
Journal of Computer Science 3 (1): 14-24, 2007
ISSN 1549-3636
© 2007 Science Publications

Corresponding Author: Neeraj Nehra, School of Computer Science and Engineering, Shri Mata Vaishno Devi University,
Katra (J&K)

14

A Framework for Distributed Dynamic Load Balancing in Heterogeneous Cluster

1Neeraj Nehra, 2R.B. Patel, 3V.K. Bhat

1 School of Computer Science and Engineering, Shri Mata Vaishno Devi University,Katra(J&K), India
2Computer Engineering Department, M.M. Engineering College, Mullana(Ambala), Haryana, India

3 School of Applied Physics and Mathematics, Shri Mata Vaishno Devi University, Katra(J&K), India

Abstract: Distributed Dynamic load balancing (DDLB) is an important system function destined to
distribute workload among available processors to improve throughput and/or execution times of
parallel computer in Cluster Computing. Instead of balancing the load in cluster by process migration,
or by moving an entire process to a less loaded computer, we make an attempt to balance load by
splitting processes into separate jobs and then balance them to nodes. In order to get target, we use
mobile agent (MA) to distribute load among nodes in a cluster. In this study, a multi-agent framework
for load balancing in heterogeneous cluster is given. Total load on node is calculated using queue
length which is measured as the total number of processes in queue. We introduce types of agents
along with policies needed to meet the requirements of the proposed load-balancing. Different metrics
are used to compare load balancing mechanism with the existing message passing technology. The
experiment is carried out on cluster of PC’s divided into multiple LAN’s using PMADE (Platform for
Mobile agent distribution and execution). Preliminary experimental results demonstrated that the
proposed framework is effective than the existing ones.

Key words: Dynamic load balancing, distributed systems, mobile agent, queue length, resource

management

INTRODUCTION

 Load balancing is an efficient strategy to improve
throughput or speed up execution of the set of jobs
while maintaining high processor utilization. Basically
Load balancing is the allocation of the workload among
a set of co-operating nodes. The demand for high
performance computing continues to increase everyday.
Load balancing strategies fall broadly into either one of
two classes static or dynamic. A multi-computer system
with static load balancing distributes tasks across nodes
before execution using a priori known task information
and the load distribution remains unchanged at run
time. A multi-computer system with Dynamic Load
balancing (DLB) uses no priori task information and
satisfies changing requirements by making task
distribution decisions during run-time. DLB in turn can
be either centralized or distributed. Distributed Load
balancing[1,2] is an active technology that provides the
art of shaping, transforming and filtering the network
traffic and then routing and load balancing it to optimal
server node. By adding the concept of load balancer we
can distribute the traffic for preventing from failure in
any case by having capabilities such as scalability,
availability, easy to use, fault tolerance and quick
response time.
 The computational need in areas like cosmology,
molecular biology, nano-materials, etc., cannot be met

even by the fastest computers available But with the
availability of high speed networks, a large number of
geographically distributed nodes can be interconnected
and effectively utilized in order to achieve
performances not ordinarily attainable on a single
computing environment (CE). The distributed nature of
this type of CE calls for consideration of
heterogeneities in computational and communication
resources. A common architecture is the cluster of
otherwise independent nodes communicating through a
shared network. An incoming workload has to be
efficiently allocated to these nodes so that no single
node is overburdened, while one or more other nodes
remain idle. Further, tasks migration from high to low
traffic area in a network may alleviate to some extent
the network traffic congestion control problem.
Workstation clusters are being recognized as the most
promising computing resource of the near future.
 A large-size cluster, consisting of locally
connected workstations, has power comparable to a
supercomputer, at a fraction of the cost. Furthermore, a
wide-area coupling of workstation clusters is not only
suitable for exchange of mail and news or the
establishment of distributed information systems, but
can also be exploited as a large meta-computer.
Distributing the total computational load across
available processors is referred to in the literature as
load balancing. Effective load balancing of a cluster of

J. Computer Sci., 3 (1): 14-24, 2007

 15

Nodes in a distributed computing system relies on
accurate knowledge of the state of the individual
Nodes. This knowledge is used to judiciously assign
incoming computational tasks to appropriate Nodes,
according to some load-balancing policy. In large-scale
distributed computing systems in which the Nodes are
physically or virtually distant from each other, there are
a number of inherent time-delay factors that can
seriously alter the expected performance of load-
balancing policies that do not account for such delays.
 One manifestation of such time delay is
attributable to the computational limitations of
individual Nodes. A more significant manifestation of
such delay arises from the communication limitations
between the Nodes. These include delays in
transferring loads amongst Nodes and delays in the
communication between them. Moreover, such delays
not only fluctuate within each PE, as the amounts of the
loads to be transferred vary, but also vary as a result of
the uncertainties in the communication medium that
connects the units. This kind of delay-uncertainty is
frequently observed in systems for which the individual
units are connected by means of a shared
communication medium (e.g., the Internet, ATM, ad-
hoc networks, wireless LANs).
 Mobile agent (MA) [3] technology provides a new
solution to support load balancing of this type. This
approach consists of a number of different types of
MAs in a cooperative way to fulfill the task of load
balancing instead of single centralized component
managing all load-balancing activities. Each type of
agent implements one of the predefined policies of load
balancing. Moreover, the MA paradigm supports the
disruptive nature of wireless links and alleviates its
associated bandwidth limitations.

 We will use the concept of MA because MA
technology offers a new computing paradigm in which
an autonomous program can migrate under its own or
host control from one node to another in a
heterogeneous network. In other words, the program
running at a host can suspend its execution at an
arbitrary point, transfer itself to another host (or request
the host to transfer it to its next destination) and resume
execution from the point of suspension is called MA[6].
The migration of MA is associated with different
movement costs viz, transmission time, round trip time,
number of hops, etc. MA research evolved over the past
few years from the creation of many monolithic MA
systems (MASs), often with similar characteristics and
built by research groups spread all over the world for
optimization and better understanding of specific agent
issues[3,4]. To improve the performance of MAs means
to optimize their paths on the network. Furtermore, the
agent uses a path through a network based upon known
infrastructure characteristics (QoS). An agent optimizes

its transmission between Agent hosts (AHs)[4] with the
help of several migration strategies described in[5].
 MA supports a variety of web based distributed
applications namely: systems and distributed
information management[7] and information retrieval[8].
Other areas where MAs are seen as offering potential
advantages- wireless or mobile computing[3,4] dynamic
deployment of code, thin clients or resource limited
devices, personal assistants and MA-based parallel
processing[5,9]. The idea of using MA in load balancing
has been floating around for sometime in homogeneous
telecommunication networks because traditional load
balancing approaches are implemented based on
message passing paradigm[1,10]. In message-passing
based approaches, the nodes have to exchange
messages of load information periodically in order to
make decisions on load balancing. The
mod_backhand[11] is such a load balancing module for
the Apache web server. The message exchanges result
in high communication latency and thus deteriorate the
performance of the system. Differently, a MA can
migrate to its target and interact to specified objects on
the site. Moreover, a MA based approach is flexible to
incorporate new load balancing polices for various
systems. MAs produce low network traffic.
 On each machine, the agent interacts with
stationary service agents and other resources to
accomplish its task[12]. Developments in wireless
technology liberate network nodes from the constraint
of being placed at a fixed physical location and enable
the advent of the so-called mobile computing. The
proliferation of mobile computing devices, which have
the characteristics of low bandwidth and unreliable
network connection, has lead to the increased use of
MA since it supports disconnected operations[13]. MA
paradigm provides a better conservation of bandwidth
since only the final result returns back to the client.
When the server lacks one of the services, the MA
migrates to the server and performs the set of required
operations locally. This, in turn, leads to reduction in
total completion time. A MA provides an effective
means for overcoming network latency, it monitors the
network latencies and continually moves to the network
location that minimizes the average latency between
itself and its clients.
 In this study we therefore proposed a framework
consisting of distributed dynamic laod balancing
(DDLB) strategies for minimizing the average
completion time of applications running in parallel and
improve the utilization of the nodes. We define the
structure of each agent along with function of each
layer for coordination among agents. Approach is
distributed in the sense that each node has a task to be
performed during overloaded situation.

Overview of PMADE: Figure 1 shows the basic block
diagram of PMADE (Platform for Mobile Agent

J. Computer Sci., 3 (1): 14-24, 2007

 16

Distribution and Execution). Each node of the network
has an Agent Host (AH), which is responsible for
accepting and executing incoming autonomous Java
agents and an Agent Submitter (AS)[12], which submits
the MA on behalf of the user to the AH. A user, who
wants to perform a task, submits the MA designed to
perform that task, to the AS on the user system. The AS
then tries to establish a connection with the specified
AH, where the user already holds an account. If the
connection is established, the AS submits the MA to it
and then goes offline. The AH examines the nature of
the received agent and executes it. The execution of the
agent depends on its nature and state. The agent can be
transferred from one AH to another whenever required.
On completion of execution, the agent submits its
results to the AH, which in turn stores the results until
the remote AS retrieves them for the user.
 The AH is the key component of PMADE. It
consists of the manager modules and the Host Driver.
The Host Driver lies at the base of the PMADE
architecture and the manager modules reside above it. It
is the basic utility module responsible for driving the
AH by ensuring proper co-ordination between various
managers and making them work in tandem. Details of
the managers and their functions are provided in[12].
PMADE provides weak mobility to its agents and
allows one-hop, two-hop and multi-hop agents[12].
PMADE has focused on Flexibility, Persistence,
Security, Collaboration and Reliability[13].

Mobile Agent’s Result

Mobile Agent with Task

User Agent
Submitter

Manager Modules
Host Driver

Agent Host

Fig. 1: Block architecture of PMADE

System architecture for load balancing: The various
components for load balancing are arranged
hierarchically as shown in Fig. 2. Load request comes
from any node in Cluster whenever its load goes above
or below threshold value. The various agents in the
framework have a role to play.
Agent pool: It consists of various agents each having
its own role. Te agents are:
* Job Scheduler Agent (JSA): Its main function is to

act as a middleware. Whenever a request for load
comes from any node in cluster, JSA passes the
request to execution environment, which is

PMADE execution engine. The request may be of
information about system resources, load
information and number of processes currently
running etc.

* Task management: Task management is handled
by Task Management Agent (TMA). Requests are
passed to the task management module where they
are queue for scheduling and execution. Each task
is given a unique identification number and awaits
the attention of the JSA scheduler. Task
management also interfaces with the operations on
the task queue, including adding, deleting, or
inserting tasks.

* Resource management: The resources are managed
by Resource Management Agent(RMA). The
resource management is responsible for gathering
information concerning the process nodes on
which tasks may execute and pass this information
to JSA. There is a proper coordination among the
MA for information exchange using mobile group
approach[14]. This information includes availability,
load average and idle time. Resource management
is also responsible for organizing the JSA
scheduling and Task execution.

Policy selection: This section discusses the policies
defined in the framework to be executed by the agents
defined in agent Pool

* Information Gathering Policy specifies the strategy for
the collection of load information including the
frequency and method of information gathering. The
frequency is determined based on a tradeoff between
the accuracy of load information and the overhead of
information collection.

* Initiation Policy determines who starts the load
balancing process. The process can be initiated by an
overloaded server (called sender-initiated) or by an
under-loaded server (called receiver-initiated). Sender
initiated policies are those where heavily loaded nodes
search for lightly loaded nodes while receiver initiated
policies are those where lightly loaded nodes search for
suitable senders.

* Job Transfer Policy determines when job reallocation
should be performed and which job(s) should be
reallocated. Job reallocation is activated by a threshold-
based strategy. In a sender-initiated method, the job
transfer is invoked when the workload on a node
exceeds a threshold. In a receiver-initiated method, a
node starts the process to fetch jobs from other nodes

J. Computer Sci., 3 (1): 14-24, 2007

 17

when its workload is below a threshold. The threshold
can be a pre-

I
N
T
E
R
F
A
C
E

 Task Management / Task Execution/ Resource Management

 Agent Execution Environment (PMADE)

Agent Pool Agent-Agent Communication Layers

 TMA

 JSA

 Management Layer

 Coordination Layer

 Communication Layer

 High Speed Network

 Set of Policies

Information
Gathering policy

Initiation Policy

Job Transfer Policy
 RMA

Fig. 2: System architecture for load balancing along with various components

 defined static value or a dynamic value that is

assessed at runtime based on the load distribution
among the nodes. When job reallocation is
required, the appropriate job(s) will be selected
from the job queue and transferred to another node

Inter-agent communications: The framework for load
balancing consisting of multi-agent with each agent has
a specific role to play and have facility for inter agent
communication as shown in Fig. 2. Each agent is
implemented for managing hosts processors of a
Cluster resource and scheduling incoming tasks to
achieve load balancing. The functions of various layers
are:
* Communication and Coordination Layers. Agents

in the system communicate with each other or with
users using mobile group approach for
coordination of MA. The request an agent receives
from the communication layer should be explained
and submitted to the coordination layer, which
decides how the agent should act on the request
according to its own knowledge. We assumed a
distributed system as a collection of agents,
locations and communication channels. A location
represents a logical place in the distributed
environment where agents execute. When a MA
migrates, it moves from a location to another.
Agents communicate by exchanging messages
through reliable communications channels, i.e.,
transmitted messages are received uncorrupted and
in the sequential sent order, as long as the message
sender does not crash until the message is received
(reliable channels can be implemented over
unreliable channels by tagging transmitted
messages with sequential numbers, delivering such

messages according to the sequential order and
asking for retransmission in case of missing
messages). As implied by reliable channel
assumption, we assume that network partitions do
not occur or, when they occur, they are repaired
within a finite amount of time and communication
reestablished. No bounds on message transmission
or relative agent execution times are assumed.
Agents and locations are assumed to fail only by
crashing (without producing any further action)
and the agents of a faulty location are assumed to
have crashed. The failure of a given location is not
directly handled. Instead, it is only detected when
the associated agents are detected faulty. An agent
that never crashes is named correct. Let L denote
the set of all possible locations. Let P be the set of
all possible agents. A mobile group is denoted by
the set of agents g = {p1, p2, …, pn }, g⊂ P. On a
mobile group, five operations are defined:

* join(g): issued by an agent, when it wants to join
group g;

* leave(g): issued by an agent, when it wants to leave
group g;

* move(g, l): issued when an agent wants to move
from its current location to location l;

* send(g, m): issued by an agent when it wants to
multicast a message m to the members of group g;

* receive(g, m): issued by an agent to receive a
message m multicast from the group g.

 An agent pi of a group g also installs views, named
vi(g). In mobile groups a view vi(g), vi(g) ⊂ {(p, l) | p
Є g and l Є L}, is a mapping between agents of group g
and locations l. A view represents the set of group
members that are mutually considered operational in a
given instant of the group existence and indicates the

J. Computer Sci., 3 (1): 14-24, 2007

 18

locations where these members are, (a pair (p, l) in a
view indicates that agent p is currently at location l).
This set can change dynamically on the occurrence of
agent crashes (suspicions) or when agents deliberately
leave, join, or move to another location[14]. In this way
these agents communicate with each other using mobile
group communication defined above for updated
information about all the system resources and other
valuable information.
• Management Layer: This layer is responsible for

submitting local service information to the
coordination layer for agent decision making. In a
Cluster Computing environment, the composition
of nodes is dynamic, every node is likely to enter a
busy state at any time and thus lower its
performance, so when selecting nodes for load
sharing, CPU utilization cannot be the sole factor
of consideration for load sharing among
participating nodes. Other factors affecting the
nodes are the node's past completion rate,
possibility of the resource utilization, job queue
length, memory utilization etc. Thus, a value
function is proposed to evaluate the value of each
node and provide reference for selecting nodes. In
this value function, relative value of each resource
including CPU memory, size of available memory,
transmission rate, past completion time is treated as
a decision variable in calculation of value function
and we calculate the relative value by score of each
variable, i.e., this value function is the benchmark
to select or reject a particular node. In addition, to
search for a node that demand most for load
sharing, different weight values will be given to
the nodes in accordance with the level of
preference for the task, so as to select the nodes
most suitable for the execution of the task.
Therefore, the value function is shown as given by
following equation

iZ =
1

n

i

Wi
=
∑ f (),i jx , 1 ≤ j ≤N

 = 1 1, 2 2, ,() () ... ()j j n n jw f x w f x w f x+ + +

Where
1

n

i
Wi

=
∑ = 1 2 3 ... 1nw w w w+ + + = ;

,1 ;0 () 1i jj n f x≤ ≤ ≤ ≤
Whereas
F(xi,j) Score of decision variable i in node j.
Zi The estimated value of node i.
i The decision variable in the value function and

there are total n decision variables.
j The node j in cluster, there are n nodes in cluster.
wi The weight value of each decision variable.

 Now based upon the above defined value function
for each node an effective node is chosen for load

sharing among the participating nodes. Score of
decision variable defines how effective that resource is
with respect to available resources[15].
Mechanism for load transfer between different
nodes: For load transfer among different Nodes each
node maintains its own list of participating nodes to
which it wants to communicate for load sharing. Each
node maintains its own job queue along with some
predefined threshold values to initiate load transfer. Let
t be the time when tasks were last executed and ()ja t

be the arrival time of task jt and ()je t be time when it
starts executing. Then the jobs in the queue are those
being executed and ready to be executed are given by
{ jt / ()ja t ≤ t t, ()je t ≤ t } and { jt / ()ja t ≥ t , ()je t
≥ t } as shown in Fig. 3. Detailed working of load
sharing is as follows:
A. At the beginning of each time interval, each node

calculates its load from previous interval. Let us
call this quantity the difference in load (DL). Each
node may calculate this quantity independently
from other Nodes in the system. Second, the length
of time interval may vary with time for a given
node, depending; for instance, on the number of
load requests received or network traffic. As a
consequence different Nodes may use different
intervals at any given time. It calculates the
number of time intervals it will take to reach an
idle state (no tasks to process). If the number of
intervals (times its duration) is less than the
network delay (ND), then the node will initiate a
migration request.
 For the sake of ease, let us introduce the three
thresholds upper threshold value (UTV), lower
threshold value (LTV), critical threshold value
(CTV). Former two are used to determine the load
status of the processor. If a PE's load is greater or
equal to HTV it is considered a Source PE. If on
the other hand it is less or equal to LTV it is
considered a sink PE. If its load lies between these
two thresholds then the node is in a neutral state. If
however a PE's load falls below a critical threshold
(CTV) the node immediately initiates a request for
load regardless of the predicted future load based
upon the current DL value. The node responsible
for initiation of load transfers and performs the
following actions according to below defined
algorithm.

Algorithm1 (Request by under loaded node for load
Transfer)
1. Begin
2. Set number of tasks being requested to appropriate

value.
3. Selects the source node from whom the message

will be sent. Removes the entry associated with the
selected node from its source table.

J. Computer Sci., 3 (1): 14-24, 2007

 19

4. Changes its status to Waiting, preventing it from
issuing another request before receiving a Reply.

5. Add id of the sender node to its source table after
receiving reply.

6. End

 2. Reply

t1 t2 t3 ---
--

tn

 PE 1 Job Queue

t1 t2 t3 ---
--

tn

PE 4

PE 5

PE 9

PE 12

 1. Request for load

Remove PE2

 Add PE2 (after step2)

 Add PE1

Sink ListSink List

Sink List

Source List

Source List

Source List

PE 9

PE 4

PE 12

PE 5

PE 1

PE 4

PE 19

PE 9

 PE 6

 PE 9

 PE 11

 PE 3

 PE 7

 PE 12

 PE19

 Empty

PE 1

PE 6

Empty

 PE 10 Job Queue

t1 t2 t3 ---
--

tn

3. Forward Request (If
not able to satisfy) 4. Fulfill Request

 Add PE1

Remove PE1

Add PE2

 PE 2 Job Queue

Remove
PE10

Fig. 3: Scenario of load request and transfer between different nodes

B. Each node keeps two local tables containing

system load information. One contains information
regarding the location of sink Nodes (under loaded
nodes), called sink table shown in Fig. 3, the other
of source Nodes (overloaded nodes), called source
table. Any node that initiates a request for load is
considered to be a sink by the receiving node(s).
The sink node (request initiator) selects a source
node from its source table (the first entry in the
table) and sends a message, requesting for load
transfer to it. Initially the table is empty since no
information is available regarding the state of the
node is known and therefore a node is chosen at
random. It only means that when no information is
known regarding the load of any node in the
system then every node is as likely to be
considered a source node as any other and
therefore we chose one among all possible ones at
random.

Algorithm 2 (Transfer of load from Destination PE)
1. Begin

2. Updates its own local tables by adding ID to its
sink PE's table and removing it from the source
PE's table if present.

3. Checks its own load status.
4. If it can completely fulfill the load transfer request

it sends the load to corresponding node and
removes the message from the system.

5. If it can only fulfill the load transfer request
partially decrements amount of load transfer value
by the amount of load units that is able to satisfy.

6. If it is not a source node or cannot completely
fulfill the Load, transfer the request to appropriate
node.

 End

C. At the beginning of each time interval, each
node calculates its DL. Using DL it computes
how many tasks it would have, assuming DL
would stay constant, after a length of time
equal to network delay (ND), let us call this
quantity predicted load value (PLV). If PLV is
greater or equal to zero then the node does not
expect to become idle within the next ND
period and therefore does not initiate a request
for load transfer. If on the other hand PLV is
lesser than zero the node requests load. On the
receiver side, a node will only transfer tasks if
its load is above the UTV level, in which case

J. Computer Sci., 3 (1): 14-24, 2007

 20

it transfers tasks above this value up to the
requested transfer amount. Each node
maintains two local tables with information
representing its view of the system's load

distribution. Following parameters would be
changed during transfer of load

D.

Fig. 4: Various components in typical cluster

* Number of load units requested.
* Each PE’s local tables every time the message is

forwarded.

D. Finally when the request for load is completed then

the corresponding information is sent to original
node making the request and it updates its tables
accordingly.

Implementation: Following procedure in sequence is
adopted while calculating the load on cluster.
* Define estimated load of each node with threshold

level (by means of value function defined above)
estimated threshold Upper and Lower value.

* The agents collects predictable load from the
others.

* Repeat the following two steps repeatedly during a
particular time interval, until no overloaded node
exists.

* All nodes in a cluster exchange their current
workload information using agents communication
and coordination to elect the heaviest overload
node.

* The heaviest loaded node dispatches the client
agent to migrate workload to the node who has
light workload.

* This process is repeated until the node's workload
is below the estimated high threshold level.

 Typical components of cluster are shown in Fig. 4.
We have implemented the above defined load
balancing scheme on 100 Mbps switched LAN that
connects 10 networks each having 100 PC’s and
workstation. Nodes are grouped into 10 networks with
their own server and each server is connected to main
server. The AS node and AH node have 512 MB RAM.

MA cluster is implemented on cluster of PCs (P-4,
3GHz, 256MB RAM) using PMADE and J2sdk1.5.1.
A multitasking Windows NT operating system is used.
All PC’s are P4, 3 GHz, 256MB RAM running on
windows and Linux operating System.
 As shown in Fig. 5, a comparison between the
average response time of the cluster when applying the
load balancing using MA approach and the average
response time using traditional message passing
approach (MPI). Nodes are selected to execute tasks by
the value function. The value of each node is estimated
with the value function and serves as the basis for task
assignment. This method first divides the task into
several independent subtasks and takes minimum
resource demand of each node as the threshold value
(Upper threshold value and Lower threshold value).
After the value of each node is estimated with the value
function, the nodes for the execution of the task are
selected by the order of their values. In the value
function, decision variables can be given a different
setting according to the factor focused in the actual
application. In the experiment, the available CPU
capacity, size of available memory, transmission rate
and the past completion rate were the four factors
regarded as the threshold for the value function to
select nodes and the decision variables for estimating
node values. As shown in the Fig. 5, as the number of
tasks increases average response time of the cluster
decreases in MA approach as compared to traditional
message passing approach.
 Figure 6 shows a comparison between the variance
of the load over the cluster in case of load balancing

High Speed Networks

PC/Workstations PC/Workstations PC/WorkstationsPC/Workstations

Cluster Middleware

 Parallel Applications Serial Applications

J. Computer Sci., 3 (1): 14-24, 2007

 21

using MA and variance of load in case of MPI. The
Cluster environment is composed of heterogeneous
systems, so the structures of each system may greatly
vary, so this metric of variance becomes important. In
other words, the computing capability provided by the

0
2
4
6
8

10
12
14
16
18
20

10 20 30 40 50 60 70

Number of Tasks

R
es

po
ns

e
T

im
e

Avg. Respone Time Using Mobile Agent Approach

Avg. Response Time Using MPI

Fig. 5: Average response time of the cluster

0

20

40

60

80

100

120

10 20 30 40 50 60 70

Number of Tasks

V
ar

ia
tio

n
of

 L
oa

d

Variance of Load Using Mobile Agent Approach Variance of Load Using MPI

Fig. 6: The variance of the load over cluster

0
5

10
15
20
25
30
35
40
45

10 20 30 40 50 60 70

Number of Clients

R
eq

ue
st

/S
ec

.

Mobile Aegnt Approach Message Passing Approach

Fig. 7: System throughput

CPU and the available size of memory are different. In
addition, Cluster Computing utilizes idle resources of
each node, so the available resource of each node may
vary in a busy condition. From the perspective of task
completion time, the available CPU capacity and size of
available memory are the two decisive factors for the
duration of execution. Thus, in this experiments, the
available CPU capacity and the size of available
memory were taken as the threshold for value function
and decision variables for estimating node values. The
variance is measured for different workload of
100,200,400,500,600,700 tasks.
 Figure 7 compares System Throughput of MA
approach with traditional message passing approach. It
is clear from Fig. 7 that MA approach is better than

Message Passing approach in terms of system
throughput. Also as the number of clients are increasing
rapidly then system throughput decreases with message
passing approach as compared with MA approach.
 Figure 8 shows that load distribution has to be
dynamically adjusted in accordance with variation of
node status. The variation of the node status can be
identified in two conditions; firstly, when the
overloaded node receives the message that a certain
node can no longer provide resources and secondly,
when the execution of a certain node exceeds the
expected time. When any of the above situations occurs
and is detected then the agent is sent to collect the
related data of all the nodes in the table of effective
nodes and compare the collected data with historic
ones, in order to confirm if the node is still effective so
that load can be distribute to it. If the node remains
effective, the distribution of the task will not be re-
adjusted, but the time required for the node's execution
of the task will be estimated again. If the node is
confirmed ineffective, a node with the highest value
will be selected from the waiting aggregate and the
existing task will be transferred from the ineffective
node to this new effective node.
 Figure 9 shows that when demand for computing
resource is large and amount of data transmission is
small, the available CPU capacity memory usage
provided by the node will obviously affect the
completion of the task and the impact of transmission
rate of the node on the task completion time is not
significant. As in case of simple FIFO and FCFS
applied to job queue, the task re-distribution and re-
execution constantly occur because the selected nodes
often cannot complete the task in effective time, thus
prolonging the task completion time. In the aspect of
value functions (VF), due to the considerations for the
various factors of the nodes (such as the available CPU
capacity, available size of memory, transmission rate
and past task completion rate), nodes with a better
performance are chosen and as shown in Fig. 9 task
completion time is less using VF compared to CPU
based approach.
 Figure 10 compares the execution time of
centralized and distributed strategies; it is clear from
the figure that as the number of agents in distributed
strategy increases execution time decreases.
 It is clear from all these results with various
parameters (defined above) that MA approach is far
more better than traditional message passing approach
and when applying this strategy in distributed manner,
response time, system throughput and variance in load
decreases as shown in above results.

Related work: Load balancing is indispensable for a
group of cluster system to assure distribution of
workload on each Cluster. But one of the most difficult
problems that arise on Cluster system is the selection of

J. Computer Sci., 3 (1): 14-24, 2007

 22

an efficient load balancing policy. The load balancing
policy should aim for evenly utilized Cluster and a

0

2
4

6

8

10
12

14

16

10 20 30 40 50 60 70

Number of Nodes

T
im

e
of

 T
as

k
D

is
tr

ib
ut

io
n

Value Function CPU Based

Fig. 8: Time taken for Load redistribution in Value

function and CPU based approach

0

5

10

15

20

25

10 20 30 40 50 60 70

Number of Nodes

C
om

pl
et

io
n

Ti
m

e

Value Function CPU Based

Fig. 9: Task Completion time using value function and

CPU based approach using MA

0
5

10
15
20
25
30
35
40
45

1 2 3 4 5 6 7

Number of Agents

T
im

e

Distributed Strategy Centralized Strategy

Fig. 10: Comparison of total execution time between

centralized and distributed strategies

minimum response time for the processed requests.
Under standard methodology load selection is done
randomly. The random selection cannot guarantee load
balancing. Round robin is widely used because it is
easy to implement and implies only a minimum
overhead. A variation of round robin policy is the
weighted round robin policy[16]. With weighted round
robin the incoming requests are distributed among the
participating nodes on a round robin fashion, weighted
by some measure of the load on each of the node.
 Another techniques, which is called dispatching
techniques which when implemented by network
address translation or other methods (such as HTTP
redirection), introduce higher overhead than does

network load balancing. This limits throughput and
restricts performance. SUNSCALAR[17] provides load
balancing by using both approaches, i.e., Dispatcher
and Round Robin.
 When we consider load balancing in a system,
there are four levels to apply: (1) hardware level; (2)
system software level; (3) middleware software level;
and (4) application software level. The hardware level
load balancing is used in Layer 4 (L4) switches. Based
on traffic distribution information or service-level
checking information, the L4 switches perform server
load balancing. The Alteon Web Switch with
WebOS[21] and the CISCO Switches with Local
Director[22] are the major commercial products. The
system software level load balancing can be found in
the Linux Virtual Server (LVS)[23,24]. LVS is an open
software project to provide Linux OS-based load
balancing. In Linux OS kernel level, LVS delivers
NAT (Network Address Translation), IP Tunneling,
Direct Routing schemes with several scheduling
algorithms, such as Round-Robin (RR), Weighted RR
(WRR), Least Connection (LC) and Weighted LC
(WLC). The commercial products based on LVS load
balancing are Turbo Cluster Server[25] and Red Hat HA
Server[26].
 Meanwhile, MS provides two load balancing
solutions[27], the Network Load Balancing (NLB) and
the Cluster Service, which can be used with only MS
Windows. NLB distributes traffics on the network
layer; the Cluster Service balances loads on the service
layer. Those are employed in the MS Application
Center and the Windows Data Center Server.
 The middleware software level load balancing is
used by WAS (Web Application Server) vendors. WAS
delivers web traffic to application servers through a
dispatcher or Web server Plug-in. The BEA Web Logic
Cluster[28] and the IBM Web Sphere Edge Server[29] are
the commercial products. The application software
level load balancing is an approach that is used on most
of application servers. For DNS (Domain Name
Server), RR-DNS is used for balancing. For Web
service, HTTP Redirection is used for Web browser to
reconnect to other URLs. Also IP Redirection is used
on other most of application software with their
dedicated GUIs.
 In addition to above defined system, we also have
three well-known MA systems, namely Voyager[18],
Aglets[19] and Concordia[20]. Which are used for
different applications. A framework for load balancing
using MA named EALBMA (Efficient and Adaptive
Load Balancing based on MA)[30] has been made in
which a novel algorithm for updating load information
partially based on MA which is called ULIMA.
 MA support load balancing in parallel and
distributed computing[5,9], e.g., Traveller[31] using
resource broker. It implements parallel application such

J. Computer Sci., 3 (1): 14-24, 2007

 23

as L. U. Factorization and sorting. MESSENGERS[32] is
a system for general-purpose distributed computing
based on MAs. It supports load balancing and dynamic
resource utilization. Flash[33] is a framework for the
creation of load balanced distributed application in
heterogeneous cluster system.
 The load balancing approaches for distributed
Nodes or nodes involve frequent message exchanges
between the request distributors and clients to detect
and exchange load information. These message
exchange leads to network traffic. But the multiagent
framework presented in this study can resolve these
problems. In this framework whenever load on a Nodes
exceeds from a threshold value, agents are activated
dynamically for load balancing on overloaded Nodes.

CONCLUSION AND FUTURE WORK

 In this study we have presented design and
implementation of multiagent framework for load
balancing, which is implemented on PMADE. This
framework is a flexible foundation to implement
different load balancing schemes for distributed
applications. The performance evaluations show that
the multiagent based approach outperform in
comparison to message passing paradigm when large
number of client requests are involved. The
performance evaluation shows that multi MA based
approach is better than traditional message passing
paradigm on heterogeneous cluster. A Value Function
have been proposed which evaluate the effectiveness of
a particular node in cluster. This value function is
compared with CPU based approach which only takes
CPU memory into account for load distribution, but
value function takes various parameters into account.
 Further, we are in the process of implementing this
system on grid computing environment fro measuring
the load and computing power of a grid. Based on
result we will suggest and test some performance
improvement policy. In this system we have considered
that each node is equipped with PMADE environment.
Performance metrics we have considered data size,
fault tolerance, throughput vs. jobs, communication
cost, etc.

REFERENCES

1. Dias, D., W. Kish, R. Mukherjee and R. Tewari,

1996. A scalable and highly available web-server.
Proc. 41st Intl. Computer Conf. (COMPCON’96),
IEEE Computer Society, SanJose, CA, pp: 85-92.

2. Tang, W. and M. Mutka, 2000. Load distribution
via static scheduling and client redirection for
replicated web servers. Proc. 1st Intl. Workshop on
Scalable Web Services (in conjunction ICPP
2000), Toronto, Canada, pp: 127-133.

3. Chess, D., B. Grosof, C. Harrison, D. Levine, C.
Parris and G. Tsudik, 1995. Itinerant agents or
mobile computing. IEEE Personal Commun. Mag.,
2: 34-49.

4. Imielinsky, T. and B.R. Badrinath, 1994. Wireless
computing: Challenges in Data management.
Commun. ACM, 37: 18-28.

5. Al-Jaroodi, J., N. Mohamed, J. Hong and D.
Swanson, 2003. A middleware infrastructure for
parallel and distributed programming models on
heterogeneous systems. IEEE Trans. Parallel and
Distributed Systems, Special Issue on Middleware,
14: 1100-1111.

6. Patel, R.B., 2004. Design and implementation of a
secure mobile agent platform for distributed
computing. Ph.D. Thesis Department of
Electronics and Computer Engineering, IIT
Roorkee, India.

7. Dale, J., 1997. A mobile agent architecture for
distributed information management. Ph.D. Thesis,
Univ. of Southampton.

8. Haverkamp, D.S. and S. Gauch, 1998. Intelligent
information agents: Review and challenges for
distributed information sources. J. Am. Soc.
Inform. Sci., 49: 304-311.

9. Al-Jaroodi, J., N. Mohamed, J. Hong and D.
Swanson, 2002. An agent-based infrastructure for
parallel java on heterogeneous clusters. Proc. IEEE
Intl. Conf. Cluster Computing, IEEE.

10. Cardellini, V. and M. Colajanni, 1999. Dynamic
load balancing on web-server systems. IEEE
Internet Computing, 3: 28-39.

11. Schlossnagle, T., 2000. The backhand project:
Load balancing and monitoring apache web
clusters. Proc. Apache Con Europe2000,
mod_backhand,
http://www.backhand.org/mod_backhand

12. Patel, R.B. and K. Garg, 2001. PMADE - A
Platform for mobile agent Distribution &
Execution, in Proceedings of 5th World Multi
Conference on Systemics, Cybernetics and
Informatics (SCI2001) and 7th International
Conference on Information System Analysis and
Synthesis (ISAS 2001),Orlando, Florida, USA,
July 22-25, 4: 287-293.

13. Patel, R.B. and K. Garg, 2004. A new paradigm for
mobile agent computing. WSEAS Trans.
Computers, 3: 57-64.

14. Raimundo, J., A. Macêdo, F.M. Assis Silva, 2005.
The mobile groups approach for the coordination
of mobile agents. J. Parallel Distributed
Computing, 65: 275-288.

15. Yan, K.Q., S.C. Wang and C.P. Chang, 2006. A
hybrid load balancing policy underlying grid
computing environment. J. Computer Standard and
Interfaces.

16. CiscoSystemsInc.LocalDirector. http://www.cisco.com
17. Singhai, A., S.B. Lim and S.R. Radia, 1998. The

sun SCALR framework for internet servers. IEEE
Fault Tolerant Computing Systems.

J. Computer Sci., 3 (1): 14-24, 2007

 24

18. Silva, M., J. Mira da Silva and J. Delgado, 1998.
An overview of AgentSpace: a next-generation
mobile agent system. Proc. Mobile Agents Second
Intl. Workshop, Springer, Berlin, Germany, pp:
148-159.

19. Lange, D. and M. Oshima, 1998. Programming and
Deploying Java Mobile Agents with Aglets.
Addison-Wesley, Boston, MA.

20. Kobliak, R., 1999. Concordia [Java mobile agent].
Comm. ACM, 42: 96-97.

21. WebOS 10.0 Application Guide.
<http://www.nortelnetworks.com/cgi->-
bin/eserv/cs/main.jsp.

22. Cisco Local Configuration and Command Line
Reference Guide.

23. http: //www. cisco.com /univercd /cc/td/ doc/
product/>-iaabu/ localdi r/ldv42 /421 guide/index.
htm.

24. Zhang, W., S. Jin and Q. Wu, 2000. Scaling
internet service by linux director. Proc. Fourth Intl.
Conf./Exhibition on High Performance Computing
in the Asia-Pacific Region, 1: 176-183.

25. LVS documents.
http://www.linuxvirtualserver.org/Documents.html

26. TurboLinux, Turbo Linux Cluster Server 6 User
guide <http://www.turbolinux.com>.

27. RedHatLinux, Piranha white paper.
http://www.redhat.com/support/wpapers/piranha/in
dex.html

28. Gamache, R., R. Short and M. Massa, 1988.

Windows NT clustering service. IEEE Comput.,
31: 55-62.

29. BEA WebLogic Server Clustering White Paper.
http://www.bea.com/products/weblogic/server/clus
tering.pdf.

30. IBM WebSphere Edge Server Redbook.
http://www.redbooks.ibm.com/pubs/pdfs/redbooks
/sg246511.pdf.

31. Server Iron Chassis L4-7 Software Configuration
Guide.
<http://www.foundrynet.com/services/documentati
on -/sichassis/management.html>

32. Xu, C.-Z. and B. Wims, 2000. Mobile agent based
push methodology for global parallel computing.
Concurrency and Computation: Practice and
Experience, 14: 705-726.

33. Obeloer, W., C. Grewe and H. Pals, 1998. Load
management with mobile agents. Proc. 24th
EUROMICRO Conf. (EUROMICRO98), Vasteras,
Swedan, 2: 1005-1012.

