
Journal of Computer Science 3 (11): 898-906, 2007
ISSN 1549-3636
© 2007 Science Publications

Corresponding Author: Jean-Marc NIGRO, Institut Charles Delaunay (FRE CNRS 2848), Université de Technologie de
Troyes, Troyes, France

898

Structure and Performance of the Meta Inference Engine

Jean-Marc NIGRO and Yann BARLOY

Institut Charles Delaunay (FRE CNRS 2848), Universite de Technologie de Troyes,
Troyes, France

Abstract: This study presents the structure and the performance of a new inference engine: the MIE
(Meta Inference Engine). It is able to manipulate not only the rules but also the metarules. The article
first describes the architecture of the MIE and gives an example to illustrate its use. A comparison of
performance between an RETE network and the MIE is then made. This shows that the MIE is more
efficient at manipulating metaknowledge (metarules) but that an RETE network is quicker when the
system inserts or deletes a fact.

Key words: Metaknowledge, artificial intelligence, inference engine, OPS and RETE

network, meta-rule

INTRODUCTION

 The domain of metaknowledge was conceived in
the 1970s and 80s[10] at the same time as the emergence
of rule-based systems. A metaknowledge can be
defined as being knowledge about knowledge. Different
classes of metaknowledge were established by Jacques
Pitrat[20] metaknowledge for acquiring, for explaining,
for using or for stocking knowledge.
 The study and manipulation of metaknowledge are
transverse in several domains in Artificial Intelligence
(AI). They are often used to model many levels of
decisions or structures such as meta-systems developed
in LCF[7] and FOL[24]. Metaknowledge was evoked for
decision support[18], learning[1,16], monitoring[11],
generation of comments[17], manipulation of the
temporal graph[9], strategy of a inference engine[24],
problem solving in geometry[2], checking on the
coherence of a rules-based systems[21] and the discovery
of new knowledge[14].
 There is no specific architecture (or programming
language) for manipulating metaknowledge:
MALICE[19] metaknowledge is written in language C;
those of GénéCom[17] and SNARK[13] with rules and
those of SADE[11] with Lisp. However, rules-based
systems have the advantage of catering for the building
of different levels of knowledge[9] a chronology to
execute packages of rules for example. The other
advantage of the rules is they allow the developer to be
focused on the transcription of methods in the form of
rules without being concerned about their triggering.
An inference engine takes responsibility for the
matching of conditions and the execution of rules.

 It is in this context that the idea to conceive a new
inference engine, called MIE (Meta-Inference Engine)
appeared. This idea had already been introduced in a
theoretical way by Clancey[5] or Torsun[22] who had
developed a logic allowing the programming of a
"meta" level by using a language such as PROLOG.
The development of a tool allowing the manipulation of
metaknowledge[20,12] would facilitate the
implementation of AI systems.
 So, the MIE allows the developer to build systems
based on rules and meta-rules (a meta-rule is executed
as a rule). Contrary to most systems which use meta-
rules[3,21] in a static way, the triggering of meta-rules
can dynamically modify the rules structure during the
session. Also, reflective systems can be made by the
MIE.
 Two types of inference engines are known: those
based on a filter algorithm and those using an RETE
network[8]. Various models were developed according
to the principle of an RETE network. One of the
differences between all these models comes from the
memorization of facts in the nodes of the network.
SNARK[13] and TREAT[15,23] use fewer memorization
techniques whereas OPS[3] and TANGO[6] memorise all
the facts and sets of facts (representing instances).
 The use of an RETE network is much more faster
than a filtering technique. On the other hand, it has a
physical structure which is more complex: various
types of nodes and joints. If this implementation had
been chosen, every execution of a meta-action (for
example to modify or to delete a rule) would have
entailed, every time, an expensive reorganization of the
RETE network. The idea is to imagine a new structure

J. Computer Sci., 3 (11): 898-906, 2007

 899

which would be a compromise between RETE and
filtering. This new structure would be faster than the
filtering solution and more flexible than the RETE
network. This flexibility would make the use of
metaknowledge easier when a rule needs to be created,
modified or deleted during an execution.
 The goal of this article is to present the structure
used by the MIE and to compare its performances with
an RETE network.
 In the following section, the structure of the meta-
inference engine is presented. Several algorithms are
described to explain how the performances of the MIE
and an RETE structure have been calculated to insert
and to delete a fact, a condition or a rule. The last part
shows the result of the comparison with graphs and
commentaries.

STRUCTURE OF THE META
INFERENCE ENGINE

 The structure shown on Fig. 1 is used to encode a
set of rules. Each encoded rule contains three lists: the
list of conditions, the list of actions and the list of
variables. The latter is composed of a set of variables
used in the conditions of the rules. This is useful when
the MIE has to create a new instance. The list of actions
contains the sequence of actions which will be executed
if the information encoded in an instance satisfies all
the conditions of a rule.
 Each condition is characterized by a name, an
object, an attribute, a value, a list of facts which satisfy
the condition, a list of instances (see below the
explanation of its use), and a complexity value which
evaluates the matching calculation between the
condition and a fact. The list of conditions is sorted
from the simplest to the most complex with the use of
Table 1 and 2. For example, the condition (cube1 =
color !color) will have the compexity 2 while the
condition (!cube > height (+ !var 10)) (the condition
will be satisfied if the cube !cube has a height greater
than the value of the variable !val incremented with 10)
will have the complexity 12.
 This sorted list of conditions allows for the
progressive building of instances as the conditions are
satisfied. The idea is to insert in the first places the
conditions which give rise to few calculations and
which determine the values of the variables. The
complex conditions (the costliest) will be computerized
at the very end.
 A condition contains a list of facts and a list of
instances. Each fact (from the list of facts) is matched
with the condition and is used to create or modify an
instance (from the list of instances). The list of

Rule name

Variable

Complexity Class

Object

Operator

Attribute

Value

Name

Class
List of parameters

Name

L_rules List of rules

List of conditions

List of actions
List of variables

A condition

An action
List of facts

List of instances

An instance

List of variables with a value

List of facts which compose the
instance

Fig. 1: The structure used by the MIE

Table 1: The complexity of a condition with the operator =
Operator = Object
 Variable Not Variable
Value Variable 3 2
 Not Variable 1 0
 Variable in an expression 5 4
 Variable not in an expression 1 0

Table 2: The complexity of a condition with an operator different

from =
Operator different Object
from ---------------------------
 Variable Not Variable
value Variable 9 6
 Not Variable 3 0
 Variable in an expression 15 12
 Variable not in an expression 3 0

instances possesses partial instances which have been
constructed from the first condition (the less complex)
to the condition being tested. The last condition of the
rule (the most complex) contains the complete instances
usable to execute the rule.
 For the condition at position i, an instance is
composed of a list of facts and a list of variables which
allows for matching all the conditions from position 1
to position i and which allocates a value to all the
variables of all the conditions from position 1 to
position i. To be more explicit, an example is described
below.

An example to illustrate the use of the MIE
structure: Supposing that the rule written by the
developer (respecting the syntax described in annexe
A1) is the example1 rule, the first task of the MIE is to
calculate the complexity of each condition and to sort
them Table 3.

J. Computer Sci., 3 (11): 898-906, 2007

 900

Table 3: Calculation of the complexity and ascending sort of the
condition condition

Condition Complexity
(!cube1 = color red) 1
(!cube2 = below table) 1
(!cube1 = below !cube2) 3
(!cube1 = height !val) 3
(!cube2 > height !val) 9

(Defrule example1
 (!cube1 = color red)
 (!cube1 = below !cube2)
 (!cube1 = height !val)
 (!cube2 = below table)
 (!cube2 > height !val)
=>
 (assert agregate shape pyramid)
)

 Once the conditions have been sorted into
ascending order, the MIE can build the structure which
allows the facts to match the conditions. Now, if the
three facts (CubeA below CubeB), (CubeB below
CubeC), (CubeC below table) are sent, the two first
facts match the third condition (they are stored in the
list of facts) and the last fact matches the second
condition.

 List of instances
Condition List of facts List of

variables
List of
facts

(!cube1 = color
red)

(!cube2 = below
table)

(CubeC
below table)

(!cube1 =
below !cube2)

(CubeA
below
CubeB)
(CubeB
below
CubeC)

(!cube1 = height
!val)

(!cube2 > height
!val)

 Let us now suppose that the two following facts
(CubeA color red) and (CubeB color red) are sent to the
structure. These two facts match the first condition and
they are stored in the list of facts. Two partial instances
are built in the first condition and they are propagated
in the second condition. Two partial instances are also
built and they are propagated in the third condition. But

only one partial instance is built to respect the link
between the variables !cube1 member of condition 1
and 3 and !cube2 member of condition 2 and 3.

 List of instances
Conditio
n

List of facts List of
variables

List of facts

(!cube1 =
color red)

(CubeA color
red) (CubeB
color red)

1:(!cube1 =
CubeA)
2:(!cube1 =
CubeB)

1:(CubeA
color red)
2:(CubeB
color red)

(!cube2 =
below
table)

(CubeC below
table)

1: (!cube1
= CubeA ;
!cube2 =
CubeC) 2:
(!cube1 =
CubeB ;
!cube2 =
CubeC)

1: (CubeA
color red) ;
(CubeC
below
table) 2:
(CubeB
color red) ;
(CubeC
below
table)

(!cube1 =
below
!cube2)

(CubeA below
CubeB)
(CubeB below
CubeC)

2: (!cube1
= CubeB ;
!cube2 =
CubeC)

2: (CubeB
color red) ;
(CubeC
below
table) ;
(CubeB
below
CubeC)

(!cube1 =
height
!val)

(!cube2 >
height
!val)

If we go on to send the fact (CubeC height 40). It
matches the two last conditions but no new partial
condition are created because the variable !cube1 has to
have the value CubeB and not CubeC. So, the fourth
condition does not build an instance.

 List of instances
Conditio
n

List of facts List of
variables

List of facts

(!cube1 =
color red)

(CubeA
color red)
(CubeB
color red)

1:(!cube1
= CubeA)
2:(!cube1
= CubeB)

1:(CubeA color
red) 2:(CubeB
color red)

(!cube2 =
below
table)

(CubeC
below table)

1:
(!cube1=
CubeA ;

1: (CubeA color
red) ; (CubeC
below table) 2:

J. Computer Sci., 3 (11): 898-906, 2007

 901

!cube2=
CubeC)
2: (!cube
= CubeB ;
!cube2=
CubeC)

(CubeB color
red) ; (CubeC
below table)

(!cube1 =
below
!cube2)

(CubeA
below
CubeB)
(CubeB
below
CubeC)

2: (!cube1
= CubeB ;
!cube2 =
CubeC)

2: (CubeB color
red) ; (CubeC
below table) ;
(CubeB below
CubeC)

(!cube1 =
height
!val)

(CubeC
height 40)

(!cube2 >
height
!val)

(CubeC
height 40)

 Finally we can send the fact (CubeB height 20). It
matches the two last conditions. The fourth condition
can create a partial instance because !cube1 (object of
the condition) matches with the value CubeB. This
instance is propagated in the last condition which can
create a complete instance.

 List of instances
Conditio
n

List of facts List of
variables

List of facts

(!cube1 =
color red)

(CubeA
color red)
(CubeB
color red)

1:(!cube1
= CubeA)
2:(!cube1
= CubeB)

1:(CubeA color
red) 2:(CubeB
color red)

(!cube2 =
below
table)

(CubeC
below table)

1:
(!cube1=
CubeA ;
!cube2=
CubeC) 2:
(!cube1=
CubeB ;
!cube2 =
CubeC)

1: (CubeA color
red) ; (CubeC
below table) 2:
(CubeB color
red) ; (CubeC
below table)

(!cube1 =
below
!cube2)

(CubeA
below
CubeB)
(CubeB
below
CubeC)

2:
(!cube1=
CubeB ;
!cube2=
CubeC)

2: (CubeB color
red) ; (CubeC
below table) ;
(CubeB below
CubeC)

(!cube1 =
height
!val)

(CubeC
height 40)
(CubeB
height 20)

2:
(!cube1=
CubeB ;
!cube2=

2: (CubeB color
red) ; (CubeC
below table) ;
(CubeB below

CubeC ;
!val= 20)

CubeC) ;
(CubeB height
20)

(!cube2 >
height
!val)

(CubeC
height 40)
(CubeB
height 20)

2:
(!cube1=
CubeB ;
!cube2 =
CubeC ;
!val= 20)

2: (CubeB color
red) ; (CubeC
below table) ;
(CubeB below
CubeC) ;
(CubeB height
20) ; (CubeC
height 40)

565 687 811 907

L_codes List of
codes

List of
links

List of
links

Toward a
condition

Toward a
condition

Fig. 2: Structure to route the facts to the condition

 The insertion of a new fact uses a special structure
which allows us to ignore uninteresting conditions,
rather than testing all the conditions of all the rules.
This structure offers a quick propagation of facts for all
the conditions Fig. 2. The MIE works with a first order
logic: all conditions have an attribute which is not a
variable. To have a match between a fact and a
condition, they (the fact and the condition) must have
the same attribute. The idea is to encode the attributes
with the conditions and to regroup them in an ordered
list.
 Each code reaches a set of conditions having the
same attribute zone. When the MIE has to look for a
new fact in the structure, it calculates the code of the
attribute (of the fact) and seeks it out in the list of
codes. If the code is found then the MIE can test all the
conditions linked to this code with the fact.

DEFINITION AND ALGORITHMS

 The aim of this section is to show how the
comparison of performance between the MIE structure
and the RETE network has been done. First, some

J. Computer Sci., 3 (11): 898-906, 2007

 902

variables are defined which are used in several
algorithms: insert a fact, delete a fact, insert a condition,
delete a condition, insert a rule and delete a rule.

DEFINITION OF VARIABLES

Number of facts : nb_facts
Number of rules : nb_rules
Number of conditions in a rule : nb_conditions
Number of original conditions in a rule : nb_original
Number of common conditions in a rule : nb_common
= nb_conditions - nb_original

 If we suppose that a common condition appears on
average in 1/3 of the rules :
The total number of conditions :

total_nb_conditions = nb_rules * nb_original +
(nb_rules/ 3)*(nb_conditions - nbr_original)
total_nb_conditions = (nbr_règles/ 3)*(nbr_conditions
+ 2*nbr_originals)

The number of copies of a common condition (see
annexe A2)
nb_copies_common_condition=(3*nb_original+nb_co
mmon*nb_rules)/(3*nb_conditions)

We will assume that the facts are equitably distributed
in test nodes :
nb_facts_in_a_test_node = nb_facts /
total_nb_conditions.

The number of outputs for a joint node :
nb_outputs_joint = log (total_nb_conditions -
nb_common)

The number of outputs for a test node (see annexe A2)
nb_outputs_test = (3* nb_original + nb_common *
nb_rules) / (3*nb_conditions)

The coefficient of matching in a joint node between 2
facts or between 1 fact and 1 instance: Coef_matching
= 20%

The number of instances in a joint node:
nb_instances_joint_node = (Uo(1-rn+1)/(1-r))/n
with Uo=nb_facts/ total_nb_conditions;
r= nbr_facts/ total_nb_conditions * coef_matching;
n=nb_conditions-1

The number of instances in a condition in the MIE
strucure (an average) :

nb_instances_condition_mie = (nb_facts/
total_nb_conditions) * Coef_matching

To simplify counting, we assume that a fact matches
only one test node.

ALGORITHMS

 Four algorithms are presented below:
Insert_a_fact_OPS, Insert_a_fact_MIE,
Insert_a_condition_OPS and Insert_a_condition_MIE.
The other algorithms are described in annexe A3.
 Figure 3 proposes the propagation of a fact in an
RETE network. This network has 5 test nodes: the first
one contains 1 fact, the second and the fourth contain 3
facts and the fifth 4 facts. The first joint node has 2
partial instances. When a new fact is sent in the RETE
network, it is tested with all test nodes. In figure 3, the
new fact satisfies the matching fonction of the third test
node. It is memorised and it is propagated in the joint
node B. Then, this node verifies if a new partial
instance can be made from the partial instance of the
node A and the new fact. In the example, two new
partial instances are created and stored in node B. They
are propagated towards node C which verifies if new
partial instances can be built from partial instances of
node B and the facts of the test node 4. So, three new
partial instances are created and stored in node C. The
same comparison is done with node D which builds 4
instances from node C and node 5. Then, these 4
instances are proposed to the node rule which can
execute them.
Algorithm Insert_a_fact_OPS

Test Node

Joint Node

Rule Node

Instance already
present

Fact already
present

Instance created by the
propagation

New fact

1 2 3 4 5

A

B

C

D

Fig. 3: The insertion of a fact in OPS structure

J. Computer Sci., 3 (11): 898-906, 2007

 903

Begin
 Levels_Counter ← 1

 // Test for the first joint node
 Instructions_Counter ←+ nb_instances_joint_node *
1 + 1

 // Test for the storage of the first joint node
 Instructions_Counter ←+ nb_instances_joint_node * 1
* Coef_matching + 1

 Un ← nb_instances_joint_node *1 *Coef_matching

 Loop (nb_conditions div 2) - 1 times
 // Test for a joint node
 Instructions_Counter ←+ Un * Levels_Counter *
(Nb_facts/ total_nb_conditions) + 1

 // Test for the storage of a joint node
 Instructions_Counter ← + Un * Levels_Counter *
(Nb_facts/ total_nb_conditions) * Coef_matching + 1

 Levels_Counter ←+ 1

 Un ← Un * (nb_facts/ total_nb_conditions) *
Coef_matching
 End Loop

 Return (Instructions_Counter)
End

 The first step of the insertion of a fact in the RETE
network consists in testing the fact with all the test
nodes. This is not taken into account because its
number of instructions is insignificant in comparison
with the other steps. The Insert_a_fact_OPS algorithm
begins with the test and the storage of the first joint
node. Secondly, a loop used to count the instructions of
the propagation of partial instances in all joint nodes of
the RETE network.
 Figure 4 shows the insertion of a fact in the MIE
structure. The number of instructions for the calculation
of the code and the route of the new fact to the node 3
are considered as insignificant in comparison to the
total number of instructions. The first step is to test if
the new fact can be memorized in the node. Then, the
MIE has to try to combine it with the instances of the
previous node to build the new instances. In the
example, 3 new instances are created in node 3. The
MIE tries to propagate these instances in the following
node by matching up the fact of node 4.

Condition nodes

Instance already present

Fact already present

Instance created by the propagation

 New fact

1

2

4

3

Fig 4: The insertion of a fact in the MIE structure

Algorithm Insert_a_fact_MIE
Begin

 Loop nb_copies_common_condition times

 // Test for the first condition
 Instructions_Counter ←+
nb_instances_condition_mie * 1 + 1

 // Test for the storage of the first condition
 Instructions_Counter ←+
nb_instances_condition_mie * 1 * Coef_matching + 1

 Un ← nb_instances_condition_mie * 1 *
Coef_matching

 Loop (nb_conditions div 2) - 1 times
 // Test for a condition
 Instructions_Counter ←+ Un * (nb_facts/
total_nb_conditions) + 1

 // Test for the storage of the first condition
 Instructions_Counter ←+ Un * nb_instances
_condition_mie + 1

 Un ← Un * nb_instances_condition_mie
 End Loop

 End Loop

 Return (Instructions_Counter)
End

 The Insert_a_fact_MIE algorithm has 2
overlapping loops. The first one consists in testing the

J. Computer Sci., 3 (11): 898-906, 2007

 904

fact with all conditions which have the same attribute.
For each condition, the algorithm counts the test, the
memorization of the fact and the creation of new
instances. Then, it propagates these instances at the end
of the list of conditions.

Algorithm Insert_a_condition_OPS
Begin
// Assumption that the condition is a new condition:

- Search to see if the condition already exists =
total_nb_conditions
- Search for the links (object or attribute) with other
conditions of the rule = nb_conditions *2
- Creation of test and joint nodes = 2
- Creation of links = 3
- Delete instances in rule node =
nb_instances_joint_node
- Propagation of facts = insert_a_fact_ops * nb_facts
- Delete instances in the joint node downstream =
nb_conditions / 2 * nb_instances_joint_node
- Search for the place where they are going to insert the
condition = the insertion of an element in a sorted list =
Ln (nb_conditions+1);
- Update functions of validation in all nodes
downstream = (Uo(1-rn+1)/(1-r))/n with Uo=10; r=
nb_outputs_joint, n=nb_conditions / 2.
End;
 The insertion of a condition in an RETE network
implies the creation of new nodes and links, the
modification of the several functions of validation
(which belong to several nodes), and the propagation of
facts (and instances) in the new nodes (and the nodes
downstream)

Algorithm Insert_a_condition_MIE
Begin
- Creation of the condition = 1
- Counting of the condition complexity = 1
- Insertion of the test node in the rule =
nb_conditions/2
- Delete instances in nodes which are downstream of
the condition = (nb_conditions / 2) *
nb_instances_condition_mie
- Propagation of facts: insert_a_fact_MIE *
(nb_facts / total_nb_conditions)
- Propagation of metafacts:
a. Insertion of metafacts representing the condition = 6
* insert_a_fact_MIE
b. Modification of metafacts representing the rule = 2 *
insert_a_fact_MIE + 2 * delete_a_fact_MIE
End,

 The insertion of a condition in an MIE implies the
creation of a node (a condition) and a link, the
propagation of the facts from the new node (the new
condition) to the last node of the rule, and the managing
of metafacts to taking into account this insertion.

RESULTS AND ANALYSE

 All algorithms are tested in 3 different situations:

• the number of facts increases and the number of

rules is constant
• the number of rules increases and the number of

facts is constant
• the number of facts and the number of rules

increase simultaneously

 Figures 5, 6 and 7 concern the execution of the
algorithms in order to insert and to delete a fact in an
RETE network and the MIE structure. The figures show
that for the three cases, the performance of the RETE
network is clearly better than the MIE.

1000

100000

1E+07

1E+09

1E+11

1E+13

1E+15

1E+17

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37

Nb facts / 100

N
b

in
st

ru
ct

io
ns

 x
 N

b
fa

ct
s

assert_a_fact_ops

assert_a_fact_mie

delete_a_fact_ops

delete_a_fact_mie

Fig. 5: Performance of the insertion and the deletion of

a fact with a number of fact variations

100

1000

10000

100000

1000000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39

Nb rules / 10

N
b

in
st

ru
ct

io
ns

 x
 N

b
fa

ct
s

assert_a_fact_ops
assert_a_fact_mie
delete_a_fact_ops

delete_a_fact_mie

Fig. 6: Performance of the insertion and the deletion of
a fact with a number of rule variations

J. Computer Sci., 3 (11): 898-906, 2007

 905

1000

10000

100000

1000000

10000000
1 4 7 10 13 16 19 22 25 28 31 34 37

Nb facts / 100 and Nb rules / 10

N
b

in
st

ru
ct

io
ns

 x
 N

b
fa

ct
s

assert_a_fact_ops

assert_a_fact_mie

delete_a_fact_ops

delete_a_fact_mie

Fig. 7: Performance of the insertion and the deletion of

a fact with a number of fact and rule variations

1000

100000

1E+07

1E+09

1E+11

1E+13

1E+15

1E+17

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37

Nb facts / 100

N
b

in
st

ru
ct

io
ns

insert_a_condition_ops

insert_a_condition_mie

delete_a_condition_ops

delete_a_condition_mie

Fig. 8: Performance of the insertion and the deletion of

a condition with a number of fact

100

1000

10000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39

Nb rules / 10

N
b

in
st

ru
ct

io
ns

insert_a_condition_ops

insert_a_condition_mie

delete_a_condition_ops

delete_a_condition_mie

Fig. 9: Performance of the insertion and the deletion of

a condition with a number of rule variations

Figures 8, 9 and 10 concern the insertion and the
deletion of a condition in an RETE network and MIE
structure. The figures show that for the three cases, the
performance of the MIE is clearly better than the RETE
network. The annexe A4 concerning the insertion and
deletion of a rule gives the same result.
 These comparisons show that the MIE has a better
performance when the system is needed to work at a
metalevel (with metarules). But a classic inference
engine is preferable for executing simple rules.

100

1000

10000

100000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37

Nb facts / 100 and Nb rules / 10

N
b

in
st

ru
ct

io
ns

insert_a_condition_ops

insert_a_condition_mie

delete_a_condition_ops

delete_a_condition_mie

Fig. 10: Performance of the insertion and the deletion of

a condition with a number of fact and rule
variations

CONCLUSION AND PERSPECTIVES

 The version of meta inference engine presented in
this paper is the first one which has been found to be
usable. The first results and the comparison of
performances show that the MIE gives a better
performance than a classic inference engine in the case
of the use of metaknowledge even if it is slower to
insert and delete a fact. Nevertheless, it is still
experimental and incomplete: it does not take into
account negative conditions and it needs a dedicated
environment which will allow for the easy application
of learning techniques based on meta rules. For
example, some modules, which manipulate execution
traces, can be developed. Many classes of traces can be
imagined: a short term trace, a middle term trace and a
long term trace. The short term trace will contain all the
executed rules and possible instances. The middle term
trace will synthesize the short term trace by counting
the number of executions for each rule, or the number
of times when a rule would be executed. The long term
trace will regroup statistics and evaluate the
performance of a rule or a package of rules. All these
traces will allow the MIE to learn techniques during the
running time (with short term and middle term traces)
and after the execution (with the long term trace).

ACKNOWLEDGEMENTS

 Research supported in part by Champagne-
Ardenne Regional Council (district grant) and the
European Social Fund.

REFERENCES

1. Anderson, M., T. Oates and D. Perlis, 2006.

ReGiKAT: (Meta-)Reason-Guided Knowledge
Acquisition and Transfert-or-Why Deep Blue Can’t
Play Checkers and Why Today’s Smart Systems
Aren’t Smart. IPMU, 4-7 july.

J. Computer Sci., 3 (11): 898-906, 2007

 906

2. Bazin, J.M., P. Castells, R. Moriyon and F. Saiz,
Kiev 1993. Aknowledge based problem solver
conceived for intelligent tutoring application,
ICCTE 93.

3. Brownston, L., R. Farrel, E. Kant and N. Martin,
1985. Programming Expert Systems in OPS5: An
Introduction to Rule Base Programming. Addison-
Wesley.

4. Clancey, W.J., 1992. Model construction operators.
Artificial Intelligence 53: 1-115.

5. Cazenave, T., 2003. Metarules to Improve
Tactical Go Knowlegde. Information Sciences,
154 (3-4) : 173-188.

6. Cordier, M.O. and M.C. Rousset, 1984. Interactive
operators in expert systems. European Conference
on Artificial Intelligence, ECAI 84, Pise.

7. Cohn, A., 1979. High level proof in LCF. In WAD,
pp: 73-80.

8. Forgy, C.L.,1982. A Fast Algorithme for the Many
Pattern/Many Object Pattern Match Problem.
Artificial Intel., 19.

9. Genesereth, M.R. and N.J. Nilsson, 1987. Logical
Fundations of Artificial Intel., Los Altos, CA
Morgan Kaufmann.

10. Hayes, P.J., 1973. Computation and deduction.
Proceeding 2nd. Symposium on Mathematical
Foundations of Computer Science,
Czechoslovakian Academy of Sciences, 105-118.

11. Kornman, S., 1995. A Meta-level Architecture for
self-monitoring. workshop IJCAI'95, On Reflection
and Meta-Level Architecture and their
Applications in AI, 125-131.

12. Laurière, J.L., 1986. Snark : A langage to represent
declarative knowledge and an inference engine
which uses heuristics, Information Processing 86,
Ed Elsevier Science Publisher, pp: 811-816.

13. Laurière, J.L. and M. Vialatte, 1986. Snark a
language to represent declarative knowledge. IFIP,
North-Holland.

14. Lenat, D., 1984. Why AM and EURISKO appear
to work. Artificial Intelligence. 23 (3): 269-294.

15. Miranker, D.P., 1987. TREAT: A better match
algorithm for ai production systems. National
Conference on Artificial Intelligence. Seattle.

16. Nigro, J.M. and Y. Barloy, 2006. The Meta
Inferences Engine: A tool to use metaknowledge,
IPMU 06, Paris, July.

17. Nigro, J.M., 1995. GeneCom: A program which
uses meta concepts, Workshop IJCAI 95,
pp: 132-139.

18. Pinson, S., 1989. Credit Risk Assessment
and meta-judgement, Theory and decision,
27 : 117-133.

19. Pitrat, J.,2006. Meta-explanation in a Constraint
Satisfaction solver. IPMU 2006, 4-7 july.

20. Pitrat, J., 1990. An intelligent system must and can
observe its own behaviour. Cognitiva 90.

21. Spreeuwenberg, S., R. Gerrits and
M. Boekenoogen, 2000. VALENS: A Knowledge
Based Tool to Validate and Verify an Aion
Knowledge Base. ECAI 2000, pp: 731- 735.

22. Torsun, I.S., 1995. Foundations of Intelligent
Knowledge-Based Systems. Academic Press.

23. Wang, Y.W.,1992. EN. Hanson. A performance
Comparison of the RETE and TREAT Algorithme
for Testing Database Rule Conditions. Eighth
International Conference on Data Engineering.
Tempe (USA).

24. Weyhrauch, R., 1980. Prolegomena to a theory of
mechanized formal reasoning. Artificial
Intelligence, 13 (1,2): 133-170.

