
Journal of Computer Science 4 (2): 151-160, 2008
ISSN 1549-3636
© 2008 Science Publications

Corresponding Author: Mohd Hairul Nizam M. Nasir, Faculty of Computer Science and Information Technology,
 University of Malaya, Lembah Pantai, 50603, Kuala Lumpur, Malaysia
 Tel: +603-79676435 Fax: +603-21784965

151

Improving Response Time of Authorization Process of Credit Card System

Using Multi-Threading and Shared-Memory Pool Techniques

Siti Hafizah Ab. Hamid, Mohd Hairul Nizam M. Nasir,
Wong Yew Ming and Hazrina Hassan
Department of Software Engineering,

Faculty of Computer Science and Information Technology,
University of Malaya, 50603 Kuala Lumpur, Malaysia

Abstract: Current credit card authorization was developed on single-threaded model whereby
authentication process takes longer time to respond due to sequential process of card’s risk
management profile and its limitation of handling huge number of simultaneous transactions at single
point of time. As a result, the performance of the authorization system was affected during peak hours.
This study presented an architectural framework and prototype of credit card authorization system
using multi-threading and shared memory pool techniques in order to improve the response time
during authorization process. Through multi-threading technique, each worker thread will be assigned
with several child threads to perform online fraud validation concurrently, depending on numbers of
cryptographic elements presented in transaction message. Meanwhile, the worker threads itself
performed card restriction validation based on the information stored in card’s shared memory pool.
This approach was implemented to reduce the idle time while waiting for slow cryptographic operation
in each I/O operations that is performed through external device and to accelerate the authorization
process through memory operation instead of accessing similar information from database. The
implementation of these techniques, were then measured in terms of response time. The results showed
that the performance of multi-threaded authentication engine was almost double of single-threaded
authentication engine and the number of credit card authorization that can be processed using shared
memory was ten percent higher than the number of credit card authorization that can be processed
using database at single point of time.

Key words: Credit card, authorization system, multi-threading, shared-memory pool

INTRODUCTION

 Credit card authorization is a process whereby the
card issuer decides whether to approve or decline
requests to accept transactions [1] performed by
cardholders which is based on a series of validation of
card’s risk management profile to verify that the
cardholder’s account is open, transaction amount is
within the available credit limit and come from the
legitimate card and many other related validations
parameters. The validation of card’s risk management
profile can be classified into two categories namely
card restriction validation and online fraud validation
 Card restriction validation includes the financial[12]
and non-financial verification related to the card
whereas online fraud validation involves cryptographic
operation through host security module (HSM) to verify

the security aspect of the authorization in order to
determine the legitimacy of the card. HSM is an
external device connected to the authorization host that
keeps the card issuer’s secret information in tamper
resistant hardware which is used to perform verification
of the credit card transaction. Due to various validations
during authorization process for each credit card
transaction, it will take some time to make a whole
process to be completed. Moreover, slow and expensive
input and output operation during the card restriction
and online fraud validation through database and HSM
also causes some delays. Besides, validation in term of
the security aspect of the card itself also takes some
time to process due to the complexity of the algorithms
involved. As a result, the performance is affected
whenever the number of authorization process is
increased. In this case, it will cause some of the

J. Computer Sci., 4 (2): 151-160, 2008

 152

simultaneous authorizations accepted at a single point
of time are not being able to respond within the allowed
timeframe. These transactions failure are classified as
timed-out in the context of electronic financial services.
With old payment processing methods of the
conventional system, credit card transaction takes
longer time during authorization processing
 This study will look into the current issues on
credit card authorization process. It concludes that
multi-threaded authorization system with shared-
memory pool is needed in order to improve the
response time of the credit card authorization process
and to overcome the slow sequential authorization
processing problem of a single-threaded model for
current credit card authorization system. The prototype
of multi-threaded authorization system was developed
using .NET framework, then, the performance of the
multi-threading implementation is measured.
 There are various methods proposed in order to
improve the response time of authorization process of
credit card transaction. These include invention of Host
Security Module (HSM), implementation of distributed
authorization system, utilization of cardholder initiated
transactions device and deployment of digital network
access system device. The explanation of each approach
is elaborated in this section.
 HSM is the external device which is used to
securely generate and store long term secrets for use in
cryptography and physically protect the access to and
use of those secrets over time. These secrets include the
private keys used in symmetric keys protection and
public key cryptography[2]. HSM is implemented
because of the hardware implementation is the only
way that can achieve speeds beyond the reach of
general-purpose microprocessors. Therefore, HSM is
used as cryptographic accelerator to hasten the intense
of mathematical operation especially in public key
encryption and provide better performance than normal
software based cryptographic system[3]. The
functionalities of HSM includes verification of an on-
line Personal Identification Number (PIN) by
comparing with an encrypted PIN block, validation of
credit card transactions by checking card security codes
and performing host processing component of an
Europay MasterCard Visa (EMV) based transaction.
Besides, HSM also supports cryptographic operation in
smart card application during personalization and
performs PIN block translation that involves encryption
and decryption process. The only problem with HSM
apparently is there is no global standard in the low level
communication data exchange protocol due to the re-
engineering cost and market dominancy. Hence, there
are only common principles shared among HSM

software developers and the current available credit
card authorization systems have been tied up to specific
HSM type for the cryptography processing.
 In recent years, the introduction of HSM that
supports Ethernet device is gaining its popularity
because of its higher speed of the data transmission
during cryptographic processing. The simulation result
performed by students from one of the university in
Brazil proves that IP performance version provides a
better performance than other protocol solutions[4]. In
short, HSM provides industry leading performance in
which significantly reducing credit card transaction
processing time and lowering the cost per transaction.
 A patented method of distributed authorization
system has been proposed in last decade to accelerate
the authorization process. This system utilizes a host
computer communicating with a network of remote
electronic terminals from host computer. It includes
storing negative file data in the electronic terminal
containing information used to identify accounts for
which requested transactions are to be denied and
storing authorization file data in order to determine
authorization of a requested transaction.
 A distributed authorization system and process for
authorizing transactions utilizes a host computer
communicating with a network of electronic terminals
remote from the host computer. It includes storing
negative file data in the electronic terminal containing
information used to identify accounts for which
requested transactions are to be denied and storing
authorization file data in the electronic terminal
containing information used to determine whether to
authorize a requested transaction. Upon entry of a
transaction request, the data is checked against the
terminal negative file data and immediately denied if
the card account is contained in the terminal's negative
file. If the transaction is not denied, authorization logic
is performed in the electronic terminal resulting in
terminal output denying the request, authorizing the
request, or establishing an electronic connection from
the terminal to the host computer to obtain
authorization from the host computer. In establishing
this connection, account data is transmitted from the
host back to the remote electronic terminal resulting in
terminal output either denying the request or
authorizing the request. Also, during such connection,
the terminal's authorization file is updated with account
data, transmitted from the host computer to the
electronic terminal. The completed transaction is stored
in a terminal transaction queue file residing in the
terminal for subsequent transmission to the host
computer and for use with a transaction request is

J. Computer Sci., 4 (2): 151-160, 2008

 153

subsequently entered at the terminal for the same
account[9].
 However, the increasing number of terminals and
credit cards, it will increase the network traffic and it is
costly to maintain this information at the network level.
Moreover, card issuer has less control over the
authorization profile. This would result some
information is not updated instantly into the network
and may cause bad credit account. Besides that, there is
higher potential risk of fraudulent case that would cost
financial loss in the event of lost card.
 Then, card holder initiated transaction device have
been introduced. This approach allows end user
cardholders by means of their own card devices to
authenticate POS terminal devices in a way
substantially different from the existing EMV protocol.
The EMV protocol is often used for authenticating user
transmissions to Point-of-Sales (POS) terminal devices.
By contrast, the invention performs authentication of
the parties to a prospective transaction at the same time
that it also transfers the message data necessary to carry
out the authorization of the transaction through the POS
terminal device. If both of the authentications are
successful, the exchanged authentication data and
transactions data sent between devices would be used to
complete the transaction. Through this technique, the
authentication of the card and terminal would greatly
reduce the time required to perform the transaction[14].

 In this approach, three sets of messages namely
purchase request message, invoice message and
acknowledgement message in which each comprising a
series of data packets would be transmitted to effectuate
a financial transaction. This approach let the card
device initiates randomized challenge included in the
purchase request message to the terminal. Then, the
terminal returns an authentication reply included in the
invoice message. Next, cardholder apparatus validates
the terminal authentication reply and sends an
authenticated response to the financial transaction
terminal where it is yet again validated through real-
time online authorization. The response of the
authorization would be sent through acknowledgement
message to complete the transaction. This approach
claimed to reduce four times of the usual speed to
complete an electronic transaction which is averaging
15-30 sec.

ISSUES ON CURRENT CREDIT CARD
AUTHORIZATION PROCESS

 The common emphases of authorization process of
credit card transaction are performance and security.
The performance aspect concerns on the time to

authorize and complete a sales transaction whereas the
security aspect concerns on the fraud prevention and
confidentiality of financial information With increasing
number of account and transaction volume, these two
aspects remained to be major dilemma of the credit card
authorization process. Current researches in recent
years focus on the security area of the authorization
process of credit card. This is because the number of
fraudulent cases is growing dramatically and it becomes
serious problem faced by credit card issuers. In 2004,
credit card transactions had a total loss of 800 million
dollars of fraud in United States while in United
Kingdom, the loss due to the credit card fraud amounts
to 425 million pounds[5].
 Various fraud detection techniques have been
proposed to combat the fraudulent case such as using
smart cards and also implementing fraud detection
system using data mining techniques including neural
networks, logistic regression and decision tree.
However, increasing security aspect will bring
downside to performance when it is implemented using
more advanced technology[6]. This is the trade off of
authorization process when it is implemented using
advanced technique like smart card due to the higher
transmission bytes to server and longer processing time
to perform verification. According to one of the local
news published in Motor Traders, Managing Director of
ProJET Malaysia, Matthew Selbie has mentioned that
chip-based transaction will take a second or two longer
than usual magnetic stripe transaction to complete the
verification after deployment of the new devices to
accept chip-based transaction in the petrol stations[13].
Besides that, implementation of advanced risk analysis
techniques using the computer intellectual will also
contribute to the processing time which may result in
performance degradation.
 Apart from that, the size of the database to manage
the authentication data is also increasing enormously
with the usage of more advanced technology such as
smart card. Achievable performance levels off
relatively quickly when the datasets is increasing. As a
result, the verification performance decreases
monotonically and appears to saturate when database
size increases[7].
 According to Bank Negara Malaysia's (BNM)
Annual Report, the number of credit cards in circulation
in Malaysia reached a total of 6.6 million as at the end
of year 2004 with total transactions amounting to
RM34.9 billion. Also in recent years, there has been a
dramatic growth in credit card usage among college
students. It can be seen that the credit card usage is not
only restricted to elite groups but this phenomena
spreads among the graduates. Understanding how
consumer’s mental budgeting regarding usage

J. Computer Sci., 4 (2): 151-160, 2008

 154

influences purchase decisions is important for
marketers of financial services[8]. The credit card
authorization systems that most banks are using are
more than 15 years old, hard-coded, rigid and time
consuming to change. Furthermore, many of these
systems are at capacity and struggling to keep up with
the large increase in card payment volume. Many
systems lack of embedded business rules or workflow
engines, resulting in, among other things, inefficient
risk management operations. As a consequence, some
of the transaction is not be able to get chance to be
processed using conventional architecture design during
high simultaneous transaction flow.
 According to Tim Kelly, director of TSYS, the
transaction delays in the COBOL-based programs
running on mainframe has affected their business
tremendously when the transaction flowing is high. To
cater for this scenario, some of the banks have begun to
upgrade the existing card processor application to new
enhanced processing platform. For instance, one of the
largest banks in Germany, VÖB-ZVD Bank has
appointed Atos Origin to implement its new
authorization solution named Worldline Pay. With the
implementation of new solution, VÖB-ZVD Bank
hopes to achieve a high performance authorization
platform that can reliably handle all payment
transactions. Managing Director of the VÖB-ZVD
Bank, Gabriele Cremer-Wichelhaus has stated that new
requirements and the constantly increasing number of
transactions in card and internet-based payments
require precocious system adaptations which would
enable the bank to meet the demands of the market, the
clients and to handle the future number of transactions.

ANALYSIS ON CURRENT CREDIT CARD
AUTHORIZATION SYSTEM

 Many banks are using home-grown authorization
of credit card systems that are more than 15 years and
in need of functional and technical upgrades. Other
banks are using packaged applications that still need
upgrades as well. In either case, the card authorization
systems that most banks have in place are rigid, at
capacity in terms of account and transaction volume
and difficult to change in the face of changing
regulations and market conditions[10]. Currently, there
are a few big market players in providing authorization
system solution to the credit card companies. Most of
these authorization systems are parameter driven in
order to give flexibility to the authorization process and
meet the demand of the market[10]. However, there are
still rooms for improvement as mentioned in the latest
industry survey report on the payment solution to cater
for payment transaction volume.

 Analysis on the current authorization systems
solution in the market has been conducted whereby
most of the sources were obtained from the industry
research report produced by Gartner recently and the
information gathered as of June 2007. The findings of
this analysis show that, the current credit card
authorization system does not utilize the multi-
threading technique as part of their architecture design.
Most of the systems are using Oracle as their database
management system and none of current credit card
authorization system is using the shared memory pool
for authorization purpose. Apart from that, advanced
programming languages such as .NET for example are
not most commonly used in the current architecture of
credit card authorization system.
 In this case, performance is still remained an issue
that required improvement with the increasing number
of transactions and implementation of greater security
features. Moreover, there are many home-grown credit
card authorization systems still using old technologies
to perform authorization that could not support high
transaction flow. Therefore, multi-threading should be
deployed as one of the techniques to improve the
response time of credit card authorization process since
modern operating systems with advanced multi-core
processors have a good support of multi-threading
implementation.

MATERIALS AND METHODS

 The prototype of credit card authorization system
was developed using .NET programming language in
order to measure the performance of authorization
process when both techniques are applied. The
functionalities of the prototype authorization credit card
system is categorized into two main broad components
namely front engine component and back office
component.
 Front engine component is the authentication
engine of the credit card authorization system. This
component consists of four modules namely listener
module, worker thread module, authorization module
and shared memory module. Listener module contains
functionalities that include activate listener service,
activate worker thread-pool, activate child thread-pool,
activate shared memory pool and accept socket
connection. Worker thread module contains
functionalities that include handle socket connection,
parse authorization message, display authorization
message, update authorization message, build
authorization message, save authorization message,
update card balance, save card changes and close socket
connection. Authorization module contains

J. Computer Sci., 4 (2): 151-160, 2008

 155

functionalities related to card restriction validation and
online fraud validation. Card restriction validation
consists of check card existence, check card status,
check card activation status, check card expiration date,
check card usage and check card balance whereas
online fraud validation consists of check card security
code, check card identification number, check personal
identification number, check chip application
cryptogram. The functionalities of online fraud
validation are performed through child threads. Shared
memory module contains functionalities that include
activate synchronization service, search modified card
information and update card information.
 On the other hand, back office component stores
the authentication data used in authorization of credit
card system. This component consists of user
management and card management. The functionalities
related to the user management include display user
information, save user information and validate user
information whereas card management consists of
display card information, display card activity, display
card history, save card information, update card
information, search card information and save card
changes.

Architectural design: As shown in Fig. 1, the
architecture design of authorization of credit card
system consists of front engine and back office. These
two components will interact with the system database
to store and retrieve application related data. Apart
from the system main components, there are a few sub-
systems that have communication with the
authorization of credit card system include host security
module (HSM) server, point-of-sale (POS) server,
automated teller machine (ATM) server and electronic
commerce (E-Commerce) server.
 All these sub-systems will communicate with
authorization of credit card through TCP/IP protocol.
The message format that is used for communication
between authorization system and HSM server is
specific proprietary command whereas for the other
sub-systems, the message format that is used to
communicate with authorization system is ISO 8583.
ISO 8583 is the standard interchange message
specifications defined by International Organization for
Standardization (ISO) for electronic transactions made
by cardholders using payment cards.

How does multi-threaded architecture work: Multi-
threading technique is adopted into the architectural
design of authorization engine of credit card system.
Through this technique, multiple threads can be run
simultaneously within the single memory space of the

process and all the threads share the same system
resources during authorization process of credit card
transaction. In this project, thread-pool model is used to
handle the concurrent authorization requests from the
payment gateway and shared memory pool is
implemented in conjunction to multi-threading
technique to hasten the authorization processing.
Shared memory pool is implemented in this project to
reduce the time searching card information from system
database which involves expensive I/O operation as
compared to obtain the similar information through
shared memory pool stored in random access memory
using binary search. There are two thread-pools
implemented in the system namely worker thread-pool
and child thread-pool. When listener service is
activated, all the worker threads and child threads are
constructed and started in their related thread-pools
through listening thread. Besides that, all the card
information is also loaded to shared memory pool
before the authorization request could be serviced.
 The worker threads in the pool are combined with a
work queue. Each accepted client socket through
listening thread from payment gateway will be put in
the work queue. The work queue will signal waiting
worker threads each time a new authorization job
arrives to get the relative waiting threads to process the
authorization request immediately. Each authorization
job is mapped to a client connection. The assigned
worker thread gets a socket from the queue and serves
the request on that socket until connection is closed.
Once authorization job is accepted, the worker thread
will acquire mutex lock not only to synchronize the
access to the shared data area but also to accelerate the
processing in thread-pool environment. In avoid
starvation situation, timer has been set to release the
mutex after pre-defined period elapses.
 The worker thread assigned for each authorization
process of credit card transaction will begin to read raw
buffer message in ISO8583 format from the socket
connection accepted and proceed with message parsing
to obtain all the elements. Once the message is parsed,
the worker thread will perform card restriction
validation and online fraud validation based on the
element present in the message. The worker thread
begins to assign several child threads to perform
cryptographic operations in online fraud validation and
the number of child threads assigned for online fraud
validation is in accordance with the number of
cryptographic elements present in the credit card
transaction itself. Similar to worker threads, child
threads in the pool are also combined with a child
queue. Each assignment of child thread is put in the
child queue and the child queue will signal available

J. Computer Sci., 4 (2): 151-160, 2008

 156

Fig. 1: Overall System Architecture

waiting child threads each time the cryptographic task
is added. The assigned child thread will remove the
cryptographic task and proceed with its validation
through HSM. These cryptographic operations
encompass card security code validation, card
identification number validation, personal identification
number validation and chip application cryptogram
validation.
 Once all the child threads have been assigned for
these cryptographic operations, the worker thread itself

will perform operation pertaining to card restriction
validation. This operation is done in parallel with the
child threads handling the cryptographic processing.
The card restriction validation includes card existence
validation, card status validation, card activation status
validation, card expiration date validation, card usage
validation and card balance validation. All the
operations related to card restriction validation are done
through shared memory pool without accessing system
database.

J. Computer Sci., 4 (2): 151-160, 2008

 157

 Once the worker thread finishes its card
restriction’s operation, it waits for completion signal
from the child threads that perform online fraud
validation. Upon receiving all the completion signals
from the child threads, all the assigned child threads are
put back to child thread-pool for next assignment while
the worker thread will be working on providing final
response code to the cardholder on whether to approve
or decline the transaction based on the result of entire
validation. If there were any decline during validation,
the final response code will be based on the first
occurrence of the decline. Else, the transaction will be
approved and a unique authorization number is
randomly generated as part of the authorization
response message that will be used as reference. Next,
the assigned worker thread will proceed with building
authorization response message in ISO8583 format.
Once the response message is built, the worker thread
will write the message to the socket and this
authorization response will be sent back to the payment
gateway that originates the transaction.
After authorization response is sent, the assigned
worker thread will drop the socket connection and
proceed with internal processing. This internal
processing includes saving the authorization message
into authorizations table for record purpose and
performing balance updating for the particular card.
The balance adjustment will be updated in both shared
memory pool and system database. Next, the acquired
mutex is released and the pending timer set earlier is
cancelled before worker thread is put back to the
worker thread-pool for its next assignment.
 In this project, an additional synchronization thread
is started at the background of the authorization engine
to update any changed information of the card done
through back office component into the shared memory
pool. This is implemented to ensure the data kept in
shared memory is always synchronous with similar
information stored in the system database.
 In single-threaded credit card authorization system,
both card restriction validation and online fraud
validation have to be done one after another. Thus,
system resources are not fully optimised because the
waiting time of slow I/O operation especially during the
validation of cryptographic element is wasted. This not
only causes the authorization of credit card transaction
will take longer time to process but also it degrades the
performance of the server especially during the heavy
traffic during peak hours. In that case, cardholder might
encounter problem of getting authorization from the
system because of the slow response time from the
credit card authorization system.
 In this project, multi-threaded credit card
authorization system is used to accelerate the

authorization process. Multiple tasks of authorization
process could be executed concurrently through
multiple threads. If there were two or more
cryptographic operations to be performed during the
authorization process, the idle time of waiting I/O
operation could be reduced to at least half of total time
required in processing those operations sequentially.
Apart from time, thread-pool model is applied to
minimise system resources spent in creating and
destroying this type of recyclable threads.
 Besides that, response time could be further
reduced by loading all the cards information into
random access memory to let authorization system to
obtain information from the shared memory pool
through binary search instead of accessing similar data
from database for authorization processing. Through all
these methods, the response time of the credit card
authorization process could be significantly improved.

How does singleton design pattern operate: Through
singleton design pattern, a class is constructed with
only one instance that can be accessed globally within
the multi-threaded credit card authorization system. The
singleton design pattern is applied into the card object
which is acting as shared memory pool that holds all the
cards’ information for authorization purpose. When the
listener service is activated, listening thread will load
all the information of the cards into random access
memory through a configurable array. After an
authorization is received, a worker thread will obtain
the only instance of the cards object and perform binary
search through the related array of the cards object in
order to retrieve the information of the card related to
the transaction from the shared memory for
authorization purpose. In this project, a separate
synchronization thread is initialised in the background
of the authorization engine to browse the system
database for any modified card information required to
be updated into the shared memory pool. This is
implemented to ensure the data kept in the database is
synchronised with the data in the shared memory pool.
Once modified card information is loaded to shared
memory pool, the synchronization thread will update
the system database to mark the card has been
processed.
 Singleton design pattern is applied to ensure all the
workers threads can access to shared memory pool for
card information during authorization. Without
singleton design pattern, shared memory pool
implementation is not possible in object-oriented
environment. Through shared memory pool, the access
time is faster and hence, improving the response time of
a credit card authorization process.

J. Computer Sci., 4 (2): 151-160, 2008

 158

RESULTS AND DISCUSSION

 Timing testing has been used to evaluate the
response time of the authorization process under
different circumstances. The response time was
measured using the embedded testing tools that were
built in as part of both authorization systems and
payment gateway to obtain the time taken before and
after transaction was sent and received. The
measurement unit for response time was recorded in
seconds.
 In this research project, the response time was
evaluated in two major aspects. These aspects are
authorization system using multi-threaded
authentication engine against the authorization system
using single-threaded authentication engine and multi-
threaded authentication engine accessing shared
memory pool for authentication data against multi-
threaded authentication engine accessing system
database for authentication data. For both aspects,
incremental testing approach has been chosen as the
technique to obtain the result.
 On the comparison between multi-threaded
authentication engine and single-thread authentication
engine, incremental testing was performed to evaluate
the response time of a group of authorizations
performed sequentially. For this evaluation, there is no
simultaneous authorization performed. The next
authorization will be sent upon receiving response from
previous transaction. The number of worker threads and
child threads that were used in multi-threaded
authorization system is three and nine respectively. In
this testing, the result is recorded based on the best
response time taken in five attempts for each category.
This is done to minimise the impact of the context
switching between multiple threads running in the
system over the result obtained and to ensure the
accuracy of the testing performed. The results were
then plotted in the table and figure as shown in Table 1
and Fig. 2.
 Based on the test result as shown in Table 1 and
Fig. 2, it has been confirmed that the performance of
multi-threaded authentication engine is better than
single-threaded authentication engine in NET platform.
From the result, the performance of multi-threaded
authentication engine is almost double of single-
threaded authentication engine in both platforms.
 In the second aspect, the testing was carried out to
access the response time of a group of authorizations
performed one after another using multi-threaded
authentication engine accessing shared memory pool
for authentication data and multi-threaded
authentication engine accessing system database for

Table 1: Test result of multi-threaded and single-threaded
authentication engine

Number of Multi-threaded Single-threaded
sequential authentication authentication
authorizations engine (sec) engine (sec)
10 4.7 8.1
20 9.4 16.5
30 14.2 24.8
40 18.8 33.0
50 23.4 41.1
60 28.2 49.4
70 32.7 57.7
80 37.6 65.9
90 42.1 74.7
100 46.9 82.3

0
10
20
30
40
50
60
70
80
90

10 20 30 40 50 60 70 80 90 100
No. of sequential authorization

R
es

po
ns

e
tim

e
(s

ec
)

Multi-threaded authentication engine

Single-threaded authentication engine (sec)

Fig. 2: Test result of multi-threaded and single-

threaded authentication engine

authentication data. Similar to first aspect, the next
authorization will be sent upon receiving response from
previous transaction and there is no simultaneous
authorization performed. The number of worker threads
and child threads that were used in multi-threaded
authorization of credit card system is also similar,
which is three and nine respectively. The test result is
recorded based on the best response time taken in five
attempts for each category. This is done to minimise the
impact of the context switching between multiple
threads running in the system over the result obtained
and to ensure the accuracy of the testing performed.
The results were then plotted in the table and figure as
shown in Table 2 and Fig. 3 below.
 Based on the test result as shown in Table 2 and
Fig. 3, the performance of multi-threaded authentication
engine using shared memory for authentication data is
better than multi-threaded authentication engine using
database for authentication data in .NET platform. The
difference is insignificant at the earlier stage, but it is
getting more significant when the number of
authorizations is increasing. From the test result, the
number of credit card authorization that can be
processed using shared memory is ten percent more
than the number of credit card authorization that can be
processed using database at single point of time.

J. Computer Sci., 4 (2): 151-160, 2008

 159

Table 2: Test result of authentication engine using shared memory
and database

Number of Authentication Authentication
sequential data via shared data via
authorizations memory (sec) database (sec)
10 4.1 4.4
20 8.1 8.9
30 12.1 13.4
40 16.4 17.7
50 20.3 22.0
60 24.5 26.7
70 28.7 31.4
80 32.8 36.2
90 36.9 41.0
100 40.5 45.9

0

10

20

30

40

50

10 20 30 40 50 60 70 80 90 100
No. of sequential authorization

R
es

po
ns

e
tim

e
(s

ec
)

Authentication data via shared memory

Authentication data via database

Fig. 3: Test result of multi-threaded and single-

threaded authentication engine

CONCLUSION

 This research provides a solution to optimize the
performance of credit card authorization system
through multi-threading technique in .NET platform.
Through this technique, it enables authorization of
credit card transaction to be processed in shorter time.
From business point of view, fast and reliable
authorization process will generate more revenue to the
organization whereas from customer point of view,
authorization process on time builds confidence of the
cardholder to use the credit card as payment method. In
short, this project provides win-win situation to both
organization and community as both parties will get the
benefits of implementation from multi-threaded
authorization of credit card system.
 Besides that, multi-threaded authorization of credit
card system implemented in this project enables several
tasks related to card’s risk management profile
validation being executed concurrently during
authorization process. This will not only provide better
response time to the authorization process but also it
enables more credit card transaction can be processed in
multi-threaded authorization system at shorter time.

 Shared memory pool is also used in conjunction
with the multi-threading technique. Since multiple
threads are running in a single process space, shared
memory pool is implemented to keep all the card
information that will be used for credit card
authorization process in the random access memory
area. This is implemented to allow authorization
process to access shared memory pool for card
information which is faster compared to accessing this
similar information from system database because it
involves less expensive I/O operation. For this reason,
synchronization thread is introduced to maintain the
information in shared memory pool so that any update
in the system database will reflect the shared memory
pool. Through shared memory implementation,
response time of the authorization process is further
improved again.
 Besides that, the multi-threaded architectural
design presented in this project supports dynamic
tuning of the size of the thread-pool running at runtime.
The number of fixed worker threads and child threads
can be adjusted to ensure the utilization of the multiple
threads to its optimal level. This is implemented to
ensure the capacity of the thread-pool matches the
necessities of the application based on the estimated
volume and velocity of the credit card transaction
processed in specified period.
 Apart from that, user is enabled to monitor
authorization traffic through the screen and navigate to
the back office component to view the transaction
details by clicking the specific record on the screen.
Web-based back office component is developed in this
project so that user can access the card information
from other location as long as the internet connection is
provided. Another unique feature implemented in this
project is any changes made to the card are recorded for
audit purpose. Both multi-threaded credit card
authorization systems implemented in this project can
accept multiple connections from payment system at
single port number. This is implemented to allow more
simultaneous authorizations to be received through
these multiple links for load balancing usage in future.

ACKNOWLEDGEMENT

 First and foremost we would like to express our
gratitude to almighty that gave us the possibility to
complete the research work successfully. Secondly, we
would like to forward our deepest thank to my
colleagues, lecturers and technical staffs from the
Department of Software Engineering for their endless
assistance, technical advice and co-operation.

J. Computer Sci., 4 (2): 151-160, 2008

 160

REFERENCES

1. Leung, W.K., and Lai K.K, 2001. Improving The

Quality of The Credit Card Authorization Process-
A Quantitative Approach. Source: International
Journal of Service Industry Management. 12(4),
328-341.
doi:10.1108/EUM0000000005679
http://www.ingentaconnect.com/content/mcb/085/2
001/00000012/00000004/art00002

2. Chodowiec, P., and Gaj, K. 2003. Very compact
FPGA Implementation of The AES Algorithm. In:
Lecture Notes in Computer Science. (eds Springer
Berlin / Heidelberg), vol. 2779, pp: 319-333.
doi:10.1007/b13240
http://cpe02.gmu.edu/rcm/publications/CHES_200
3_AES.pdf

3. Eslami, Y., Sheikholeslami, A., Gulak, P.G.,
Masui, S., and Mukaida, K., 2006. An Area-
Efficient Universal Cryptography Processor For
Smart Cards. Source: Very Large Scale Integration
(VLSI) systems. IEEE Transaction On, 14 (1), 43-56.

 doi: 10.1109/TVLSI.2005.863188
http://ieeexplore.ieee.org/Xplore/login.jsp?url=/iel5
/92/33693/01603567.pdf?temp=x

4. Panato, A., Barcelos, M., and Reis, R., 2002. An IP
of an Advanced Encryption Standard For Altera
Devices. Source: The 15th Symposium on
Integrated Circuits and Systems Design,
pp: 197-202
doi: 10.1109/SBCCI.2002.1137658
http://ieeexplore.ieee.org/Xplore/login.jsp?url=/iel5
/8229/25383/01137658.pdf?arnumber=1137658

5. Shen, A., Tong, R., and Deng, Y., 2007.
Application of Classification Models on Credit
Card Fraud Detection. Source: Service System and
Service Management, 2007 International
Conference, pp: 1-4.
doi: 10.1109/ICSSSM.2007.4280163
http://ieeexplore.ieee.org/Xplore/login.jsp?url=/iel5
/4280076/4280077/04280163.pdf?tp=&isnumber=
&arnumber=4280163

6. Hwang, D.D., and Verbauwhede, I., 2004. Design
of Portable Biometric Authenticators Energy,
Performance and Security Tradeoffs. Source:
IEEE Transaction on Consumer Electronics,
50(4): 1222-1231.
doi: 10.1109/TCE.2004.1362523
http://ieeexplore.ieee.org/Xplore/login.jsp?url=/iel5
/30/29849/01362523.pdf?arnumber=1362523

7. Bourlai, T., Kittler, J., and Messer, K., 2006.
Database Size Effects on Performance on A Smart
Card Face Verification System. Source:
Proceedings of the 7th International Conference on
Automatic Face and Gesture Recognition FGR '06,
pp: 61-66.
doi: 10.1109/FGR.2006.36
http://portal.acm.org/citation.cfm?id=1126250.112
6272&coll=GUIDE&dl=GUIDE

8. Yang, S., Markoczy, L., and Qi, M., 2007.
Unrealistic Optimism in Consumer Credit Card
Adoption. Source: Journal of Economic
Phychology. 28(2), 170-185.
doi: 10.1016/j.joep.2006.05.006
http://cat.inist.fr/?aModele=afficheN&cpsidt=
18631617

9. Jewell, T.L., 1990. Distributed Authorization
System. Source: Free Patent Online.
http://www.freepatentsonline.com/4891503.ht ml

10. Moyer, K.R. and De Lotto, R.J., 2007.
MarketScope for Multiregional Card Management
Software. Source: Gartner Industry Research
http://www.gartner.com/DisplayDocument?id=508
317&ref=g_sitelink

11. Russell, D., 2005. Method and System for
Accelerating Financial Transactions. Source: Free
Patent Online.
http://www.freepatentsonline.com/y2005/0203856
.html

12. Visa, 2001. Inc. Visa Integrated Circuit Card
Specification. Visa Public, Singapore.
www.scardsoft.com/documents/VISA/ICC_Card.pdf

13. Yap, C., 2005. All ProJET Stations Accept Chip-
Based Cards. Motor Trader.
http://www.motortrader.com.my/NUS/articles/0/art
icle_157/page_m.asp

