
Journal of Computer Science 3 (10): 810-817, 2007
ISSN 1549-3636
© 2007 Science Publications

Corresponding Author: Sa'ed Abed, Department of Electrical and Computer Engineering, Concordia University, Montreal,
Canada, Tel: +1(514)848-2424

810

On The Integration of Decision Diagrams in High Order Logic Based Theorem Provers:

a Survey

Sa'ed Abed, Otmane Ait Mohamed and Ghiath Al Sammane
Department of Electrical and Computer Engineering,

Concordia University, Montréal, Canada

Abstract: This survey discuss approaches that integrate Decision Diagrams inside High Order Logic
based Theorem provers. The approaches can be divided in two kinds, one is based on building a
translation between model checker and theorem prover, the second is based on embedding the model
checker algorithms inside the theorem prover. A comparison between both is discussed in detail. The
paper also tries to answer which is the best decision graphs formalization for theorem provers as what
is the optimized set of operations to efficiently manipulate the decision graphs inside theorem provers.
Then, we contrast between them according to their efficiency, complexity and feasibility.

Key words: Model checking, theorem proving, hybrid approach, deep embedding, logical

representation, graphical representation

INTRODUCTION

 State exploration method [1] (mainly model
checking and equivalence checking) and Deductive
verification (theorem proving) are two complementary
approaches to formal verification of digital systems. In
state exploration method, the design being verified is
represented as a decision diagram and techniques such
as reachability analysis are used to automatically verify
that the properties of the design are satisfied against the
model represented as a finite-state system. Thus, the
verification of properties for finite-state systems is
decidable. Much of this work is based on Binary
Decision Diagrams [2]. Model checking is fully
automatic and can also provide counter-examples when
the verification of properties fails but suffers from the
so-called state space explosion problem when dealing
with complex systems.
 In deductive theorem proving method, the
correctness of a design is explored as a theorem in a
mathematical logic and the proof of the theorem is
checked using a general-purpose theorem-prover.
Deductive theorem proving is a scalable technique that
can handle complex designs and reason formally about
unbounded data structures that make systems infinite-
state. It provides relatively complete proof systems but
requires skilled manual guidance for verification and
human insight for debugging. Unfortunately, if the

property fails to hold, deductive methods do not give
counter-example.
 There has been a great deal of work over the past
decade to combine the two approaches to gain the
strengths of both, and alleviate the weaknesses. A
common approach is to use a state exploration method
as an oracle which makes the proof and returns answer
to the theorem prover. Successful combinations of this
kind have been achieved in [3-9]. The strengths and
weaknesses of model checking and deductive theorem
proving, as discussed above, are summarized in
(Table.1).

Table 1: Deductive theorem proving vs. state exploration method

 Deductive State
exploration Hybrid

Automation interactive completely
automatic

semi-automatic

Domain size
infinite
system
(complex)

finite system
(large)

finite system
(very large)

Debugging
expert based generates

counter-
example

rarely generates
counter-
example

This survey discuss approaches that integrate Decision
Diagrams inside High Order Logic based Theorem
provers. The approaches can be divided in two kinds:

1. Hybrid approach: adding a layer of deduction
theorems and rules on top of Decision

J. Computer Sci., 3 (10): 810-817, 2007

 811

Diagrams tool, combining theorem provers
with other powerful model checking tool.

2. Deep embedding approach: adding Decision
Diagrams algorithms to theorem provers.

A comparison between both is discussed in detail. The
paper also tries to answer which is the best decision
graphs formalization for theorem provers as what is the
optimized set of operations to efficiently manipulate the
decision graphs inside theorem provers. Then, we
contrast between them according to their efficiency,
complexity and feasibility.

FORMAL VERIFICATION TECHNIQUES

 Formal verification problem consists of
mathematically establishing that an implementation
behaves according to a given set of requirements or
specification. To classify the various approaches, we
first look at three main aspects of the verification
process: system under investigation (implementation)
set of requirements to obey (specification) and formal
verification tool to verify the process (relationship
between implementation and specification).
 Implementation refers to the description of the
design that is to be verified. It can be described at
different levels of abstraction which results in different
verification methods. Another important issue with the
implementation is the class of the system or circuit to
be verified, i.e., whether it is combinational/sequential,
synchronous/asynchronous, pipelined or parameterized
hardware. These variations may require different
approaches. Specification refers to the property with
respect to which the correctness is to be determined. In
practice, one needs to model both the implementation
and the specification in the logic of the tool, and then
uses tool to check the correctness of the system or in
some cases give a trace of error (counter-example).
 Formal verification approaches can be generally
divided into two main categories: theorem proving
methods and state exploration methods such as model
checkers.

Theorem Proving is an approach where the
specification and the implementation are usually
expressed in first-order or higher-order logic. Their
relationship is formed as a theorem to be proved within
the logic system. The logic is formalized by a set of
axioms and a set of inference rules. Steps in the proof
appeal to the axioms and rules, and possibly derived
definitions and intermediate lemmas. The axioms are

usually "elementary" in the sense that they capture the
basic properties of the logic's operators [10].
 Theorem proving utilizes the proof inference
technique. The problem itself is transformed into a
sequent, a working representation for the theorem
proving problem. Then a sequent holds if the formula
f holds in any model:

f ¦=
A proof system is collection of inference rules of the
form:

C
PPname nL1)(

Where C is a conclusion sequent, and iP 's are premises
sequent. An inference rule means that if all the premises
are derivable then the conclusion is guaranteed to hold.
 Theorem proving methods have been in use in
hardware and software verification for a number of
years in various research projects. Some of the well-
known theorem provers are HOL (Higher-Order Logic),
ISABELLE, PVS (Prototype Verification System) and
Coq [10-13]. These systems are distinguished by, among
other aspects, the underlying mathematical logic, the
way automatic decision procedures are integrated into
the system, and the user interface. The advantage of the
deductive verification approach is that it can handle
very complex systems because the logics of theorem
provers are more expressive. Even though they are
powerful, they require expertise in using a theorem
prover. User is expected to know the whole design
leading to a white box verification approach. It is not
fully automated and requires a large amount of time to
verify the system. Another shortcoming is the inability
to produce counter-examples in the event of a failed
proof, because the user does not know whether the
required property is not derivable or whether the person
conducting the derivation is not experienced enough
with the theorem prover logic.

State Exploration Methods use states space traversal
algorithms on finite-state models to check if the
implementation satisfies its specification. They are
focused mostly on automatic decision procedures for
solving the verification problem. Model checking is a
state exploration based verification technique
developed in the 1980s by Clarke and Emerson [14] and
independently by Quielle and Sifakis [15]. In model
checking, a state of the system under consideration is a
snapshot of the system at certain time, given by the set
of the variables values of that system at that time. The
system is then modeled as a set of states together with a
set of transitions between states that describe how the

J. Computer Sci., 3 (10): 810-817, 2007

 812

system moves from one state to another in response to
internal or external stimulus. Model checking tools are
then used to verify that desired properties (expressed in
some temporal logic) hold in the system. The state
exploration approach has two important advantages.
First, once the correct design of the system and the
required properties has been fed in, the verification
process is fully automatic. Second, in the event of a
property not holding, the verification process is able to
produce a counter-example (i.e. an instance of the
behaviour of the system that violates the property)
which is extremely useful in helping the human
designers pinpoint and fix the flaw.
 Model checkers such as SPIN [16], COSPAN[17],
SMV[18], and Multiway Decision Graphs (MDGs)[19]
take as input, essentially, a finite-state system and
temporal property in some variety or subset of CTL*,
and automatically check that the system satisfies the
property. Moreover, the model is often restricted to a
finite-state transition system, for which finite-state
model checking is known to be decidable. The design
or model is formalized in terms of a state machine
(Transition System), or a Kripke structure:

L) R, I, S, (P,=M
 Where M is a state machine (model) with a
transition to describe the circuit behavior, P is a set of
atomic propositions, S is a finite set of states, SI ⊆ is
a set of initial states, SxSR ⊆ is a transition relation
that must be total (i.e. for every Ss∈ there exists

Ss ∈' such that (Rs ∈')), and PSL 2: → maps each
state to the set of atomic propositions that are true in
that state. The property φ is formalized as a logical
formula that the machine should satisfy. The
verification problem is stated as checking the formula
φ in the model M :

φ=|M
 If the model M is represented explicitly as a
transition relation, then the size of the model is limited
to the number of states that can be stored in the
computer memory. To increase the size of the model,
more efficient state representations can be used:

1. Graphical representation: As Directed Acyclic
Graphs (DAGs), trees and graphs, to save
storage space and computation time by
eliminating redundancies such as Binary
Decision Diagrams (BDDs) and MDGs.

2. Logical representation: As terms and
formulae using logic to simplify formulae and
benefit of the power of automatic reasoning
such as Conjunctive Normal Form (CNF).

Model checking is then done by manipulating these
formulae using BDDs or SAT solving techniques.

Representing BBDs in High Order Logic: BDDs [2]
are data structure used as a compact representation for
Boolean functions which improves the capacity of
model checkers. Different representations of ROBDDs
(Reduced Order Binary Decision Diagrams) [20] are used
to manipulate the state transition relations as diagrams
and this allows model checkers to verify larger systems.
Still, most model checkers face the state space
explosion problems [14]. To be able to apply model
checking to larger designs, state reduction techniques
are used. Examples include partitioned transition
relation, dynamic variable reordering, cone of influence
reduction, abstraction, problem-specific techniques, e.g.
when the original design is rewritten in a simpler way,
omitting the irrelevant details, but preserving the
important behavior for the property being verified.
 An alternative for decision graphs is to represent
the transition relation by a CNF (Conjunctive Normal
Form), then to use SAT [21, 22] solvers to decide on the
satisfiability of these formulae. SAT solvers can decide
very large Boolean formulae in reasonable time, but
they are not canonical and require additional efforts to
check for the equivalence of formulas. As a result,
various researchers have developed routines for
performing Bounded Model Checking (BMC) [23, 24]
using SAT. The common theme is to convert the
problem of interest into a SAT problem, by devising the
appropriate propositional Boolean formula. Then, they
exploit the known ability of SAT solvers to find a
single satisfying solution when it exists. Moreover,
SAT solver technology has improved significantly in
recent years with a number of sophisticated packages
which are freely available. Well known state-of-the-art
SAT solvers include CHAFF [25], GRASP [26] and
SATO [27]. Since state sets can be represented as
Boolean formulae, and since most model checking
techniques manipulate state sets, SAT solvers have
enormously boosted their speed and applicability.
 In high order theorem provers, transition relations
are formalized either as DAGs or as terms and
formulae. The first is a graphical representation using
trees and graphs, while the later is a formal logic
representation using datatype.
 First of all, the graph is represented as a data
structure in the theorem prover. This representation
should reflect the abstract properties of graphs and
should be flexible to be suitable for different domains
and for many applications to model complex designs.

J. Computer Sci., 3 (10): 810-817, 2007

 813

Several examples can be cited: to model
communication networks (railway track network [28]),
also in transport industry, the problem of finding the
most economical route of delivering goods and the
problem of maximizing the network capacity can be
solved using graphs.
 Chou [29] gradually formalized a considerable part
of graph theory in HOL theorem prover. The theory of
undirected graphs is formalized as empty graphs,
single-node graphs, finite graphs, subgraphs, paths,
reachability, acyclicity, trees, subtrees, and merging
disjoint subgraph of a graph. Based on this
formalization, the correctness of distributed algorithms
has been verified in HOL [30].
 The authors in [31] modeled the graph structure of a
BDD as heaps then they verified BDDs normalization
algorithm in Isabelle/HOL theorem prover. The
normalization follows the original algorithm presented
by Bryant in 1986 which transforms an ordered BDD
into a reduced, ordered and shared BDD. The
verification is based on Schirmers research on the
Verification Condition Generator (VCG) to generate the
proof obligations for Hoare Logic.
 The authors in [32] implemented and proved the
correctness of BDDs operations completely formalized
in Coq. Their objective was to extract certified
algorithms for BDDs operations running in Caml (the
implementation language of Coq). In their
formalization, BDDs were represented as DAGs and the
memory in which the BDDs nodes were stored has been
formalized as well using pointers such that no new
nodes will be created unless necessary. The model was
more abstract and the normalization algorithm was not
an issue and sharing was simply ignored, since only
normalized BDDs will be constructed at all. The main
difficulties of the graph formalization is related to data
structure sharing and to the side-effects resulted in the
computation. The algorithms usually mark the
processed nodes or store the results calculated for a
subtree or subgraph in a hash-table to avoid
recalculation. Moreover, it would be very difficult to
get a good performance that it is clearly never expected
to compete (in terms of time and space usage) with
BDDs libraries written in languages like C. The
advantage of course is that there is very little work in
this area so probably much scope for research.
 On the other hand, modeling the transition relations
as terms and formulae is smoother for proofs especially
those based on induction. Also, in applications like
model checking, one would deal with several terms, and
any efficient implementation must define sharing. The

work presented in [4, 33-36] is an example of this logical
approach.
 The choice between the two approaches depends
on the objectives. If we want to reason about the
implementation itself and its correctness, then its better
to define transition relations as graphs and do sharing of
common sub-trees. Clearly this makes the development
and proofs complex. On the other hand, if we are only
interested in a high-level view of algorithms, then a
logical representation is preferred.

HYBRID APPROACH

 We start by reviewing some work of linking proof
systems to external automated verification tools. We
concentrate on high-order logic proof systems since
they are used much more often as a general property
language and the logic is more expressive.

Fig.1: Theorem Proving and Model Checking Interface

 The hybrid approach implement a tool linking
model checking and theorem proving. During the
verification procedure, the user deals mainly with the
theorem proving tool. Verification using hybrid
approach proceeds as shown in (Fig.1). The user starts
by providing the theorem proving with the design
(specification or implementation), the property and the
goal to be proven. If the goal fits the required pattern,
the theorem proving tool generates the required model
checking files (sub-goals). The latter are sent to the
model checking tool for verification. If the property
holds, a theorem is created. Otherwise, the proof is
performed interactively.

Theorem Prover

Model Checker

Interface

True

Counter-example

Property

Sub-goals Make-Theorem

J. Computer Sci., 3 (10): 810-817, 2007

 814

 There are many examples of integration tools such
as integrating the HOL system (HOL88) and Voss.
Voss system [37], an implementation of Symbolic
Trajectory Evaluation (STE), was implemented in a
lazy Functional Language (FL). In [4] Voss was
interfaced to HOL and the verification using a
combination of deduction and STE was demonstrated.
The HOL-Voss system integrates HOL88 deduction
with BDDs computations.
 The BDDs tools are programmed in FL as a built-
in datatype. The assertion language of Voss was
formalized in HOL and a tactic, which can make an
external call to the Voss system, checks whether an
assertion is true. Then the proved assertion was
returned as a HOL theorem. A system based on this
idea, called Voss-ThmTac, was later developed by
Aagaard et al. [3], which combines the ThmTac theorem
prover with the Voss system. Then the development of
HOL-Voss evolved into a new system called Forte [38].
The idea comes from the very tight integration of the
two provers, using a single language, FL, as both the
theorem prover's meta-language and its object
language. Thus lifted FL programs could evaluate FL
expressions directly instead of having to translate back
and forth, achieving the goal of efficiently unifying the
model checker and theorem prover’s specification
languages. More recently, with industrial take-up at
Intel, Forte [39] has become one of the most mature
formal verification environments based on tool
integration.
 Rajan et al. [8, 40] described an approach where a
BDD-based model checker for the propositional µ -
calculus has been used as a decision procedure within
the framework of PVS. An extension of the µ -
calculus, consists of Quantified Boolean Formulae
(QFB), is defined using PVS higher-order logic. The
temporal operators are then defined using the µ -
calculus. These temporal operators apply to arbitrary
state spaces. In the case where the state type is
constructed in a hereditarily finite manner, µ -calculus
expressions are translated into input acceptable by a µ -
calculus model checker. This model checker can then
be used as a decision procedure to prove certain
subgoals. The model checker accepts the translated
input from µ -calculus expression. The generated
subgoals are verified by the model checker and the
results are used in the proof process of PVS.
 Schneider et al. [5] used higher order hardware
formulae to express the safety and liveness properties
hierarchically. They proposed an approach of invoking
model checking within HOL where properties are

translated from HOL to temporal logic. A new class of
higher-order formulae was presented, which allows a
unified description of hardware structure and behavior
at different levels of abstraction. Datapath oriented
verification goals involving abstract data types can be
expressed by these formula as well as control
dominated verification goals with irregular structure.
To ease the proof of the goals in HOL, a translation
procedure was presented which converts the goals into
several Computational Tree Logic (CTL) model
checking problems, which are then solved outside
HOL.
 Schneider and Hoffmann [9] linked the SMV model
checker to HOL using PROSPER. It provides an open
proof architecture for the integration of different
verification tools in a uniform higher-order logic
environment. They embedded the linear time temporal
logic (LTL) in HOL and translated LTL formulae into
ω -Automata, a form that can be reasoned about within
SMV. The translation is completely implemented by
means of HOL rules. HOL terms are exported to SMV
through the PROSPER plug-in interface. On successful
model checking, the results are returned to HOL and
turned to theorems. This integration tool allows SMV to
be used as a HOL decision procedure. The deep
embedding of the SMV specification language in HOL
allows LTL specifications to be manipulated in HOL.
 MDGs [41] are decision diagrams based verification
tool, primarily designed for hardware verification. It is
based on Multiway Decision Graphs which extend
ROBDDs [2] with abstract sorts and uninterpreted
function symbols. MDGs are canonical representations
of a certain class of quantifier-free formulae of the logic
called Directed Formulae (DFs) [19]. DFs can represent
the transition and output relations of a state of machine,
as well as the set of states.
 The MDG-HOL system [6] is a hybrid system which
links the HOL interactive proof system and the MDGs
automated hardware verification system. It supports a
hierarchical verification approach and fits the use of
MDGs verification naturally within the HOL
framework for a compositional hierarchical verification.
The HOL system is used to manage the proof. The
MDGs system is called to verify the submodules of a
design. When the MDG-HOL system is used to verify a
design, the design is modeled as a hierarchy structure
with modules divided into submodules. An extension of
the above work was presented in [7] to link HOL and the
MDGs model checker. The interface between the two
tools is implemented using ML.
 Haiyan et al. [42] verified formally the linkage
between a simplified version of MDG tool and the HOL

J. Computer Sci., 3 (10): 810-817, 2007

 815

theorem prover. The verification is based on the
importing of MDGs results to HOL theorems. Then,
they combined translator correctness theorems with the
linkage theorems in order to allow low level MDGs
verification results to be imported into HOL in terms of
the semantics of MDG-HDL. The work was concerned
with ways of increasing trust in the linked systems.

 DEEP EMBEDDING APPROACH

 In this approach, a model checking is implemented
inside a theorem proving tool. As shown in (Fig.2), the
design and the property are fed to the model checking
inside the theorem prover. If the property holds then a
theorem is created, otherwise, the proof cannot be
performed.

Fig.2: Embedding Model Checking inside Theorem
Proving Tool
 The result of the model checker is correct by
construction, since both of the theory and the
implementation are proved correct in the theorem
prover. Thus soundness is guaranteed because more
work is backed up by mechanized fully-expansive
proof. The price for the extra proof and flexibility is in
increased development effort.
 The "deep embedding" approach[43] introduce the
decision graph syntax as a new higher order logic type
and then define the operations and algorithms based on
this syntax within the theorem prover. This contrasts
within a "shallow embedding" where the syntax is not
formally represented in the logic, only in the meta-
language. In general, a deep embedding allows one to
reason about the language itself rather than just the
semantics of programs in the language.
 Gordon [44] integrated the BDDs based verification
system BuDDY into HOL by implementing the
primitive BDDs operations as inference rules added to
the core of the theorem prover. The author used a small

kernel of ML functions to convert between BDDs,
terms and theorems. As long as those primitives are
correct, it was possible to achieve the advantages of
both theorem proving tools and decision diagram
algorithms without the need to trust a complete external
package, just a set of primitives. The aim of using
BuDDy is to get near the performance of C-based
model checking by using BDDs package implemented
in C, whilst remaining fully expansive, though with a
radically extended set of inference rules [34].
 In [35], Harrison implemented BDDs inside the
HOL system without making use of external oracle.
The BDDs algorithms were used by a tautology-
checker; however, the author found that the
performance was about thousand times slower than
with BDDs engine implemented in C. The author
argued that by re-implementing some of HOL's
primitive rules, performance could be improved by
around ten times.
 Amjad [33] demonstrated how BDDs based
symbolic model checking algorithms for the
propositional µ calculus µL can be embedded in the
HOL theorem prover. His approach allows results
returned from the model checker to be treated as
theorems in HOL. By representing primitive BDDs
operations as inference rules added to the core of the
theorem prover, the execution of a model checker for a
given property is modeled as a formal derivation tree
rooted at the required property. These inference rules
are hooked to a high performance BDDs engine [34]
external to the theorem prover. The approach still
leaves results reliant on the soundness of the underlying
BDDs tools. Thus, the security of the theorem prover is
compromised only to the extent that the BDDs engine
or the BDDs inference rules may be unsound.
 In [36], the authors followed a similar approach to
the BuDDy work [34] but embedding MDGs rather than
BDDs and inside HOL rather than using ML. They
provided a complete formalization of the MDGs logic
and its well-formedness conditions as DFs in HOL
mechanically. Based on this infrastructure they
formalized the basic MDGs operations in HOL
following a deep embedding approach and proved their
correctness. Their aim is to embed the MDGs model
checker in the HOL theorem prover. Whereas [33]
approach relies on the BDDs computations carried out
by BDDs primitive inference rules, [36] work focuses
more on how one can raise the level of assurance by
embedding and proving formally the correctness of
those operators in HOL.
 In [45], the author showed a mechanism of how
certifying model checker can be constructed. The idea

The Theorem Proving
Tool

Theory of Model
Checking

Model Checking
Operations

Goal True/False

J. Computer Sci., 3 (10): 810-817, 2007

 816

is that, a model checker can produce a deductive proof
on either success or failure. The proof acts as a
certificate of the result, since it can be checked
independently. A certifying model checker thus
provides a bridge from the model-theoretic to the proof-
theoretic approach to verification. The author
developed a deductive proof system for verifying
branching time properties expressed in the µ -calculus,
and showed it to be sound. Then, a proof generation in
this system from a model checking run is presented.
 In [46], the authors successfully carried out the
verification of the model checker RAVEN. RAVEN is
a real-time model checker which uses time-extended
finite state machines (interval structure) to describe
systems and a timed version of CTL (CCTL) to
describe properties. Optimized algorithms based on an
extended characteristic functions are used to compute
the extension sets. The specification and the correctness
proof were carried out using an interactive specification
and verification system KIV.

CONCLUSION

 Finally, in this paper we discussed a formalization
of model checking approach in high order theorem
provers and we presented an extended survey of
relevant work.
 BDDs based symbolic model checking has been
proved to be a successful automatic verification
technique that can be applied to real designs. However,
the state space explosion problem caused by large
datapaths is often the bottleneck in applying the
symbolic model checking technique. Theorem provers
are based on expressive formalism that are capable of
modeling complex systems but requires expertise to
verify most properties of practical interest. It has been
shown through several research papers that model
checking can be efficiently combined with theorem
proving in a way that sacrifices neither efficiency of the
former nor the expressiveness of the latter.

REFERENCES

1. Kropf T., 1999. Introduction to Formal Hardware

Verification. Springer-Verlag.
2. Bryant, R., 1986. Graph-based algorithms for

boolean function manipulation. IEEE Transactions
on Computers, 35(8):677–691.

3. Aagaard, M., R. Jones and C. Seger, 1998.
Combining Theorem Proving and Trajectory

Evaluation in an Industrial Environment. In DAC,
pp: 538-541.

4. Joyce, J. and C. Seger, editors, 1994. The HOL-
Voss system: Model checking inside a general-
purpose theorem prover, vol. 780, Springer-Verlag.

5. Schneider, K., and T. Kropf, 1995. Verifying
Hardware Correctness by Combining Theorem
Proving and Model Checking. Technical Report
SFB358-C2-5/95, Institut f¨ur Rechnerentwurfund
Fehlertoleranz.

6. Kort, S., S. Tahar, and P. Curzon, 2003. Hierarchal
verification using an MDG-HOL hybrid tool.
International Journal on STTT, 4(3):313–322.

7. Mizouni, R., S. Tahar, and P. Curzon, 2006.
Hybrid verification incorporating HOL theorem
proving and MDG model checking.
Microelectronics Journal, 37(11):1200-1207.

8. Rajan, S., N. Shankar, and M. Srivas, 1995. An
integration of model checking with automated
proof checking. In CAV, vol. 939, pp: 84–97,
Liege, Belgium. Springer-Verlag.

9. Schneider, K., and D. Hoffmann, 1999. A HOL
conversion for translating linear time temporal
logic to ω -automata. In TPHOLs, vol. 1690, pp:
255–272, Nice, France. Springer-Verlag.

10. Gordon M. and T. Melham, editors, 1993.
Introduction to HOL (A theorem-proving
environment for higher order logic). Cambridge
University Press.

11. Paulson L., 1994. Isabelle: A Generic Theorem
Prover. Springer-Verlag.

12. Crow, J., S. Owre, J. Rushby, N. Shankar, and M.
Srivas. A Tutorial introduction to PVS.
http://www.dcs.gla.ac.uk/proper/papers.html.

13. Huet, G., G. Kahn, and C. Paulin-Mohring. The
Coq Proof Assistant: A Tutorial.
http://coq.inria.fr/doc/tutorial.html.

14. Clarke, E., O. Grumberg, and D. Long, 1997.
Model checking. LNCS, vol. 1346, pp: 54-200.
Springer-Verlag.

15. Quille, J., and J. Sifakis, 1982. Specification and
verification of concurrent systems in CESAR. In
the 5th International Symposium on Programming,
vol. 137, pp: 337–351. Springer-Verlag.

16. Holzmann G., 1990. Design and Validation of
Computer Protocols. Prentice Hall.

17. Kurshan, R., and L. Lamport, 1993. Verification of
a multiplier: 64 bits and beyond. In CAD, vol. 697,
pp: 166–179, Elounda, Greece. Springer-Verlag.

18. McMillan K., 1993. Symbolic model checking.
Kluwer Academic Publishers, Boston,
Massachusetts.

J. Computer Sci., 3 (10): 810-817, 2007

 817

19. Xu, Y., X. Song, E. Cerny, and O. Ait Mohamed,
2004. Model checking for a first-order temporal
logic using multiway decision graphs (MDGs). The
Computer Journal, 47(1):71–84.

20. Bryant, R., 1992. Symbolic Boolean manipulation
with ordered binary decision diagrams. ACM
Computing Surveys, 24(3):293–318.

21. Davis, M., G. Logemann, and D. Loveland, 1962.
A machine program for theorem-proving.
Commun. ACM, 5(7):394–397.

22. Sheeran, M., S. Singh, and G. Staalmarck, 2000.
Checking safety properties using induction and a
sat-solver. In FMCAD’00, pp: 108–125, London,
UK. Springer-Verlag.

23. Bjesse, P., and K. Claessen, 2000. SAT-based
verification without state space traversal. In
FMCAD, pp: 372–389.

24. Ganai, M., and A. Aziz. Improved sat-based
bounded reachability analysis, 2002. In ASPDAC,
pp: 729-734, Washington, USA. IEEE Computer
Society.

25. Moskewicz, M., C. Madigan, Y. Zhao, L. Zhang,
and S. Malik, 2001. Chaff: Engineering an
Efficient SAT Solver. In DAC, pp: 530-535.

26. Marques-Silva, J., and K. Sakallah, 1996. GRASP -
A New Search Algorithm for Satisfiability. In
CAD, pp: 220–227.

27. Zhang, H., 1997. SATO: an efficient propositional
prover. In CADE, vol. 1249 of LNAI, pp: 272–275.

28. Archer, M., J. Joyce, K. Levitt, and P. Windley,
1992. A Simple Graph Theory and Its Application
in Railway Signalling. HOL Theorem Proving
System and Its Applications, pp: 395-409.

29. Chou, C., 1994. A formal theory of undirected
graphs in higher-order logic. In TPHOLs, vol. 859,
pp: 144–157, Malta. Springer-Verlag.

30. Chou, C., 1994. Mechanical verification of
distributed algorithms in higher-order logic. In
TPHOLs, vol. 859, pp: 158–176, Malta. Springer-
Verlag.

31. Ortner, V., and N. Schirmer, 2005. Verification of
BDD normalization. In TPHOLs, pp: 261–277.

32. Verma, K., J. Goubault-Larrecq, S. Prasad, and S.
Arun-Kumar, 2000. Reflecting BDDs in Coq. In
ASIAN, Penang, Malaysia, vol. 1961, pp: 162–
181. Springer-Verlag.

33. Amjad, H., 2003. Programming a symbolic model
 checker in a fully expansive theorem prover. In

TPHOLs, vol. 2758, pp: 171–187. Springer-Verlag.

34. Gordon, M., 2002. Programming combinations of
deduction and BDD-based symbolic calculation.
LMS Journal of Computation and Mathematics,
5:56–76.

35. Harrison, J., 1995. Binary decision diagrams as a
HOL derived rule. The Computer Journal, 38:162–
170.

36. Abed, S., and O. Ait Mohamed, 2006. Embedding
of MDG directed formulae in HOL theorem
prover. In MCSEAI, pp: 659–664.

37. Seger, C., 1993. VOSS – a formal hardware
verification system, user’s guide. Technical report
TR-93-45, Nortel Networks, Ottawa, Canada, The
University of British Columbia.

38. Aagaard, M., R. Jones, R. Kaivola, K. Kohatsu and
C. Seger, 2000. Formal verification of iterative
algorithms in microprocessors. In DAC, pp: 201-
206.

39. Melham, T., 2004. Integrating model checking and
theorem proving in a reflective functional
language. In IFM, Canterbury, UK, vol. 2999, pp:
36–39. Springer-Verlag.

40. Owre, S., S. Rajan, J. Rushby, N. Shankar, and M.
Srivas, 1996. PVS: Combining specification, proof
checking, and model checking. In CAV, vol. 1102,
pp: 411–414, USA. Springer Verlag.

41. Corella, F., Z. Zhou, X. Song, M. Langevin, and E.
Cerny, 1997. Multiway decision graphs for
automated hardware verification. In Formal
Methods in System Design, vol. 10, pp: 7–46.

42. Xiong, H., P. Curzon, S. Tahar, and A. Blandford,
2006. Providing a formal linkage between MDG
and HOL. Formal Methods in Systems Design,
29(3):1–36.

43. Boulton, R., A. Gordon, M. Gordon, J. Herbert,
and J. van Tassel, 1992. Experience with
embedding hardware description languages in
HOL. In International Conference on Theorem
Provers in Circuit Design: Theory, Practice and
Experience, pp: 129–156, Nijmegen, North-
Holland.

44. Gordon, M., 2000. Reachability programming in
HOL98 using BDDs. In TPHOLs, pp: 179–196.

45. Namjoshi, K., 2001. Certifying model checkers.
LNCS, 2102:2–13.

46. Reif, W., J. Ruf, G. Schellhorn, and T. Vollmer,
2000. Do you trust your model checker? In
FMCAD, vol. 1954, pp: 385-393, Springer-Verlag.

