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Abstract: This survey discuss approaches that integrate Decision Diagrams inside High Order Logic 
based Theorem provers. The approaches can be divided in two kinds, one is based on building a 
translation between model checker and theorem prover, the second is based on embedding the model 
checker algorithms inside the theorem prover. A comparison between both is discussed in detail. The 
paper also tries to answer which is the best decision graphs formalization for theorem provers as what 
is the optimized set of operations to efficiently manipulate the decision graphs inside theorem provers. 
Then, we contrast between them according to their efficiency, complexity and feasibility.  
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INTRODUCTION 
 
 State exploration method [1] (mainly model 
checking and equivalence checking) and Deductive 
verification (theorem proving) are two complementary 
approaches to formal verification of digital systems. In 
state exploration method, the design being verified is 
represented as a decision diagram and techniques such 
as reachability analysis are used to automatically verify 
that the properties of the design are satisfied against the 
model represented as a finite-state system. Thus, the 
verification of properties for finite-state systems is 
decidable. Much of this work is based on Binary 
Decision Diagrams [2]. Model checking is fully 
automatic and can also provide counter-examples when 
the verification of properties fails but suffers from the 
so-called state space explosion problem when dealing 
with complex systems.  
 In deductive theorem proving method, the 
correctness of a design is explored as a theorem in a 
mathematical logic and the proof of the theorem is 
checked using a general-purpose theorem-prover. 
Deductive theorem proving is a scalable technique that 
can handle complex designs and reason formally about 
unbounded data structures that make systems infinite-
state. It provides relatively complete proof systems but 
requires skilled manual guidance for verification and 
human insight for debugging. Unfortunately, if the 

property fails to hold, deductive methods do not give 
counter-example.  
 There has been a great deal of work over the past 
decade to combine the two approaches to gain the 
strengths of both, and alleviate the weaknesses. A 
common approach is to use a state exploration method 
as an oracle which makes the proof and returns answer 
to the theorem prover. Successful combinations of this 
kind have been achieved in [3-9]. The strengths and 
weaknesses of model checking and deductive theorem 
proving, as discussed above, are summarized in 
(Table.1). 
 
Table 1: Deductive theorem proving vs. state exploration method  

              Deductive State 
exploration Hybrid 

Automation interactive completely 
automatic 

semi-automatic 

Domain size 
infinite 
system 
(complex) 

finite system 
(large) 

finite system 
(very large) 

Debugging 
expert based generates 

counter-
example 

rarely generates 
counter-
example 

 
This survey discuss approaches that integrate Decision 
Diagrams inside High Order Logic based Theorem 
provers. The approaches can be divided in two kinds: 

1. Hybrid approach: adding a layer of deduction 
theorems and rules on top of Decision 
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Diagrams tool, combining theorem provers 
with other powerful model checking tool. 

2. Deep embedding approach: adding Decision 
Diagrams algorithms to theorem provers. 

A comparison between both is discussed in detail. The 
paper also tries to answer which is the best decision 
graphs formalization for theorem provers as what is the 
optimized set of operations to efficiently manipulate the 
decision graphs inside theorem provers. Then, we 
contrast between them according to their efficiency, 
complexity and feasibility.  
 

FORMAL VERIFICATION TECHNIQUES 
 
 Formal verification problem consists of 
mathematically establishing that an implementation 
behaves according to a given set of requirements or 
specification. To classify the various approaches, we 
first look at three main aspects of the verification 
process: system under investigation (implementation) 
set of requirements to obey (specification) and formal 
verification tool to verify the process (relationship 
between implementation and specification).  
 Implementation refers to the description of the 
design that is to be verified. It can be described at 
different levels of abstraction which results in different 
verification methods. Another important issue with the 
implementation is the class of the system or circuit to 
be verified, i.e., whether it is combinational/sequential, 
synchronous/asynchronous, pipelined or parameterized 
hardware. These variations may require different 
approaches. Specification refers to the property with 
respect to which the correctness is to be determined. In 
practice, one needs to model both the implementation 
and the specification in the logic of the tool, and then 
uses tool to check the correctness of the system or in 
some cases give a trace of error (counter-example).  
 Formal verification approaches can be generally 
divided into two main categories: theorem proving 
methods and state exploration methods such as model 
checkers.  
 
Theorem Proving is an approach where the 
specification and the implementation are usually 
expressed in first-order or higher-order logic. Their 
relationship is formed as a theorem to be proved within 
the logic system. The logic is formalized by a set of 
axioms and a set of inference rules. Steps in the proof 
appeal to the axioms and rules, and possibly derived 
definitions and intermediate lemmas. The axioms are 

usually "elementary" in the sense that they capture the 
basic properties of the logic's operators [10]. 
 Theorem proving utilizes the proof inference 
technique. The problem itself is transformed into a 
sequent, a working representation for the theorem 
proving problem. Then a sequent holds if the formula 
f  holds in any model: 

f ¦=  
A proof system is collection of inference rules of the 
form: 

C
PPname nL1)(  

Where C  is a conclusion sequent, and iP 's are premises 
sequent. An inference rule means that if all the premises 
are derivable then the conclusion is guaranteed to hold.  
 Theorem proving methods have been in use in 
hardware and software verification for a number of 
years in various research projects. Some of the well-
known theorem provers are HOL (Higher-Order Logic), 
ISABELLE, PVS (Prototype Verification System) and 
Coq [10-13]. These systems are distinguished by, among 
other aspects, the underlying mathematical logic, the 
way automatic decision procedures are integrated into 
the system, and the user interface.  The advantage of the 
deductive verification approach is that it can handle 
very complex systems because the logics of theorem 
provers are more expressive.  Even though they are 
powerful, they require expertise in using a theorem 
prover. User is expected to know the whole design 
leading to a white box verification approach. It is not 
fully automated and requires a large amount of time to 
verify the system. Another shortcoming is the inability 
to produce counter-examples in the event of a failed 
proof, because the user does not know whether the 
required property is not derivable or whether the person 
conducting the derivation is not experienced enough 
with the theorem prover logic.  
 
State Exploration Methods use states space traversal 
algorithms on finite-state models to check if the 
implementation satisfies its specification. They are 
focused mostly on automatic decision procedures for 
solving the verification problem. Model checking is a 
state exploration based verification technique 
developed in the 1980s by Clarke and Emerson [14] and 
independently by Quielle and Sifakis [15]. In model 
checking, a state of the system under consideration is a 
snapshot of the system at certain time, given by the set 
of the variables values of that system at that time. The 
system is then modeled as a set of states together with a 
set of transitions between states that describe how the 
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system moves from one state to another in response to 
internal or external stimulus. Model checking tools are 
then used to verify that desired properties (expressed in 
some temporal logic) hold in the system. The state 
exploration approach has two important advantages. 
First, once the correct design of the system and the 
required properties has been fed in, the verification 
process is fully automatic. Second, in the event of a 
property not holding, the verification process is able to 
produce a counter-example (i.e. an instance of the 
behaviour of the system that violates the property) 
which is extremely useful in helping the human 
designers pinpoint and fix the flaw. 
 Model checkers such as SPIN [16], COSPAN[17], 
SMV[18], and Multiway Decision Graphs (MDGs)[19] 
take as input, essentially, a finite-state system and 
temporal property in some variety or subset of CTL*, 
and automatically check that the system satisfies the 
property. Moreover, the model is often restricted to a 
finite-state transition system, for which finite-state 
model checking is known to be decidable. The design 
or model is formalized in terms of a state machine 
(Transition System), or a Kripke structure: 

L) R, I, S, (P,=M  
 Where M  is a state machine (model) with a 
transition to describe the circuit behavior, P  is a set of 
atomic propositions, S  is a finite set of states, SI ⊆  is 
a set of initial states, SxSR ⊆  is a transition relation 
that must be total (i.e. for every Ss∈  there exists 

Ss ∈'  such that ( Rs ∈' )), and PSL 2: →  maps each 
state to the set of atomic propositions that are true in 
that state. The property φ  is formalized as a logical 
formula that the machine should satisfy. The 
verification problem is stated as checking the formula 
φ  in the model M :  

φ=|M  
 If the model M  is represented explicitly as a 
transition relation, then the size of the model is limited 
to the number of states that can be stored in the 
computer memory. To increase the size of the model, 
more efficient state representations can be used: 
 

1. Graphical representation: As Directed Acyclic 
Graphs (DAGs), trees and graphs, to save 
storage space and computation time by 
eliminating redundancies such as Binary 
Decision Diagrams (BDDs) and MDGs. 

2. Logical representation: As terms and 
formulae using logic to simplify formulae and 
benefit of the   power of automatic reasoning 
such as Conjunctive Normal Form (CNF). 

Model checking is then done by manipulating these 
formulae using BDDs or SAT solving techniques.  
  
Representing BBDs in High Order Logic:  BDDs [2] 
are data structure used as a compact representation for 
Boolean functions which improves the capacity of 
model checkers. Different representations of ROBDDs 
(Reduced Order Binary Decision Diagrams) [20] are used 
to manipulate the state transition relations as diagrams 
and this allows model checkers to verify larger systems. 
Still, most model checkers face the state space 
explosion problems [14]. To be able to apply model 
checking to larger designs, state reduction techniques 
are used. Examples include partitioned transition 
relation, dynamic variable reordering, cone of influence 
reduction, abstraction, problem-specific techniques, e.g. 
when the original design is rewritten in a simpler way, 
omitting the irrelevant details, but preserving the 
important behavior for the property being verified.  
 An alternative for decision graphs is to represent 
the transition relation by a CNF (Conjunctive Normal 
Form), then to use SAT [21, 22] solvers to decide on the 
satisfiability of these formulae. SAT solvers can decide 
very large Boolean formulae in reasonable time, but 
they are not canonical and require additional efforts to 
check for the equivalence of formulas. As a result, 
various researchers have developed routines for 
performing Bounded Model Checking (BMC) [23, 24] 
using SAT. The common theme is to convert the 
problem of interest into a SAT problem, by devising the 
appropriate propositional Boolean formula. Then, they 
exploit the known ability of SAT solvers to find a 
single satisfying solution when it exists. Moreover, 
SAT solver technology has improved significantly in 
recent years with a number of sophisticated packages 
which are freely available. Well known state-of-the-art 
SAT solvers include CHAFF [25], GRASP [26] and 
SATO [27]. Since state sets can be represented as 
Boolean formulae, and since most model checking 
techniques manipulate state sets, SAT solvers have 
enormously boosted their speed and applicability.  
 In high order theorem provers, transition relations 
are formalized either as DAGs or as terms and 
formulae. The first is a graphical representation using 
trees and graphs, while the later is a formal logic 
representation using datatype. 
 First of all, the graph is represented as a data 
structure in the theorem prover. This representation 
should reflect the abstract properties of graphs and 
should be flexible to be suitable for different domains 
and for many applications to model complex designs. 
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Several examples can be cited: to model 
communication networks (railway track network [28]), 
also in transport industry, the problem of finding the 
most economical route of delivering goods and the 
problem of maximizing the network capacity can be 
solved using graphs. 
 Chou [29] gradually formalized a considerable part 
of graph theory in HOL theorem prover. The theory of 
undirected graphs is formalized as empty graphs, 
single-node graphs, finite graphs, subgraphs, paths, 
reachability, acyclicity, trees, subtrees, and merging 
disjoint subgraph of a graph. Based on this 
formalization, the correctness of distributed algorithms 
has been verified in HOL [30]. 
 The authors in [31] modeled the graph structure of a 
BDD as heaps then they verified BDDs normalization 
algorithm in Isabelle/HOL theorem prover. The 
normalization follows the original algorithm presented 
by Bryant in 1986 which transforms an ordered BDD 
into a reduced, ordered and shared BDD. The 
verification is based on Schirmers research on the 
Verification Condition Generator (VCG) to generate the 
proof obligations for Hoare Logic. 
 The authors in [32] implemented and proved the 
correctness of BDDs operations completely formalized 
in Coq. Their objective was to extract certified 
algorithms for BDDs operations running in Caml (the 
implementation language of Coq). In their 
formalization, BDDs were represented as DAGs and the 
memory in which the BDDs nodes were stored has been 
formalized as well using pointers such that no new 
nodes will be created unless necessary. The model was 
more abstract and the normalization algorithm was not 
an issue and sharing was simply ignored, since only 
normalized BDDs will be constructed at all. The main 
difficulties of the graph formalization is related to data 
structure sharing and to the side-effects resulted in the 
computation.  The algorithms usually mark the 
processed nodes or store the results calculated for a 
subtree or subgraph in a hash-table to avoid 
recalculation. Moreover, it would be very difficult to 
get a good performance that it is clearly never expected 
to compete (in terms of time and space usage) with 
BDDs libraries written in languages like C. The 
advantage of course is that there is very little work in 
this area so probably much scope for research. 
 On the other hand, modeling the transition relations 
as terms and formulae is smoother for proofs especially 
those based on induction. Also, in applications like 
model checking, one would deal with several terms, and 
any efficient implementation must define sharing. The 

work presented in [4, 33-36] is an example of this logical 
approach.   
 The choice between the two approaches depends 
on the objectives. If we want to reason about the 
implementation itself and its correctness, then its better 
to define transition relations as graphs and do sharing of 
common sub-trees. Clearly this makes the development 
and proofs complex. On the other hand, if we are only 
interested in a high-level view of algorithms, then a 
logical representation is preferred.  
 

HYBRID APPROACH  
 
 We start by reviewing some work of linking proof 
systems to external automated verification tools. We 
concentrate on high-order logic proof systems since 
they are used much more often as a general property 
language and the logic is more expressive. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig.1: Theorem Proving and Model Checking Interface 
 
 The hybrid approach implement a tool linking 
model checking and theorem proving. During the 
verification procedure, the user deals mainly with the 
theorem proving tool. Verification using hybrid 
approach proceeds as shown in (Fig.1). The user starts 
by providing the theorem proving with the design 
(specification or implementation), the property and the 
goal to be proven. If the goal fits the required pattern, 
the theorem proving tool generates the required model 
checking files (sub-goals). The latter are sent to the 
model checking tool for verification. If the property 
holds, a theorem is created. Otherwise, the proof is 
performed interactively.  

Theorem Prover 

Model Checker 

Interface 

True 

Counter-example 

Property 

Sub-goals Make-Theorem 
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 There are many examples of integration tools such 
as integrating the HOL system (HOL88) and Voss. 
Voss system [37], an implementation of Symbolic 
Trajectory Evaluation (STE), was implemented in a 
lazy Functional Language (FL). In [4] Voss was 
interfaced to HOL and the verification using a 
combination of deduction and STE was demonstrated. 
The HOL-Voss system integrates HOL88 deduction 
with BDDs computations. 
 The BDDs tools are programmed in FL as a built-
in datatype. The assertion language of Voss was 
formalized in HOL and a tactic, which can make an 
external call to the Voss system, checks whether an 
assertion is true. Then the proved assertion was 
returned as a HOL theorem. A system based on this 
idea, called Voss-ThmTac, was later developed by 
Aagaard et al. [3], which combines the ThmTac theorem 
prover with the Voss system. Then the development of 
HOL-Voss evolved into a new system called Forte [38]. 
The idea comes from the very tight integration of the 
two provers, using a single language, FL, as both the 
theorem prover's meta-language and its object 
language. Thus lifted FL programs could evaluate FL 
expressions directly instead of having to translate back 
and forth, achieving the goal of efficiently unifying the 
model checker and theorem prover’s specification 
languages. More recently, with industrial take-up at 
Intel, Forte [39] has become one of the most mature 
formal verification environments based on tool 
integration.  
 Rajan et al. [8, 40] described an approach where a 
BDD-based model checker for the propositional µ -
calculus has been used as a decision procedure within 
the framework of PVS. An extension of the µ -
calculus, consists of Quantified Boolean Formulae 
(QFB), is defined using PVS higher-order logic. The 
temporal operators are then defined using the µ -
calculus. These temporal operators apply to arbitrary 
state spaces. In the case where the state type is 
constructed in a hereditarily finite manner, µ -calculus 
expressions are translated into input acceptable by a µ -
calculus model checker. This model checker can then 
be used as a decision procedure to prove certain 
subgoals. The model checker accepts the translated 
input from µ -calculus expression. The generated 
subgoals are verified by the model checker and the 
results are used in the proof process of PVS.  
 Schneider et al. [5] used higher order hardware 
formulae to express the safety and liveness properties 
hierarchically. They proposed an approach of invoking 
model checking within HOL where properties are 

translated from HOL to temporal logic. A new class of 
higher-order formulae was presented, which allows a 
unified description of hardware structure and behavior 
at different levels of abstraction. Datapath oriented 
verification goals involving abstract data types can be 
expressed by these formula as well as control 
dominated verification goals with irregular structure. 
To ease the proof of the goals in HOL, a translation 
procedure was presented which converts the goals into 
several Computational Tree Logic (CTL) model 
checking problems, which are then solved outside 
HOL.  
 Schneider and Hoffmann [9] linked the SMV model 
checker to HOL using PROSPER. It provides an open 
proof architecture for the integration of different 
verification tools in a uniform higher-order logic 
environment. They embedded the linear time temporal 
logic (LTL) in HOL and translated LTL formulae into 
ω -Automata, a form that can be reasoned about within 
SMV. The translation is completely implemented by 
means of HOL rules. HOL terms are exported to SMV 
through the PROSPER plug-in interface. On successful 
model checking, the results are returned to HOL and 
turned to theorems. This integration tool allows SMV to 
be used as a HOL decision procedure. The deep 
embedding of the SMV specification language in HOL 
allows LTL specifications to be manipulated in HOL. 
 MDGs [41] are decision diagrams based verification 
tool, primarily designed for hardware verification. It is 
based on Multiway Decision Graphs which extend 
ROBDDs [2] with abstract sorts and uninterpreted 
function symbols. MDGs are canonical representations 
of a certain class of quantifier-free formulae of the logic 
called Directed Formulae (DFs) [19]. DFs can represent 
the transition and output relations of a state of machine, 
as well as the set of states. 
 The MDG-HOL system [6] is a hybrid system which 
links the HOL interactive proof system and the MDGs 
automated hardware verification system. It supports a 
hierarchical verification approach and fits the use of 
MDGs verification naturally within the HOL 
framework for a compositional hierarchical verification. 
The HOL system is used to manage the proof. The 
MDGs system is called to verify the submodules of a 
design. When the MDG-HOL system is used to verify a 
design, the design is modeled as a hierarchy structure 
with modules divided into submodules. An extension of 
the above work was presented in [7] to link HOL and the 
MDGs model checker. The interface between the two 
tools is implemented using ML. 
 Haiyan et al. [42] verified formally the linkage 
between a simplified version of MDG tool and the HOL 
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theorem prover. The verification is based on the 
importing of MDGs results to HOL theorems. Then, 
they combined translator correctness theorems with the 
linkage theorems in order to allow low level MDGs 
verification results to be imported into HOL in terms of 
the semantics of MDG-HDL. The work was concerned 
with ways of increasing trust in the linked systems. 
 

 DEEP EMBEDDING APPROACH  
 
 In this approach, a model checking is implemented 
inside a theorem proving tool. As shown in (Fig.2), the 
design and the property are fed to the model checking 
inside the theorem prover. If the property holds then a 
theorem is created, otherwise, the proof cannot be 
performed.  
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig.2: Embedding Model Checking inside Theorem 
Proving Tool 
 The result of the model checker is correct by 
construction, since both of the theory and the 
implementation are proved correct in the theorem 
prover. Thus soundness is guaranteed because more 
work is backed up by mechanized fully-expansive 
proof. The price for the extra proof and flexibility is in 
increased development effort. 
 The "deep embedding" approach[43] introduce the 
decision graph syntax as a new higher order logic type 
and then define the operations and algorithms based on 
this syntax within the theorem prover. This contrasts 
within a "shallow embedding" where the syntax is not 
formally represented in the logic, only in the meta-
language. In general, a deep embedding allows one to 
reason about the language itself rather than just the 
semantics of programs in the language.  
 Gordon [44] integrated the BDDs based verification 
system BuDDY into HOL by implementing the 
primitive BDDs operations as inference rules added to 
the core of the theorem prover. The author used a small 

kernel of ML functions to convert between BDDs, 
terms and theorems. As long as those primitives are 
correct, it was possible to achieve the advantages of 
both theorem proving tools and decision diagram 
algorithms without the need to trust a complete external 
package, just a set of primitives. The aim of using 
BuDDy is to get near the performance of C-based 
model checking by using BDDs package implemented 
in C, whilst remaining fully expansive, though with a 
radically extended set of inference rules [34]. 
 In [35], Harrison implemented BDDs inside the 
HOL system without making use of external oracle. 
The BDDs algorithms were used by a tautology-
checker; however, the author found that the 
performance was about thousand times slower than 
with BDDs engine implemented in C. The author 
argued that by re-implementing some of HOL's 
primitive rules, performance could be improved by 
around ten times. 
 Amjad [33] demonstrated how BDDs based 
symbolic model checking algorithms for the 
propositional µ  calculus µL  can be embedded in the 
HOL theorem prover. His approach allows results 
returned from the model checker to be treated as 
theorems in HOL. By representing primitive BDDs 
operations as inference rules added to the core of the 
theorem prover, the execution of a model checker for a 
given property is modeled as a formal derivation tree 
rooted at the required property. These inference rules 
are hooked to a high performance BDDs engine [34] 
external to the theorem prover. The approach still 
leaves results reliant on the soundness of the underlying 
BDDs tools.  Thus, the security of the theorem prover is 
compromised only to the extent that the BDDs engine 
or the BDDs inference rules may be unsound. 
 In [36], the authors followed a similar approach to 
the BuDDy work [34] but embedding MDGs rather than 
BDDs and inside HOL rather than using ML. They 
provided a complete formalization of the MDGs logic 
and its well-formedness conditions as DFs in HOL 
mechanically. Based on this infrastructure they 
formalized the basic MDGs operations in HOL 
following a deep embedding approach and proved their 
correctness. Their aim is to embed the MDGs model 
checker in the HOL theorem prover. Whereas [33] 
approach relies on the BDDs computations carried out 
by BDDs primitive inference rules, [36] work focuses 
more on how one can raise the level of assurance by 
embedding and proving formally the correctness of 
those operators in HOL. 
 In [45], the author showed a mechanism of how 
certifying model checker can be constructed. The idea 

The Theorem Proving 
Tool 

Theory of Model 
Checking 

Model Checking 
Operations 

Goal True/False 
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is that, a model checker can produce a deductive proof 
on either success or failure. The proof acts as a 
certificate of the result, since it can be checked 
independently. A certifying model checker thus 
provides a bridge from the model-theoretic to the proof-
theoretic approach to verification. The author 
developed a deductive proof system for verifying 
branching time properties expressed in the µ -calculus, 
and showed it to be sound. Then, a proof generation in 
this system from a model checking run is presented.  
 In [46], the authors successfully carried out the 
verification of the model checker RAVEN. RAVEN is 
a real-time model checker which uses time-extended 
finite state machines (interval structure) to describe 
systems and a timed version of CTL (CCTL) to 
describe properties. Optimized algorithms based on an 
extended characteristic functions are used to compute 
the extension sets. The specification and the correctness 
proof were carried out using an interactive specification 
and verification system KIV. 
 

CONCLUSION  
 
 Finally, in this paper we discussed a formalization 
of model checking approach in high order theorem 
provers and we presented an extended survey of 
relevant work. 
 BDDs based symbolic model checking has been 
proved to be a successful automatic verification 
technique that can be applied to real designs. However, 
the state space explosion problem caused by large 
datapaths is often the bottleneck in applying the 
symbolic model checking technique. Theorem provers 
are based on expressive formalism that are capable of 
modeling complex systems but requires expertise to 
verify most properties of practical interest. It has been 
shown through several research papers that model 
checking can be efficiently combined with theorem 
proving in a way that sacrifices neither efficiency of the 
former nor the expressiveness of the latter. 
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