.g., the policy of a corporation to restrict
or extend services according to the user’s role and the
time of the day. A user can trace a service by requesting
for a particular service type (e.g. printer service) and
may make an intelligent service selection in case
multiple services of the desired type are available. A
sizeable reduction in administrative load to
characterize, advertise and bind services through
manual means, by automating the entire procedure the
total cost of ownership[2] is made bearable for network
operators and service providers.
 Building on top of the ubiquitous infrastructure i.e.
OSGi[3], the Service Oriented Platform (SOP) is
considered to be strong candidate for future ubiquitous
networks[4]. IBM being the leader in taking the
initiative in Autonomic Computing has worked for
making their products more dependable. Tivoli, Lotus,

IBM WebSphere and IBM DB2 being the prime
examples in software. In hardware IBM eServer[5] is
among prime examples. Combining the abilities of both
AC and SD technologies will provide ubiquitous
networks with the ‘visible automation’ and ‘seamless
task customization’. The examples of both are shown in
the scenarios below.

Scenario 1: A news reporter is visiting a news room
which is established in a convention hall where an
international conference is in progress. There are
several services available in the news room, such as a
registration service, interpretation service for non-
English speakers, show-of-hands service for raising
questions and a number of computing services such as
printing, fax services and internet connectivity. A news
reporter, we assume inexperienced in computer
dexterity, can be provided seamless access to all such
value-added services, only if such an environment
provides an autonomic service discovery and invocation
mechanism.

Scenario 2: A commuter wishes to travel from place A
to B. If we wish to add this scenario to the ubiquitous
world we have to consider at least the following
constraints. How to choose the route, decide the stops
for rest for the commuter, refilling and maintains needs
for the vehicle. All this has to be decided through some
distributed service or set of distributed services. As the
commuter moves and changes positions, new and
updated services are added to the itinerary. This process

J. Computer Sci., 2 (8): 627-633, 2006

 628

of update in itinerary carries on until the commuter
reaches the destination.
 It is apparent from the scenarios described above
that in a ubiquitous application there are many
technologies that make a seamless experience possible.
Discussing the two enabling technologies in this paper
will give us the insight to realize their importance in
ubiquitous computing.

Related work: Services discovery is primarily based
on publicize and listen-in methods. Either, node or
service or both of these are notified through
advertisements, seen as an optimization problem.
Standard bodies such as IETF and consortia of business
giants are addressing it at various levels in different
ways. A variety of service discovery protocols are
currently under development. Here, we summarize
widely known schemes from the perspective of their
applicability and acceptance.
 Jini[6] is an extension of the programming language
Java that allows platform independence through Java
Virtual Machine (JVM) environment but offers limited
applicability for smart environments, which are
characterized by heterogeneous device capabilities,
mostly lacking support for JVM. Scoping is done
through definition of groups; a concept difficult to
realize in the wake of device and user mobility in smart
spaces. Service Discovery Protocol[7] is a concerted
effort of Microsoft and Intel to address device
discovery addresses for Bluetooth environments. Poised
for discovery, it does not elaborate device or service
accessibility and usage procedures. Smart spaces,
envisaged to be intelligent enough for use by consumers
must go a step beyond what SDP® offers. UPnP[8]
extends Microsoft’s Plug and Play technology to the
scenario where devices are reachable through a TCP/IP
network. Designed for IP-based networks, there is a
technological conflict between the address-centric
nature of UPnP and address-agnostic feature of smart
spaces. A framework that mitigates such a limitation of
UPnP is still awaited. SLP2[9] Service Location
Protocol 2 is the newer version of the initially proposed
version of original service location protocol. Proposed
by Internet Engineering Task Force (IETF), it is a
decentralized, light weight, scalable and extensible
protocol for service discovery within a site. Support for
form factor constrained devices is provided by the use
of proxies and surrogates.
 SELFCON is the architecture for self configuration
in ubiquitous networks[10]. SELFCON associates the
configuration intelligence with the components of
network rather then limit it to a centralized management

station. AUTONOMIA is an autonomic computing
environment[11]. They propose Autonomic Middleware
Service (AMS) as the service that takes care of dynamic
needs of autonomic applications. The idea of Personal
Home Servers is presented in[12]. They believe that
personalization is the key to reduce the complexity. To
each user, they have provided a server that deals with
the service customization and each user communicates
with others via his personal server. The mobility of the
user and the service portability is also managed by the
same. Embedded micro servers are provided to every
physical device in[13] called Pervasive Servers. The
emphasis is on user customizability and policy
enforcement. They say that the personal server carried
by each person coordinates with pervasive servers. This
framework is very dynamic and may be a good
candidate for dynamic service composition. They have
used Universal Plug and Play (UPnP) for service
discovery, traditional web server for location
management and XML messaging protocol for message
passing among the individual modules. The context
management is difficult in this environment but they
define it as their future goal.

Applications and autonomic self management:
Despite of a lot of promise, there is no “killer
application” identified for ubiquitous computing yet[17].
Many prototypes are developed addressing many
aspects but not a single application that can result in
widespread adaptation. It has caused lack of acceptance
among the consumers. Seamless mobility, fast
handover, connectivity everywhere etc. are the kind of
facilities that are promised but they can not attract a
common user[3].

System requirements: One of the most important
applications of autonomic computing is self
management. It is a cost effective approach to manage
distributed networks. Self managing systems pose some
functional requirements. According to our experience,
the following system requirements should be
considered as the least capability set when developing a
smart space.

Anomaly detection: Behavior-based anomaly detection
compares a profile of all allowed application behavior
to the actual traffic. Any deviation from the profile is
flagged as a potential attack. It is commonly referred to
as a positive security model because it seeks only to
identify all "known good" behaviors and assumes that
everything else is bad. Behavior anomaly detection has

J. Computer Sci., 2 (8): 627-633, 2006

 629

the potential to detect attacks of all kind – including
"unknown" attacks on custom code and routine[18].
 Behavior anomaly detection can also lead to a high
rate of false positives. For example, after a behavior
profile is created, an application developer may change
the application (a new URL, new parameter, etc.)
without notifying the security team. In this case,
behavior-based anomaly detection wrongly identifies
access to these new parameters as potential attacks.
Given the extreme complexity and dynamics of
enterprise Web applications, the use of behavior
anomaly detection as the sole basis for blocking attacks
in real time is difficult without continuous tuning.
That is where autonomic computing comes into play.
Autonomic diagnosis: After detection, comes the
diagnosis part. At this stage, many Artificial
Intelligence techniques are used in many applications
i.e. neural networks, machine learning etc[19]. The
modern day Autonomic Diagnosis techniques
categorize fault notes with respect to the frequency with
which they are occurring. They categorize the most
frequently occurring faults into a separate category and
diagnosis part is skipped which proves to be the most
time consuming and takes the system directly into the
recovery phase where actually modular recovery
process takes place. This way, a lot of functional
redundancy can be avoided and it helps in fault
categorization. Although there can be many cases when
diagnosis part is necessary, but the frequency of such
cases decreases with the age of system.

Context awareness and solution proposition: Context
refers to a concept in human-computer interaction in
which a system can interpret explicit acts of
communication. For example, a food-ordering system
could interpret that a user wants a particular menu item
based upon which item the user has selected with their
mouse. Context aware computing, a paradigm first
introduced over a decade ago, extends the idea of
context to also refer to the physical and social situations
in which computational devices are located. For
example, a context aware cellular phone would
automatically turn its ringer off if it were aware the user
was in a business meeting (by having access to the
users meeting schedule). Other such examples of
context awareness are a device being aware of its
particular physical or relative location, or its own
characteristics such as processing power, battery life,
input devices, screen size, etc. In a self managed
system, context plays the key role. When it comes in
terms of telling the manager that ‘what exactly is
happening?’ in the system, it’s the context awareness
that conveys the information and manager takes action.

 All functional parts within the system and
perceived parts of environments can be called context
for self managed systems because change in one
parameter can change the system behavior altogether.
Heuristics is a problem-solving technique in which the
most appropriate solution is selected using rules.
Interfaces using heuristics may perform different
actions on different data given the same command. All
systems using heuristics are classified as intelligent.
Expert systems were a classical example of heuristics
based systems. There are many hard coded solutions are
provided where all the situations that system can face
are coded in if-then statements. In a ubiquitous real
time world we need hybrid approach where both hard
coded and inferred solutions are applies to the self
managed system[3].

Standardization interaction: Software messages
between two entities carry decoded messages inside
them. Although those messages are received by the
receivers but it is very important that the receiver be
able to interpret it correctly. Nowadays, standardization
of the network is considered to be one of the most
important infrastructures to promote information
utilization. In a self managed system the standardized
communication is very important in order to avoid the
ambiguities. Working in a component oriented
distributed environment can be very challenging and in
some cases it can be possible that a self managing
system itself faces the management problems. So to
avoid such situations the standardization issues are
important[4].

Dependence on system load: Self Management I not a
magic that we turned on and all the system problems
would be solved. It doesn’t have to be active all the
times e.g. when the system load is less then a certain
level the self management system should downgrade its
functional activities and upgrade the optimization
modules and vice versa. Although there is no study
done on the work load effects of self management
systems yet but we assume the considering self
management modules are working modules they
logically would take system resources and left turned
on when there is no need would result in wastage of
system resources.
 In addition to the discussion above, the transparent
accounting of the software modules in the system
(software modules maintaining history and answer to
the request asked about the past activities), the constant
update of self managed system and division of new

J. Computer Sci., 2 (8): 627-633, 2006

 630

rules, policies is very important to keep the system in
an optimized state.

Applications: The AC carries a huge promise for large
scale distributed system. Since the cost attached to
maintain such systems has soared, the need for
autonomic systems is increasing too. Several
application areas are proposed but in this research we
will discuss some of them.

Self-* applications: By far the most interesting
application area is self-* applications especially the self
management applications. Instead of being managed by
human supervision, the system should watch itself.
Mainly classified into self fault management, self
configuration, self performance management, self
account and self healing the self-* applications are the
direct applications of autonomic computing
concepts[10,12,15].

Pseudo-intelligent administration: Intelligent
Administration (IntA) or supervision is desired to be
working on top of self-* applications and provide the
guidance to self-* applications. Many modern day
projects are considering the term ‘manager’ for
IntA[3,10,11]. The term ‘manager’ is a bit vaguely defined
in terms of its functionality. Manager it self should be
responsible for the management of all functional and
non functional aspects of the system. We deduce that
term manager is may be the light weight form of kind
of expert systems that infer some directions for self-*
systems. These ‘managers’ can contain policies,
services, or components[14]. When called, the managers
either provide atomic, co-related, or composed. These
solutions can be just one or can be a set of many
proposed solutions. The ‘manager’ executes those
solutions and the system functionality is then analyzed
through either some functionality models or ontology.
Many candidate technologies are proposed for IntA
development but we still think that the real time
solutions are far from fetched for modern day
communication systems.

Automated system testing: Testing systems are the
most fragile software systems. Containing the
probability of failure and success exactly the same,
testing systems are the best to try the functional
feasibility of any autonomic healing system[15]. This is
relatively a new application area in AC promising to
build some automated testing software testing tools that
can test some system according to the functional and
system requirements.
Autonomic computing in home networks: In the
following context we discuss the architecture of u-

AMS. There are core services that directly interact with
the user. These are platform independent services that
are either provided by service provider or generated by
the system itself. These services are initiated when they
are loaded from the service pool at the initialization of
management gateway. Later on the service pool is
updated as the new services are added and old services
are updated. In u-AMS the services are called service
bundles and service pool as u-function bundles pool. In
that service pool all services individually and service
pool collectively is monitored by the monitoring
service. It is the logging system utility that gives the
facility to monitor every instance taking place within
the system. That monitoring services leads to Context
Control Center (CCC). This part of system manages the
profiles and reports to the context analyzer. It works out
on the log files generated as a result of all the
monitoring activities and hence it updates the profiles
of all the entities. This part of u-AMS is even driven it
goes through all the activities and if an abnormal
activities are found, it reports to context analyzer. The
Context Control Center is a kind of exchange that
diverts the related to the relevant profile or things out of
context (exceptions) to context analyzer. The profile, if
left unexamined, will become too bulky. To reduce the
size and for more efficient processing some data mining
functions are performed on profiles. These data mining
functions are performed through data mining agents.
There is some normal profile of each entity and that is
defined when it first gets attached to the system or the
system software defines it default operation. When
something happen other than the default operation it is
separated and recorded. That makes the information
size low (data mining agents are included in our future
implementation plans).

Fig. 1: System Architecture of u-ASH System

 When an exception or malfunctioning is reported,
the context handler is passed to context Analyzer

J. Computer Sci., 2 (8): 627-633, 2006

 631

module. The function of this part is mainly the pattern
matching. Using pattern matching, it identifies the
problem and handles the context to the Action
Manager. Action Manager is mainly the policy checker.
It checks the policies and takes the appropriate action as
directed in policy. The type of violation is important
here, whether it is breach of the sever type, or it is of a
type that the system can handle with the help of
policies. This part of the system predicts the level of
reaction to the breach or malfunctioning. After the
analysis of the problem and its identification, the
context is handed over to the related management
module. A reaction policy is devised by that
management module and Agent Based Feedback Model
is actuated and that policies are implemented on the
services. We have chosen Agent based technology over
here by considering the scenario in mind that the
services may reside at a remote place so agents may be
a good candidate for execution of remote action.

Implementation: We implement our work using toolkit
provided by IBM for autonomic systems. We first make
resource model and then those resource models are
implemented using that toolkit. Behind any autonomic
computing system is some form of autonomic
management engine. This engine acts as the hub of the
wheel, keeping all of the spokes together and pointed in
their proper directions. An autonomic management
engine such as IBM's Autonomic Management Engine
(AME) coordinates the control loop for an autonomic
computing system. In a control loop, a system
continually monitors the environment, analyzes the
information received, plans a response and executes
that response. If you had to manage a new autonomic
application for every issue you had, you wouldn't be
saving much in terms of labor. You'd also start to run
into problems in terms of standardization between
systems, increased software complexity and so on.
Instead, autonomic computing technology works on the
idea of a single management engine running multiple
resource models. A resource model is a set of criteria
and instructions that get plugged in to AME. The
resource model defines what resource to monitor (that
is, disk space, processor time and so on), what events
and conditions to look for and what to do in the event
that those conditions do in fact occur.

Service discovery is home networks: Now, we
describe the ubiquitous remote manager for the project
we completed as part of a government sponsored
academic initiative. A test bed for ubiquitous remote
manager with home appliances is developed at Ajou
University South Korea. This work is the part of
Ubiquitous Autonomic Computing and Network
(uAuto) project[16].

 Thus far, as an initial prototype, ubiquitous remote
manager offers service discovery mechanism for a
limited range of home appliances. Users can discover,
access and use services such as printer, TV, rice cooker,
lights and cameras using his/her mobile phone or PDA.
The ubiquitous service discovery (USD) has been
developed through ubiquitous remote manager (URM).
URM controls the home gateways remotely to reduce
the complexity of the entire system and achieve more
control over the operation and manageability of the
network. In ubiquitous remote manager, we have added
some value-added services as following services has
described.

U-best bid service finds the best choice for the
consumer, because consumer will be able to buy a best
service in economical cost.
U-device advertiser The Device Advertiser will
provide the information of various devices on the
gateways. These devices on all gateways can help the
service providers to Introduce service “PACKAGE”.
U-service composition User has the ‘device set’ to use
a service or application BUT needs an add-on or driver
/ update. Automatic download for that missing
component will be made available through this service.
U-service advertiser The Information concerning to
services will be provided to the Users. It will be such
marketing for service to consumer, that will more
advantageous for service provider as well as consumers.
U-context Service The context/Profile service will
keep the preferences information of user according to
his/her behavior and life style. Then it will be used by
services providers during providing their services. So
we can it will useful information for ends. These quality
services will allow the system to manage itself and
hence virtually no human assistance will be needed for
tiny matters.
 The control center (CC) unit has vital role in the
preliminary and consequent configuration. It is a set of
connections with in the Ubiquitous Remote Manager.
Only the control center can add/remove backend server
hosts, configure the system databases, etc. The initial
configuration of the system always begins on the
control center. After initial configuration, the CC can
go offline and the system can continue carrying out
without it. However, the control center (CC) cannot be
completely changes in the system configuration can be
done only through this module.
 A management server handles the communication
with service gateways, monitoring changes in their
configuration state, schedules management jobs for
execution and keeps track of job results replied by
service gateways. The management server uses the
centralized database for storing configuration
information about all gateways it controls, as well as
pending for execution management jobs. Each

J. Computer Sci., 2 (8): 627-633, 2006

 632

management server is responsible for synchronizing the
configuration state of service gateways with the
configuration data stored in the database. The
management server also provides support for storing
and accessing all persistent information from gateways
on the backend system, so OSGi[7] frameworks can be
deployed on devices without any importunate memory
(disk, flash RAM).

Fig. 2: U-service finder: A demo

 It allows the service provider and service user to
access Ubiquitous Remote Manager remotely. The
service providers perform services publishing and
administration through RAS. Users can access the
Ubiquitous Remote Manager (URM) functions and
services. The Ubiquitous Autonomic Management
Server (uAMS) component is the Application server
that will contain the services in the form of JAR files.
These files can be accessed and downloaded by all
other applications and servers in the system.
 In Ubiquitous Service Discovery (USD) the most
important obsession is a service is an entity that can be
used by a person, a program, or another service. A
service may be a computation, storage, a
communication channel to another user, a software
filter, a hardware device, or another user. Two
examples of services are printing a document and
translating from one word-processor format to some
other. Ubiquitous Service Discovery (USD) provides
mechanisms for service construction, discovery,
communication and use in a distributed system.
Examples of services include devices such as printers,
displays, disk; software such as applications or utilities;
information like databases and files; and users of the
system. Ubiquitous Service Discovery (USD)
architecture contains Service Pointer that will point
(discover) the service with in the network to user,
Service update service will update the services
directory and cache
 Services are found and resolved by a service
Pointer. The service Pointer is the central mechanism
for the system and provides the major point of contact
between the system and users of the system. In
specifically terms, a service Pointer takes queries from
user and point the service from the services database
and cache within the network to the user. When the
Service provider adds some new services to services

directory via Ubiquitous Remote Manager, The Service
updates service, update the services directory and
service cache and this service Directory and cache
maintain by Management Server .These services can be
put in through Service Advertise as well.

Fig. 3: Architecture of ubiquitous service discovery in

home networks

 Preference Search Service, expressive entries allow
for more fine grained selection of services based on
properties understood by peoples. This provides the
user defined parameters for the search such as searching
by service type or service provider.

CONCLUSION

 Ubiquitous Computing needs to prove a lot in order
to get into the daily lives of modern day users. Since
there are no such application devices that could become
the need of a mobile user, it seems that it’s the visible
automation and network management is the
areas where the research community has to concentrate
at. We in this study discussed the Autonomic
Computing and Service Discovery as enabling
technologies for ubiquitous systems. We shared our
experience of application development and theoretical
issues.

ACKNOWLEDGEMENTS

 This research is supported by the ubiquitous
Autonomic Computing and Network Project, the
Ministry of Information and Communication (MIC)
21st Century Frontier R&D Program in South-Korea.

J. Computer Sci., 2 (8): 627-633, 2006

 633

We would also like to thank Mrs. Fuchsia Chaudhry for
her cooperation in improving the quality and the
anonymous reviewers of this paper.

REFERENCES

1. Mark Weiser, 1993. Hot Topics: Ubiquitous

Computing IEEE Computer.
2. Sundramoorthy, V., J. Scholten, P.G. Jansen and

P.H. Hartel, 2006. On Consistency Maintenance In
Service Discovery. 4th Int. Conf. on Information,
Communications and Signal Processing and 4th
IEEE Pacific-Rim Conf. On Multimedia, vol. 3,
IEEE Computer Society Press, Los Alamitos,
California,

3. Kawahara,Y., M. Minami, S. Saruwatari, H.
Morikawa and T. Aoyama, 2004. Challenges and
lessons learned in building a practical smart space
Mobile 0.

10. Boutaba, R., S. Omari and A. Virk, 2001.
SELFCON: An architecture for self-configuration
of networks. Intl. J. Communications and Networks
(special issue on Management of New Networking
Infrastructure and Services), 3: 317-323.

11. Xiangdong D., S. Hariri, L. Xue, H. Chen, M.
Zhang, S. Pavuluri and S. Rao, 2003. Autonomia:
an autonomic computing environment.
Performance, Computing and Communications
Conf., Proc. Conf. IEEE Intl., 9-11 April.

12. Nakajima, T. and I. Satoh, 2004. Personal home
server: Enabling personalized and seamless
ubiquitous computing environments. PerCom, pp:
341-345.

13. Nakajima, T, 2003. Pervasive servers: A
framework for creating a society of appliances.
Springer-Verlag London Ltd, Vol. 7, No. 3-4.

14. Siddiqui, F.A. and W.-S. Yoon, 2005. IP-based
service and device portability across OSGi
domains. Inform. Technol. J., 4: 391-397.

15. Chaudhry, J.A., S.-K. Park and S.-K. Hong, 2006.
On recipe based service composition in ubiquitous
smart spaces. J. Computer Sci., 2: 86-91.

16. u-Frontier: Ubiquitous Korea Project,
http://www.uauto.net

17. Keshi, D., Y. Shiraishi, H. Niwamoto, M. Okada
and H. Yamamoto, 2005. Is home network
application acceptable or not? Circuits and
Systems, 2005. ISCAS 2005. IEEE Intl. Symp., 5:
5337-5340.

18. Raz, O., P. Koopman and Mary Shaw, 2002.
Semantic anomaly detection in online data sources.
24th Intl. Conf. Software Engineering (ICSE'02).

19. Haydarlou, A.R., B.J. Overeinder and F.M.T.
Brazier, 2005. A self-healing approach for object-
oriented applications. 3rd Intl. Workshop on Self-
Adaptive and Autonomic Computing Systems.

