
Journal of Computer Science 3 (10): 780-785, 2007
ISSN 1549-3636
© 2007 Science Publications

780

Mapping UML Component Specifications to JEE Implementations

Jyhjong Lin

Department of Information Management, Ming Chuan University
Kweishan, Taoyuan County, Taiwan 333

Abstract: Component-based Software Engineering (CbSE) has become a well-accepted approach for
developing complex software systems due to its significant advantages on composition and reuse. In
practice, however, its use still requires the conjunction of a component specification method that describes
how system requirements are satisfied in terms of software components. Such a component specification is

then implemented in a variety of software component models (e.g., COM+ � CORBA � EJB). To achieve
this, a sound mapping from the specification to a designated component model is critical. In addition, for
rapid advances on Internet technologies, software systems have gradually been architected as processing
in distributed environments. Since a distributed environment involves often synchronous/asynchronous
messages communicating among various processes, this paper focuses therefore on the mapping issue
from a component specification to a component model that particularly takes into consideration of the
communicating of synchronous/asynchronous messages. To illustrate, an on-line e-Learning curriculum
order system is modeled for demonstrating the mapping idea. In completing the component specification,
we adopt the well-known UML Components method, while in the component model we use the Enterprise
Java Beans (EJB) standard in that EJB is the core component model of the JEE (J2EE) platform which
supports well distributed operations/services. With such a practical mapping, software systems can be
developed in a more effective way by specifying requirements in UML Components and implementing
software components in EJB with the communicating of synchronous/asynchronous messages among
various processes.

Key words: Component-based software engineering, design mapping, asynchronous message, UML

components, EJB

INTRODUCTION

 Component-based Software Engineering (CbSE)
has become a well-accepted approach for developing
complex software systems. One of its commonly
recognized advantages is the support of quick reuse and
composition of preexisting com- ponents with only, if
necessary, a few new ones in building these systems. In
practice, however, reusing and compositing preexisting
components still needs a complete analysis of system
requirements and then an intrinsic design of software
com- ponents that collaboratively satisfy these
requirements before reuse and composition may take
place. It is therefore crucial to employ a sound
component specification method in CbSE for the
requirements analysis and software components design.
 In the literature, many discussions about CbSE and
its associated component specification methods have
been presented such as Catalysis[1], SCIPIO[2], O2BC[3],
and UML Components[4]. In general, these approaches

provide well an effective way to specify and design
desired software components that take advantages of
CbSE in developing complex software systems, and
hence result in a complete component specification that
is then easily endeavored for implementation (i.e., via
reuse and composition of preexisting components) in a

variety of software component models (e.g., COM+ [5]
�

CORBA[6]
� EJB[7]). To achieve the implement- ation, as

one may conceive, a sound mapping from the
specification to a designated component model is critical.
Most of these existing methods, nevertheless, pay very
little attention on such a design mapping issue and
therefore make the implementation difficult in realizing
the specification.
 For rapid advances on Internet technologies,
software systems have gradually been architected as
those with transactional operations in distributed
environments where various processes need to
communicate by exchanging messages between each

J. Computer Sci., 3 (10): 780-785, 2007

 781

other. Among such messages, synchronous ones are most
usually used for synchronizing relevant operational
activities across the communicating processes. In
addition to this synchronous collaboration mode,
however, asynchrony- ous messages are also often
required for several applications due to their inherent
advantages on collaborative operations, e.g., parallel
processing of relevant activities between various
processes for expediting these operations. To recognize
the aforementioned trend of exploiting CbSE in
developing distributed software systems with messages
exchanged in a synchronous/asynchronous manner, this
paper focuses therefore on the specific issue of design
mapping in CbSE from a component specification to a
component model that particularly takes into consider-
ation of the communicating of synchronous/ asynchron-
ous messages among various processes in distributed
environments. In the proposed discussion, the com-
ponent specification will be completed by applying the
UML Components method[4] that uses the most
well-known UML[8-11] as its modeling tool, while in the
component model, the Enterprise Java Beans (EJB)
standard[7] will be adopted in that EJB is the core
component model of the JEE (J2EE) platform[12] which
supports well distributed operations/services. With the
practical mapping, software systems can be developed in
a more effective way by specifying requirements in UML
Components and implementing software com- ponents in
EJB with the communicating of synchronous/
asynchronous messages in distributed environments.
 This research is organized as follows. Section 2
presents the existing work related to the proposed
mapping issue. Section 3 introduces the mapping
approach with two specific discussions. Finally, section 4
has the conclusions and future work.

RELATED WORK

UML Components: In the context of Component-based
Software Engineering (CbSE), software systems can be
built quickly by reusing and composing preexisting
components with only, if necessary, a few new ones.
Since the selection and adoption of adequate preexisting
components depends much upon the comprehension of
system requirements and then the intrinsic design of
required software components that collaboratively
satisfy these requirements, it is therefore crucial to have a
sound component specification method in CbSE for the
requirements analysis and software components design.
 In the literature, many discussions about component
specification can be found in CbSE approaches such as
Catalysis, SCIPIO, O2BC, and UML Components[1-4].

Among these approaches that in general provide well an
effective way to specify and design desired software
components in developing complex software systems,
UML Components in our knowledge is a simple but
practical one that provides the most natural way to deal
with the specification and design of software components.
Based on this method, the specification and design work
is divided into four phases:

• Requirement Definition - captures user requirements

with a use case model and then represents these
requirements with a domain (class) model;

• Component Identification - takes the use case and
domain models as inputs to define desired software
components and their associated interfaces; two
types of components are identified: (a) business
components that provides system components,
through associated business interfaces, with
business services for accessing core business
information; and (b) system components that
provides users, through associated system interfaces,
with transactional operations by sequences of
interactions with various interfaces of business
components;

• Component Interaction-considers how the system
and business components work together to deliver
required functionality for system users; the
implementation design for the transactional
operations and business services provided by these
components through their associated interfaces is
decided;

• Component Specification-completes the
specification of components by modeling in details
the transactional operations and business services
provided by these components through their
associated interfaces; possible constraints to be
applied on the transactional operations and/or
business services are also identified.

 Upon completion of the above four phases, desired
system/business components for collaboratively
delivering required functionality can be identified,
specified, and designed with their interfaces,
collaborative interactions, and constraints on
collaborations being completely modeled. Figure 1
shows the system architecture of system/business
components together with other ordinary user interaction
components.

J. Computer Sci., 3 (10): 780-785, 2007

 782

EJB technology and synchronous/ asynchronous
messages: Enterprise JavaBeans (EJB)[7] is the core
component model of the JEE (J2EE) platform[12]
developed by Sun Microsystems for full supports of
distributed operations/services. Figure 2 shows the EJB
model and the access relationships among its various
parts. More specifically, EJB beans and the EJB
container play most critical roles in EJB where the EJB
container provides EJB beans with a runtime
environment over the EJB server (e.g., arranging such
issues as accesses of these EJB beans and services of
desired security/persistence/ transactions/concurrency

controls). Hence, EJB beans are server-side components
deployed in the EJB container for local/remote accesses
by client components. EJB is thus suitable for providing
distributed operations/services[7]. There are three kinds
of EJB beans: session, entity, and message-driven ones.

• A session bean is designed to perform business

processes on behalf of its prospective client without
shared accesses across other clients. A session bean
can be either stateful or stateless where stateful
holds session states on behalf of prospective clients,
and stateless does not maintain states information in
order to process immediately access requests from
clients. A session bean consists of a home interface,
a remote interface, and a bean implementation where

J. Computer Sci., 3 (10): 780-785, 2007

 783

the home interface declares remotely callable
‘create’ methods for creating new bean instances,
the remote interface defines remotely callable
methods in created bean instances, and the bean
implementation carries out those methods defined in
the remote interface.

• Unlike session beans, an entity bean allows shared
accesses across multiple clients. It is used to
represent data stored in a database (i.e.,
synchronization of its contents with those stored in
the database) for multiple invocations from various
clients. An entity bean also consists of a home
interface, a remote interface, and a bean
implementation where the home interface declares
remotely callable methods for creating and locating
new bean instances, the remote interface defines
remotely callable methods in created bean instances,
and the bean implementation carries out those
methods defined in the remote interface.

• A message-driven bean is designed to achieve
asynchronous invocations in EJB. All methods in the
message-driven bean can be invoked only by the
EJB container and hence do not have corresponding
interfaces as those in session or entity beans. When
clients send out messages toward the message-
driven bean, these messages are received first by the
Messaging Server in a Java Message System (JMS)
that puts them into a Queue or Topic for further
forwarding to the EJB container. Based on messages
received, the EJB container invokes designated
methods in the message-driven bean with these
messages declared as the parameters into these
methods. Figure 3 shows the architecture of the
message-driven bean.

Synchronous/asynchronous messages: In distributed
environments, various processes often need to
communicate by exchanging messages between each
other. Among such messages, synchronous ones are most
usually used for synchronizing relevant operational
activities across the communicating processes. In
addition to this synchronous collaboration mode,
however, asynchronous messages are also much popular
for several applications due to their inherent advantages
on collaborative operations such as parallel processing of
relevant activities between various processes for
expediting collaborative operations. In EJB,
synchronous messages are handled by a Remote Method
Invocation (RMI) interface where request messages from
client components are transmitted into the remote
interfaces of destination components for invoking

any designated methods specified in these interfaces. In
general, such a synchronous collaboration mode
facilitates the use of remote components and methods
almost exactly as that of local accustomed ones. On the
other hand, asynchronous messages are handled by a
Java Message System (JMS) in which a Messaging
Server receives messages from client components and
then based on two transmitting models forwards these
messages to destination components.

• Point-To-Point (PTP): by utilizing specific Queues,

a message received from a client component is
stored in a queue for transmitting then to one and
only one destination component. The message will
be in the queue until it is successfully transmitted to
the destination component or otherwise invalidated.
In particular, the client and destination components
are time independent; that is, these two components
need not be activated at the same time, their
executions do not have any sequential relationships.
Fig. 4 illustrates the PTP model.

• Publish/Subscribe (Pub/Sub): by utilizing specific
Topics, a message received from a client component
is stored in a topic (i.e., message publishing) for
broadcasting then to all interested components (i.e.,
message subscribing). As in PTP, the message will
be in the topic until it is successfully broadcasted to
interested components or otherwise invalidated.
Similar to PTP again, the client and interested
components are time independent; that is, these
components need not be activated at the same time,
their executions do not have any sequential
relationships. Figure 5 shows the Pub/Sub model.

MAPPING APPROACHES

 For the design mapping in CbSE from a component
specification to a component model with emphasis on the
communicating of synchronous/asynchronous messages,
the component specification is described by applying the
UML Components method, while the component model
is presented by using the EJB standard. Two mapping
approaches are presented that illustrate how specification
components in UML Components are implemented by
corresponding software components in EJB among
which a/synchronous messages are communicated.

A non-persistent approach: In this way, system
components in UML Components are mapped into
session EJB beans to collaboratively provide users with
transactional operations for satisfying their functional
requirements. Further, business components in UML

J. Computer Sci., 3 (10): 780-785, 2007

 784

Components are mapped into session and/or
message-driven EJB beans (in conjunction of other
Non-EJB components) to collaboratively provide system
level session EJB beans with business services by
accessing core business information. Figure 6 shows the
mapping idea.
 For each system component that is purposed to
provide users, through its associated interfaces, with
transactional operations by sequences of interactions
with various interfaces of business components, specific
transactional session EJB beans are imposed to
collaboratively achieve those transactional operations
where these session EJB beans are designed to perform
and control operational processes within which desired
activities are accomplished by sequences of interactions
with business level (session/message-driven) EJB beans
through synchronous/asynchronous message calls to
these business level EJB beans. As stated above, a
synchronous collaboration mode (messages receipt by
usual session beans) would allow the use of remote
components and methods almost exactly as that of local
accustomed ones, while an asynchronous collaboration
mode (messages receipt by special message-driven beans)
would activate parallel accomplishment of various
local/remote activities that expedites operational
processes.
 For each business component that provides system
components, through its associated interfaces, with
business services for accessing core business information,
specific session and/or message-driven EJB beans are
imposed to collaboratively provide business services by
accessing core business information within which two
common information resources are considered:
databases and legacy systems. More specifically, for
each database, a Non-EJB database component is
imposed to represent the database accessed by these
session/message-driven beans. Further, for each legacy
system, a Non-EJB legacy component is devised to
represent the legacy system that provides other business
information required for these session/message-driven
beans.

A persistent approach: In this approach, system
components in UML Components are still mapped into
transactional session EJB beans to collaboratively
provide users with transactional operations for satisfying
their functional requirements. However, business
components in UML Components result herein not only
session and message-driven EJB beans, but particularly
also entity EJB beans. These EJB beans (in conjunction
of other Non-EJB legacy components) collaboratively

provide system components with business services by
accessing core business information. Figure 7 shows the
mapping idea.
 As in the above non-persistent approach, each
system component is mapped into specific transactional
session EJB beans that collaboratively achieve
transactional operations by controlling operational
processes within which desired activities are
accomplished by business level session/ message-driven
EJB beans through synchronous/ asynchronous message
calls to these business level EJB beans.

 For each business component, specific session
and/or message-driven EJB beans are imposed to
collaboratively provide business services by accessing
core business information. However, unlike the above
non-persistent approach that employs Non-EJB database
components to represent the databases accessed by these
session/message-driven EJB beans, entity EJB beans are
particularly introduced herein to avoid the performance
and persistent problems arising from using Non-EJB
database components in the business level. More
specifically, in JEE, an entity EJB bean keeps its contents
synchronized with the data stored in a database; this
significantly promotes its performance and persistent
capabilities for accessing core business information
stored in external databases. Therefore, for each data
store in a database, an entity EJB bean is imposed to
represent the data store accessed by
session/message-driven beans. Finally, as in the above
approach, a Non-EJB legacy component is derived from
each legacy system to provide session/message-driven
beans with other required business information.
 It should be particularly noticed that compared to the
above non-persistent approach, the persistent approach
by employing entity EJB beans offers better performance
and persistent capabilities for accessing core business
information stored in external databases. In contrast, this
employment nonetheless results in a disadvantage of
more complex and difficult implementation due to the
inherent complexity of realizing entity EJB beans.

CONCLUSIONS

 Component-based Software Engineering (CbSE)
has been recognized as a fast and effective approach for
developing complex software systems due to its
emphasizing on quick reuse and composition of
preexisting components. In its practical use, however, a
complete analysis and design of required software
components is crucially needed for capturing what and

J. Computer Sci., 3 (10): 780-785, 2007

 785

how these preexisting components are reused/ composed
in building system functions. After a component
specification is completed, its implementation (i.e., via
reuse and composition of preexisting components) can
then be easily achieved by a corresponding mapping into
a designated software component model (e.g., COM+ or
CORBA or EJB). Such a design mapping is therefore
another critical issue in CbSE that makes the
implementation easy in realizing the specification. To
address this issue, we presented in this paper two
mapping approaches that illustrate how specification in
UML Components is implemented by a corresponding
mapping into software components in EJB. Further, since
software systems have gradually been architected as
distributed ones where synchronous/asynchronous
messages are frequently exchanged among various
processes, our approaches thus takes particularly such
communication modes into consideration with session
and message-driven EJB beans mapped from
specification in UML Components.
 Comparing our two mapping approaches, the
non-persistent approach is simpler in implementation
due to its imposing Non-EJB database components to
represent the database accessed by business level
session/ message-driven EJB beans. This however results
in some performance and persistence problems that are
alleviated in the persistent approach by employing entity
EJB beans (although this unavoidably results in a
disadvantage of more complex and difficult
implementation due to the inherent complexity of
realizing entity EJB beans). As our future work, we will
continue to explore the applicability of our approaches
on some application systems including for instance
distributed sales-, marketing-, and services-related
systems. As one may conceive, while developing these
systems, experiences about the applicability of our
approaches can be collected correspondingly for
validating their usefulness and effectiveness. Since CbSE
is gradually popular in developing complex (especially
distributed) software systems, analysis of software
components and their mapping into a designated
implementation model have begun to gain many
attentions in the literature; our work presents a possible
discussion on these needs.

REFERENCES

1. D’Souza, D. and A.. Wills, 1999. Catalysis:

Objects, Frameworks, and Components in UML.
Addison Wesley.

2. Veryard, R., 1998. SCIPIO: Aims, Principles, and
Structures, SCIPIO Consortium.

3. Ganesan, R. and S. Sengupta, 2001. O2BC: A
Technique for The Design of Component-Based
Applications. Proc. of 39th Int’l Conf. and
Exhibition on Technology of Object-Oriented
Languages and Systems.

4. Chessman, J. and J. Daniels, 2001. UML
Components. Addison Wesley.

5. Rofail, A. and Y. Shohoud, 1999. Mastering COM
and COM+. Sybex.

6. OMG, 1999. CORBA Component Model
Specification, Version 1.3.
http://www.omg.org/docs/ad/99-06-08.pdf.

7. Blevins, D., 2001. Overview of The Enterprise Java
Beans Component Model, Component-based
Software Engineering: Putting The Pieces Together.
Addison Wesley.

8. Rumbaugh, J., I. Jacobson, and G. Booch, 2004. The
Unified Modeling Language Reference Manual. 2nd
Edition. Addison Wesley.

9. Booch, G., I. Jacobson, and J. Rumbaugh, 2005. The
Unified Modeling Language User Guide. 2nd
Edition. Addison Wesley.

10. Quatrani, T., 2002. Visual Modeling with Rational
Rose 2002 and UML. 3rd Edition. Addison Wesley.

11. Miles, R. and K. Hamilton, 2006. Learning UML 2.0.
O’Reilly.

12. Singh, I., et al., 2002. Designing Enterprise
Applications with The J2EE Platform. 2nd Edition.
AddisonWesley.

