
Journal of Computer Science 4 (3): 256-271, 2008
ISSN 1549-3636
© 2008 Science Publications

Corresponding Author: Rama Sushil, (SGRRITS) and R/S IIT Roorkee India
256

Design, Validation, Simulation and Parametric Evaluation of a Novel Protocol for

Locating Mobile Agents in Multiregion Environment

1Rama Sushil, 2Kumkum Garg and 3Rama Bhargava

1(SGRRITS, Dehradun) and R/S IIT Roorkee India
2 Department of Electronics and Computer Engineering, IIT Roorkee India

3Deptartment of Mathematics, IIT Roorkee India

Abstract: Mobile agents are processes that can be dispatched from source computer and be transported
to remote servers for execution, have been widely argued to be an important enabling technology for
future systems. Location management is a necessity for locating mobile agents in a network of mobile
agent hosts for controlling, monitoring and communication during processing and it still represents an
open research issue. The cost of location management strategies mainly depends on the cost of search
and update. We concentrated on reducing the cost of update and improving the speed of processing of
the agents. We proposed a location management technique applicable for multi-region environment in
which mobile agent did not update its location at every migration. The technique named as
Broadcasting with Search by Path Chase (BSPC). We used the tool time Petri net analyzer TINA to
model, analyze and to simulate BSPC. We found that the BSPC behaves as expected and free from any
deadlock. We measured the efficiency of BSPC and compared with some existing location
management techniques by parametric evaluation. BSPC provided better scalability, location updating
availability and interaction fault rate with theoretical considerations of network usage and network
fault rate. It gave its best performance for applications of low CMR and having high migration rate of
mobile agents within birth region.

Key words: Birth region, location finding protocol, location update and search cost, location

management technique, mobile agents, mobile host, model analysis, petri net

INTRODUCTION

 Mobile agents are software agents that can
physically travel across a network to perform tasks on
behalf of the user, under their own control as per their
itinerary or deciding their movements dynamically
according to execution results[18,34]. Mobile agents are
one form of mobile code[16,37] that execute on machines
that provide agent hosting. Mobile agent technology is
making significant impact on almost all aspects of the
computing discipline. It is being promoted as an
emerging technology that makes it much easier to
design, implement and maintain distributed systems and
is an alternative to the client server model[8,18]. There
are many applications of mobile agents, including
network management, e-commerce, distributed
information retrieval, software distribution and load
balancing. Mobile agent research has evolved with the
creation of many different agent platforms of similar
characteristics and built by research groups spread all
over the world, for optimization and better
understanding of specific agent issues. A mobile agent

platform is a software that can create, interpret, execute,
clone, transfer and terminate mobile agents e.g.
Grasshopper[19], Aglets[2], ARCA[10], PMADE[32] etc. A
mobile agent host is a node in the network which has a
mobile agent platform installed in it.
 A mobile agent location management strategy is
required by an agent owner to control the agent for
many reasons like to stop processing being done by the
mobile agent, to give some more task to the agent, to
know the intermediary results of the processing being
done by the agent, to change its itinerary and for agent-
agent communication and cooperation[1,7,9,14,21,31].
Therefore, the ability to locate mobile agents while they
are migrating from one node of a network to another is
of great importance in the development of agent-based
applications which is a part of the location management
strategy. A major issue with location management is the
high cost associated with location updates and
search[6,13,25,28,33,38]. The goal of an efficient location
management strategy should be to minimize the
combined cost of the location search and update. This
cost is characterized by the time taken for each

J. Computer Sci., 4 (3): 256-271, 2008

 257

operation, number of messages sent, size of messages,
or the distance the messages need to travel. Some
problems, which exist in location management
protocols, are unnecessary communication overhead,
location data base server bottlenecks, high location
update and search cost.
 We concentrated on location update schemes used
in existing location management strategies. We propose
a location management technique named BSPC
(broadcasting with search-by-path-chase) which uses
the general concepts of distributed systems[15,17,24,29] and
is based on search-by-path-chase (SPC)[12]. In BSPC,
We propose a location update scheme which costs less
for applications having a low frequency of queries for
contacting mobile agents i.e., for low call to mobility
ratio (CMR). We model the BSPC using TIme PetriNet
Analyzer (TINA)[39], perform the reachability analysis,
structured analysis and simulated for total seven
queries, some are in processing and some waiting to
process as an initial marking of the net.
 Some previous studies have been made on the
location management and message delivery protocols in
a mobile agent computing environment: DL, PP,
Blackboard, Shadow, SPC, HB, optimal location update
scheme, MBLM, Scalable Hash-Based Mobile Agent
Location Mechanism, Mailbox-based scheme for
mobile agent communications. In Database logging
protocol (DL)[1,12] location information of mobile
agents is stored at a specific server called location
database server, upon every migration. The location
information is used to find the mobile agents. As the
location information is stored in centralized way,
location server can represent a bottleneck in several
conditions when number of mobile agents grows,
mobile agents migrate frequently. If mobile agent
moves far away from a specific server, the cost of
location update comes to be relatively high. Moreover,
if the location information in specific server is not latest
means at the contact time if a mobile agent already left
before catching the agent a following problem arises.
 In path proxy protocol (PP)[1,12] a mobile agent
leaves a forwarding proxy at the source node at every
migration. Mobile agent is located by following chain
of proxies. No location update procedure is used. If
path proxies are long and even one of the path proxies
fails, mobile agent cannot be located. The shadow
protocol[7,20] is a combination of DL protocol and PP
protocol. It provides functionality for locating agents,
termination and for orphan detection. A mobile agent
updates current location to an associated shadow
according to TTL (time to live), which is a particular
fix time interval. After the TTL a mobile agent updates
its current location to its shadow instead of updating at

every hop and by this method path proxies get cut short.
In the shadow concept, each application creates one or
more dependency objects called shadows, a data
structure on a place. An agent is an orphan when the
shadow no longer exists.
 In an optimal location update and searching
algorithm for tracking mobile agent, mobile agent
updates its location after it migrates through continuous
d hosts since its last update. There is an optimal
threshold d that makes the total cost of search and
update minimized. If d assigned dynamically, it is
called dynamic location update scheme[25,40].
Blackboard protocol[41] maintains the blackboard at
each node which is a shared information space for
message exchange. When any mobile agent wants to
deliver a message, it puts the message in the blackboard
no matter where receiving mobile agents are or when
they read it. Afterword the receiving mobile agents
move to the corresponding node where a message is
stored and get the message. In this protocol, every node
has storage where messages are deposited. In order to
receive a message, mobile agents must move to the
corresponding node, which makes unnecessary
communication overhead occur. Because of not regular
migration pattern message is not delivered immediately.
 The SPC protocol[12] is a combination of DL
protocol and PP protocol, applied to a multi-region
mobile agent computing environment. Location
information is stored in a distributed way at a Region
Agent Register (RAR) or a Site Agent Register (SAR).
Agent is achieved by following a part of the links that
the agent has left on two registers. Number of location
update operations are reduced in SPC protocol by
applying an optimal location update and searching
algorithm for tracking mobile agent[25] on SPC. The
modified protocol is named as MBLM (Movement
Based Location Management)[28,32]. This protocol is
implemented on PMADE[32] and found to have lesser
cost of location update than SPC protocol.
 Scalable Hash-Based Mobile Agent Location
Mechanism[27] have special agents called information
agents (IAgents). IAgents are responsible for
maintaining the current location of a set of agents. Set
of mobile agents associated with each IAgents is
determined through the hash function. This association
changes over time as new IAgents are created or
existing IAgents are merged depending on the system
workload.
 A Home Blackboard (HB) protocol[36], location
management and message delivery protocol,
concentrated more for confirmed message delivery. A
HB protocol is a hybrid of a DL protocol and a
Blackboard protocol[41] in order to complement each

J. Computer Sci., 4 (3): 256-271, 2008

 258

other and overcome. Mailbox-based scheme[11] assigns
each agent a mailbox to buffer messages, but decouples
the agent and mailbox to let them reside at different
hosts and migrate separately.

LOCATION MANAGEMENT WITH BSPC

 The protocol function is based on an efficient
algorithm, which follows a part of the links left by the
agents on the registers of the visited sites or regions and
this protocol uses broadcasting to search an agent if
mobile agent is in its birth region.

MATERIAL AND METHODS

 Location finding requires the presence of a suitable
repository of the current locations of all the agents of
the entire distributed system. Let us refer to a Name and
Location Base-NLB-collecting the tuples (m, α, λ) with
m the name of the agent α which is currently placed at
location λ. No hypothesis is made about the structure of
m, α and λ, which merely represent identifiers for the
relative objects regardless of their real structure, or on
the nature of the NLB (e.g., whether it is centralized or
distributed, or where it is really located). Any location
protocol for mobile agents deals with three aspects:
name binding, migration and location, each related to a
particular phase in the agent’s life. On NLB, we define
four operations:

• Bind (m, α, λ): performed when a name m is

assigned to mobile agent α, which is currently
placed at location λ. This operation causes the
insertion of the new tuple m, α, λ in the NLB. As
the agent name has to be unique, this operation
fails if a tuple with the name field equal to m
already exists in the database

• Newloc (m, α, λ´): performed when agent α
changes its location, by migrating to λ´. This
operation changes the tuple (m, α, λ) already
present in the NLB, into the new tuple (m, α, λ´)

• Find m→(m, α, λ´): performed when agent α has
to be located in order to interact with it. Given
agent name m, this operation returns the relevant
tuple if present in the NLB, thus determining the
bound agent α and its current location λ

• Unbind (m): performed when name m is no longer
used (e.g., the agent is disposed of). This operation
causes the deletion of the relative tuple from the
NLB
 Solving the locating problem for mobile agents
implies finding a suitable way to implement the
NLB and the four operations previously defined.

This is not simple, as several aspects have to be
taken into account which may affect the
performance of the whole multiagent system. Any
solution has to deal with the traditional issues in
distributed systems computing, meeting the
reliability, efficiency and scalability requirements.
These aspects are tied to the real architecture of the
NLB: As a centralized solution in a wide
distributed environment is not reliable, efficient, or
scalable, a distributed approach opens the question
on how and where to distribute the information
effectively. This affects the choice of the protocols
used for executing the four primitives, which, if not
suitably designed, can degrade the performance of
the multiagent application. In this sense, the most
critical operations are newloc and find, as they are
used very frequently during the mobile agent’s life.
An inefficient or unreliable newloc may
significantly affect the performances of the agent
migration process and the same applies to the find
primitive as concerns the interaction with a given
agent. In addition, it is worth noting that the
finding process does not end when the agent
location is found, but when the given agent is
really reached in that location. It may be the case
that, once the current location of an agent is found,
the latter has left the site, thus requiring repetition
of the entire process (location finding + agent
catching) until the agent is reached. Thus, when the
agent is rapidly moving, several retries may be
required, making interaction with the agent
burdensome.

System design for BSPC: Computing environment is
considered as the collection of regions. A region is a
collection of mobile agent hosts (Fig. 1). Different hosts
can spawn different mobile agents, so a particular
mobile agent is spawned by a particular host which
belongs to a particular region; this region is called the
birth-region of this particular mobile agent.

Fig. 1: Multi-region environment

J. Computer Sci., 4 (3): 256-271, 2008

 259

Region Agent Tracker (RAT)

Home Node with SALR

Node with SALR

Location update

Migration path Registration at SALR

 Proxy

Agent m

Agent q

Note: Site agent location register is maintained at each site
for all agents spawned at or transited through

Query/message

Broadcasting/ reply

Fig. 2: BSPC function scenario

Fig. 3: Time petrinet model for interregional migration

for BSPC in TINA

In each region there exists a site acting as a Region
Agent Tracker (RAT), which manages a database called
Region Agent Location Register (RALR). RALR stores
the information about all the agents that have been
created in the region or have transited through it. On
each site there is a Site Agent Location Register
(SALR), which contains information about all the
agents that have transited through (in the past) or are at
that location (Fig. 3).
 Mobile agent migrations can be intraregional or
interregional. In case of intraregional migration when
region is not the birth region, the relevant entries are
updated in both SALR and RALR of the source region.
Before starting all the updating operations, an exclusive

lock is placed on the entry of the SALR relevant to
particular mobile agent and is released when update
operation is finished (or an error occurs). It ensures the
exclusive access to SALR and resolves several
inconsistencies which may happen in case of
concurrency between migration and interaction. SALR
locks allow concurrent interaction and migration
processes to be serialized, thus avoiding the agent’s
status inconsistencies.
 In case of the interregional migration, the protocol
updates SALR of the source region, RALR of the birth
region and RALR of the source region if the source
region is not the birth region and the RALR of the
destination region and finally updating the SALR of the
destination region. When the source region is different
from the birth region the birth region RALR is updated
in a background (concurrent) process. With the
hypothesis, that exclusive lock on each entry of the
register, we can assert that, for each location reached λ
at time tl by an agent named m, querying SALRλ i.e.,
site agent location register of location λ (at time tq (with
tq ≥ tl) will return a tuple containing either the agent (if
it has not yet changed location) or the name of the
location (or of the region) reached by the agent at its
next migration (after tl). exclusive lock is used not only
to control the concurrent access to an entry of the
SALR, but also to prevent inconsistencies which may
happen during concurrent interaction and migration
processes. A similar assertion can be made for RALR,
with respect to each region traversed by the agent.

J. Computer Sci., 4 (3): 256-271, 2008

 260

 This means that, at time tq, starting from any site
or region visited by the agent before tq, following the
links left in the registers implies reaching a subset of
the locations and regions of the itinerary followed by
the agent before tq, until the agent itself is caught.
Given this, since locating an agent could require
following a long path before reaching the agent, the
updating operations performed during the migration
phase are designed in order to shorten this path, thus
increasing interaction efficiency and reducing the
overhead. Locating an agent follows the following
steps: First, the name of the agent’s region of birth is
extracted from the name, m and then the relative RAT
is contacted; the latter’s register will contain an
indication of the location the agent could be on or the
name of its current region- if it is different from that of
birth. In the latter case, the RAT of the new region is
contacted and the search is repeated.
 In the former case, the SALR of the location is
queried: If the resulting tuple contains a value for α
then the agent is found otherwise, the location
information λ is used to restart the search. In particular,
if λ refers to a GLI, the relevant SALR is contacted,
while, if λ refers to a region, the relevant RALR is
contacted. It is up to the binding and migration phase to
maintain consistency of location information in the
registers in such a way as to always allow agent finding
(unless a system or network crash occurs). During
location finding, each time a SALR is queried for an
agent named m, an exclusive lock is set on the relevant
tuple and is reset only if the agent does not reside in
that place (i.e., the α field of the tuple is nil), otherwise
the lock is maintained.
 Maintaining SALR locked allows the execution of
the overall location finding and interaction procedure as
an atomic activity, thus preventing an agent that has just
been located from migrating until the interaction has
taken place (otherwise the agent might not be found
and another location re-attempt will be necessary).
Even if an interaction takes place immediately after a
location phase, the proposed solution could increase the
execution time of the destination agent; an alternative
could be to forward the message to chase the migrating
agent. However, to privilege agent collaboration with
respect to autonomy, the first solution has to be
preferred since a message can strongly influence the
behavior of the destination agent (for example, it can
influence the choice of the next site in the itinerary).

BSPC protocol: Broadcasting with Search-by-Path-
Chase protocol (BSPC) functions are given below in
algorithmic form.

• Agent q makes a request to the location
management protocol (l. m. p.) to locate agent m.
Location management protocol is available with
each host as part of the mobile agent system or as a
separate location management module. The l. m. p.
extracts the birth region of the agent to be located
from its name

• The birth region’s RAT (Region Agent Tracker) is
contacted. As per location information, the
following steps take place
• If this region is the birth region, RAT

broadcasts a query to all its member hosts
(MH). The host on which agent m is residing
returns the ‘agent found’ message and locks m
for migration, else

• The related RAT is contacted and the birth
region RAT uses this information to start
locating m in that region

• RAT returns the location information to the
requesting host’s l. m. p. which then returns the
location of m to agent q

• Agent q communicates with agent m and informs
agent m’s birth region RAT when completed

• RAT unlocks agent m, making it free to move

 Complete scenario of the BSPC protocol is shown
in Fig. 2, as the agent migrates out of its birth region or
roams within it. Table 1 explains the meaning of the
contents of the Region Agent Location Register and the
Site Agent Location Register.

Location update operations: Performance and
reliability of the BSPC protocol strongly depends on the
register update operations made during migration and
binding operation. To avoid the burden of agent
migration, the protocol aims to minimize interregional
messages with respect to intraregional ones. With the
assumption that the connections between sites in the
same region are faster and more reliable than
connections between different regions BSPC can have
les overhead and improved efficiency. Commonly in
WANs like Internet: Sites belonging to the same
subnetwork6 are often connected by LANs (10-100 Mb
sec−1), while connections between sub networks are
point-to-point links working at a lower speed (64 Kb
s−1-2 Mb s−1).
 The binding phase occurs when agent α is
spawned, there is registration of the agent’s name m
and the birth location λm of α in RALRm:region (m.region
is the region of birth). This is handled by a two-step
protocol performed by the platform executing at
location λs. First, RALRm:region is contacted and, here,

J. Computer Sci., 4 (3): 256-271, 2008

 261

Table 1: RALR/SALR tuple meaning
Ralr Tuple Meaning SALR Tuple Meaning
(m, GLI) The agent is at location GLI or has traveled through it (m, nil, GLI) The agent is at location GLI or has through it.
(m, GLI.region) The agent is at region GLI or has traveled through it (m, nil ,GLI.region) The agent is at region GLI.region
 (m, α, nil) The agent is in the same location as the SAR

the tuple (m, λs) is registered. Then, the tuple (m, α,
nil) is stored in SALRλs. Before starting all the updating
operations, an exclusive lock is placed on the entry of
the SALR relevant to m and is released when
registration is finished (or an error occurs).
 The migration phase involves updating the location
information of the migrating agent. Given λs and λd, the
source and destination location, the sequence of
operations can be split into two steps, performed in λs
and λd respectively, before and after agent transfer.
These steps vary according to whether λs and λd belong
to the same region or not. In the case of intraregional
migration λd.region= λd.region and it is the birth region then
the aim is to not to update the entries relevant to the
migrating agent in both SALRλs and RALRd.region. But
the RALR of the birth region is updated only when the
agent is crossing the region.
 If λs and λd belong to two different regions
(interregional migration), the migration protocol has to
update SALRλd, RALRm:region. (if λd.region ≠ m.region),
by writing λd.region as location information; it also
updates by writing RALRλd..region as location
information and, finally, SALRλs registering the
presence of the agent.
 This allows the location finding protocol, which
starts from the region of birth of the agent, to reach the
current region of the agent and, finally the current
location. At location λs first the entry of the SALR is
locked, then, after agent transfer, the tuple (m, nil,
λd.region) is stored on the SALR, then the tuple(m,
λd..region) is stored on RALRλd..region and, finally the lock
is released. At the destination location λd when the
agent transfer begins, a lock is placed on the entry of
the SALR and the RALRλd..region is updated with λd as
location information. When migration ends, first
SALRλd is updated by storing the tuple (m,α,nil) then
the lock in the SALR is released and, finally the agent
execution is resumed. At this time, if λd.region ≠
m.region, a background (concurrent) process is started
in λd that aims to remotely update RALR m.region by
writing a tuple with λd.region as location information.
 In the described protocol, SALR locks play a
fundamental role: They not only ensure exclusive
access to SALR, but above all they help to resolve
several inconsistencies which may happen in the case of
concurrency between migration and interactions.

 In fact, if an interaction request arrives when the
agent is migrating; the latter is neither at location λs nor
at location λd but on the net, thus it cannot be contacted
anyway. A simple solution adopted by some existing
frameworks entails the generation of an error condition,
forcing the interacting agent to retry in the future. In the
author’s opinion, a better solution is to wait for
migration completion and then contact the agent at the
destination location. In our protocol, this is
automatically performed exploiting SALR locks.
 In addition, it is worthwhile to remember that in
many object-based mobile agent frameworks (such as
Arca, Voyager, Mole, etc.,) the interaction between
agents is performed through a kind of remote method
invocation. Often this means that, from the point of
view of the receiving agent, the invoked method is
executed concurrently with the main activity of the
agent, i.e., the main activity and the method invocation
execute as different threads. As both of these threads
can access the attributes of the same object-agent, the
migration of status and code and method invocation
operations on the same agent must be mutually
exclusive otherwise, an interaction performed at source
location, which updates an attribute already transferred
to the destination location, will cause the loss of the
updated information.
 A similar situation may happen during interaction,
which causes attribute modification, the main agent’s
threads start a migration process. Using SALR locks
allows concurrent interaction and migration processes
to be serialized thus avoid agent’s status
inconsistencies.

Example: To illustrate how the Broadcast-Search-by-
Path-Chase protocol works, let us consider a distributed
environment with three regions, named abc.it, klm.org
and pqr.com. Also, let us suppose a mobile agent,
spawned in the site www.abc.it and named
agent:roamer@abc.it that has to accomplish the
following itinerary: sun03→abc.it →www.klm.org
→eye.pqr.com→www.pqr.com. Now, let us introduce
the following notation:

• RALRRegionName = (AgentName, Location) is the

entry in the RALR of the region RegionName
relative to the agent AgentName. If the location
represents a region, the name is prefixed with @

J. Computer Sci., 4 (3): 256-271, 2008

 262

• SALRSiteName= (AgentName, α, Location) is the
tuple in the SALR of the site SiteName relative to
the agent α whose name is AgentName.

 During the mobile agent lifetime, the registers of
the regions and sites involved are updated according to
the agent’s itinerary. Let us suppose we want to locate
the agent. Starting from its name agent:roamer@abc.it,
the birth region is extracted (abc.it) and the relative
ANS is contacted. The latter will return @pqr.com as
the location information; this means that the agent
could be found in region wipro.com. The ANS of the
latter region is then contacted, which returns
www.pqr.com as location information. Finally, by
contacting the host www.pqr.com, the agent can be
sought.

MODELING BSPC USING TINA

 A PetriNet is a mathematical formalism intended to
be used for modeling, analysis and simulation of
different kinds of distributed and parallel systems and
processes[3,22,23,26,30]. In PetriNets, there are places and
transitions, places are denoted by circles and are used to
indicate system states like processing, accessing or
waiting etc., transitions are denoted by directional
edges and show the change of states after an event.
Inhibition arcs are used for modeling error conditions in
PetriNets. An inhibitor arc from a place to a transition
disables the transition if the corresponding input place
is not empty. In our petrinet model we used the
inhibitor arc for locking function, when particular agent
Am is updating its location in the register that register
should not be accessible for retrieving the location of
Am means register should be locked during that period
of location update operation. Places are allowed to
contain several tokens. A token in a TPN may be in one
of the two following states: available or unavailable.
Initially each place p contains tokens available. A
transition t may fire when, 1. There is at least one token
in each of its input places, 2. There is no token in any of
its inhibiting places, 3. Its enabling function evaluates
to true and 4. No other transition u with priority over t
and satisfying 1, 2 and 3 exists. This removes the token
from the input place and put the token in the output
place. A token remains unavailable in input place
during the transition occurs.
 The most important features of PetriNets are their
graphical representation of modules and their precise
mathematical foundation, which are the main reasons
for the large number of analysis techniques developed
for PetriNets. The main objective of PetriNet modeling
is to check the formal properties of a proposed protocol

or solution, particularly its liveness, to avoid potential
deadlocks and possible conflict activities. PetriNets
allow a clear description of the concurrency, conflicts
and synchronization of parallel processes. Thus they
present a simple, yet elegant formalism for modeling
parallel processes.
 The Timed Petrinet (TPN) is an extension of the
ordinary Petrinet in which a transition fires after a
predefined interval, once it is enabled. It can be used for
the modeling, functional analysis and correctness
evaluation of time dependent protocols. In another
version of the Timed PetriNet, which we have used,
two time values a and b are given for a transition. The
actual firing is instantaneous but this must not happen
before time a or after time b from the instant of
enabling. We consider only the time an agent takes to
complete a task. The number of states in the PetriNet
does not play any significant role in the theoretical
analysis of the model.
 TIme petriNet Analyser software tool TINA[5,39]
proposes the construction of a number of
representations for the behaviour of Time Petri nets, in
addition to the graphic-editing facilities. Various
techniques are used to extract views of the behavior of
nets, preserving certain classes of properties of their
state spaces. For Petri nets, these abstractions help
prevent combinatorial explosion, relying on partial
order techniques such as covering steps and/or
persistent sets. For Time Petri nets, which have, in
general, infinite state spaces, they provide a finite
symbolic representation of their behavior in terms of
state classes. For BSPC we have performed the
reachability analysis for finding the deadlock and
liveness in BSPC models, for two different sub-
functions. Analysis is needed to check whether the
resulting system is free of logical errors. Many process
designs suffer from deadlocks and live locks that could
have been detected and avoided using verification
techniques. Validation is needed to check whether the
system actually behaves as expected. Validation is
context dependent while verification is not. A system
that deadlocks is not correct in any situation. So
verifying whether a system exhibits deadlock is context
independent. Validation is context dependent and can
be done only with knowledge of the intended process.
 Eventuality of protocol operation and hence its
liveness properties can be easily specified using Timed
Petrinets because of the restrictions that enabled
transitions must fire as soon as the enabled input places
have available tokens. This is not possible to do using
Finite State Machines (FSM) or ordinary Petrinets.
Enumeration Analysis[4] consists of the construction of
an accessibility graph from the initial marking M0. The

J. Computer Sci., 4 (3): 256-271, 2008

 263

graph is obtained by firing one by one all the possible
transitions starting from the initial marking until no new
transition could be fired. Each node of the graph
corresponds to a marking of the system, each arch to
the transition which allowed generating the new
marking. This is the most common method used for the
verification of properties in Petri Nets.
 For Colored and Predicate-Action Petri Nets, the
principle used to construct the accessibility graph is the
same, only the fire rules change. Some techniques of
reduction and projection can be used during the
enumeration analysis to reduce the size and the
complexity of the graph. The reduction and projection
techniques allow obtaining simplified views of the
system. The reduction technique allows reducing the
graph before the accessibility graph is built. The
projection allows one to reduce the accessibility graph
in order to obtain an equivalent abstract view. It is up to
the person analyzing the system to specify the adequate
equivalence relation as well as the transitions of the
model that will remain visible (the others will become
interns and non visible).
 Structural Analysis consists of specifying
invariants associated with places. The results obtained
are independent of the initial marking. The invariants
represent the fact that a predicate joining the marking of
a certain number of places remains always valid. A
transition tj is said to be live for an initial marking M0
if for all marking accessible from Mi belonging to M0*
there exists a firing sequence containing tj from Mi. A
Petri Net is said to be live for an initial marking M0 if
all the transitions are live. In other words there are not
transitions in the Petri Net that can not be fired.
 For a clear description of the concurrency, conflicts
and synchronization, we plan to consider only certain
subsystems to model and analyze each using Time
Petrinets. We have considered the following two
subsystems:
• Interregional migration
• Intraregional migration when migration is in the

region other than the birth region

 In the following discussion Af is the agent who
queries to find another agent Am. Fig. 3 shows all
possible places with their states and state transitions for
the BSPC protocol in a TINA model, when locating a
mobile agent during interregional migrations. The
following is a description of the places and transitions:

ANALYSIS AND SIMULATION

 We have performed the reachability analysis[35] of
the BSPC protocol by generating its PetriNet for

Fig. 4: Petri net model for intraregional migration of

the mobile agent in the region other than the
birth region

Fig. 5: Model specification in TINA for interregional

migration of the mobile agent

interregional migration and intraregional migration. A
time petrinet analyzer software called TINA is used to
perform the automatic validation of properties in the
Petri Nets, which uses enumeration approach[4].

Reachability: a marking Mi is said to be reachable
from an initial marking M0 if there exists a sequence of
firings that transform M0 to Mi. It has been proved that
the reachability problem is decidable[22] although it
takes exponential space (and time) to verify in the
general case.

Boundness: a place Pi is said to be bounded for an
initial marking M0 if for all marking accessible from
M0 the number of tokens in Pi is finite. A Petri Net is
said to bounded for an initial marking M0 if all the
places are bounded. Formal specification of BSPC
model in TINA is shown in Fig. 5.

J. Computer Sci., 4 (3): 256-271, 2008

 264

Fig. 6: Model analysis options, a snapshot in TINA

Fig. 7: Output in quiet format for marking graph upto

level 1for petrinet in Fig. 3

 TINA provides the tools for reachability, structural
analysis and stepper simulator (as shown in Fig. 6); in
this paper we performed the reachability analysis for
marking graph at level 1, level 2 and at level 3,
structural analysis and stepper simulator too for models
shown in Fig. 3 and 4. Marking graph at level 1, output
in format quiet reports in Fig. 7, that petrinet has 13
plces, 23 transitions, TINA takes 0.0 seconds for this
task.
 In reachability analysis, Petrinet (Fig. 3) is found
bounded, has 33176 markigs, 240152 transitions and it
takes 1.594s for this task. Liveness analysis in TINA
reports that net is live, has nil dead markings and
transitions, has 33176 live markings with 23 live
transitions and takes 0.281s for this task (Fig. 7).
Similarly reachability analyses for level 2 and level 3 of
the petrinet (Fig. 3) is found bounded and live.
 In reachability analysis, Petrinet (Fig. 4) is found
bounded, has 182 markigs, 763 transitions and it takes
0.000s for this task. Liveness analysis in TINA reports
that net is live, has nil dead markings and transitions,
has 182 live markings with 11 live transitions and takes
0.000s for this task (Fig. 8). Similarly reachability
analyses for level 2 and level 3 of the petrinet (Fig. 4) is
found bounded and live.

Fig. 8: Output snapshot of reachability analysis of the

model for marking graph at level-1, for petrinet
in Fig. 4

 For simulating the BSPC, Stepper simulator is run
for model with initial marking shown in Fig. 3. There is
smooth running of all the queries in the form of tokens.
With the shown initial markings and for some other
initial markings we could see the processing of the
seven queries successfully. Similarly model shown in
Fig. 4 is also simulated using the same marking shown
in the figure and for some other markings too.

PARAMETRIC EVALUATION AND
COMPARISON RESULTS

 To evaluate a location management technique for
mobile agents, following are some considerable
parameters:

• Availability: It is defined as the percentage of the

time in which the system works. According to
the[1], the availability can be calculated as
following by denoting by A, A=
MTTF/(MTTF+MTTR) where MTTF means mean
time to fail and MTTR means mean time to repair

• Scalability: It measures the overall system
response when the number of agents grows

• Migration overhead: It is defined as the
percentage of the time spent by the execution of the
location update operation during migration process.
It can be determined using the following formula

 Om = Tu / (Tu + Tm)

where Om is migration overhead, Tu is the time spent in
location update operation and Tm is the duration of the
agent migration from one host to other.

J. Computer Sci., 4 (3): 256-271, 2008

 265

Interaction overhead: It is defined as the percentage
of the time spent in operation of finding the current
location of the agent to be located from the location
database and the duration of the catching during an
interaction process. The following formula using
notation Oi can determine it; Oi = Tc / (Tc+ Ti)
 Where, Tc is the duration of the location finding
and the agent catching phase, while Ti is the duration of
the interaction (i.e. message sending). Any well-
designed agent location finding technique should aim to
achieve the best values for these parameters. It is hard
to guarantee for having simultaneous optimization of all
these parameters. Therefore, aim remains to obtain a
good trade - off between all above parameters

Message complexity: It is defined as the total number
of messages needed to travel around the network to
locate an agent.
 We calculate the migration availability and
interaction availability by calculating the location
updating fault rate and location finding protocol
availability respectively. Both we calculate in terms of
fault rate of generic network link fault rate and site fault
rate. Assumptions: Ignoring any node failure i.e. we
expect there is no failure of any node.
 Availability strongly depends on Mean Time To
Fail (MTTF) and Mean Time To Repair (MTTR) of the
system parts (computers, network etc.) involved in
migration and interaction. MTTF can be expressed as
MTTF=1/Rf where Rf is the average fault rate. Thus to
evaluate the availability, we will compute the overall
fault rates of the migration and interaction phases.

Location updating availability: As far as migration is
concerned, the fault rate can be expressed as the sum of
the agent transfer fault rate and the location updating
fault rate. The contribution of the first term does not
depend on the location protocol used and will not be
considered since it does not affect our comparison. For
evaluating migration fault rate concentrating on
location updating fault rate only, In the Database
Logging (DL) technique, each migration implies the
updating of a remote database and involves the network
and a specialized site (the location database site):

 Rf

(DL) = Rfn + Rf š (1)

 In the Path proxy (PP) technique, each migration
involves the creation of a proxy in the local site:

 Rf

(PP) = Rfs (2)

 In SPC protocol, during intraregional migration
(birth region or other region), if the RAR of the region
cannot be updated and only Site Agent Registers (SAR)
are updated, the agent can still be located;

 Rf

(SPC) = Rfs (3)

 While, for interregional migration the updating
operations of the RAR of the source region and the
agent’s region of the birth can fail without affecting the
correctness of the location phase. This implies that, in
evaluating migration availability, we can consider the
fault tolerance of the mandatory operations alone,
unless the overall migration has had to fail because the
agent could not be reached.
 These (operations without which locating mobile
agent is not possible) are the updating of SAR�s, for
intraregional migration and updating of SAR�s and
RAR�d.region, for interregional migrations. By indicating
the percentage of intraregional migration in the whole
distributed system with £, we can express the total
migration fault rate of the SPC protocol as a mean
between intraregional fault rate (Rf s) and interregional
fault rate (Rfs + Rf š + Rf�):

 Rf

(SPC) = £ Rfs +(1-£)(Rfs + Rf š + Rf �)
 =Rfs+(1-£)(Rf š + Rf �) (4)

 In case of BSPC protocol, during intraregional
migration within birth region of the mobile agent, no
update operation is required; agent can still be located
(as within birth region broadcasting is used, on locating
request only), means no RAR or SAR update is done.
So intraregional fault rate:

 Rf

(BSPC) = nil (5)

 During intraregional migration other than the birth
region if RAR cannot be updated, still agent can be
located (as SAR are updated). So intraregional fault
rate:

 Rf

(BSPC) = Rfs (6)

 While for interregional migration

 Rf

(BSPC) = Rfs+Rf š+Rf � (7)

 By indicating the percentage of intraregional (birth
region) migration as �b, intraregional migration (other
than birth region) as �, Now we can express the total
migration fault rate of BSPC protocol as a mean

J. Computer Sci., 4 (3): 256-271, 2008

 266

between intraregional fault rate Rfs and interregional
fault rate (Rfs + Rf š + Rf �):

Rf

(BSPC) = �b (nil) + � Rfs +(1-(�b + �))(Rfs + Rf š + Rf �)
or
Rf

(BSPC) = (1- �b)(Rfs + Rf š + Rf �) - �(Rf š + Rf �) (8)

 From Eq. 8, we observe that more is the value of �b
less is the total fault rate and 0< �b <1 and 0< � < 1 .
From Eq. 1, 2, 4 and 8, we can assert that PP protocol
offers the best location updating availability degree; DL
has the worst behavior while BSPC offer better than
SPC for more intraregional migrations within birth-
regional.

Interaction fault rate: For interaction fault tolerance,
we will evaluate the availability of the location finding
protocol required at time t by generic agent wants to
interact with the ith agent. Once again, this will be
determined by calculating the total fault rate.
 In the DL technique, location finding involves a
query to the location database site:

 Rf

(DL)’ (i, t) = Rf n+Rf š (9)

 Where s(i, t) represents the number of migrations
performed by the ith agent at time t.
 If PP is used to find an agent, the complete agent
path starting from the home site has to be followed:

 Rf

(PP)’ (i, t) = s(i, t) (Rf n+Rf s) (10)

 Applying the query propagation technique, the
interaction fault rate of the SPC protocol strongly
depends on the updating operations performed during
migration. The fault rate for SPC comprised between a
minimum value Rf(best)

(SPC)’(i, t) in best case when
during migration all the updating operations are
performed and a maximum value Rf(worst)

(SPC)’(i, t) in
worst case when only the mandatory operations are
performed. Assuming that the searched agent is not in
its birth region and in its itinerary it does not visit the
same site and region more than once, then interaction
fault rate for SPC in best case and worst case values
are:
 Rf(best)

(SPC)’(i, t) = 2(Rf n + Rf š) (11)

 Rf(worst)

(SPC)’(i, t) = r(i, t)(Rf n + Rf š)+
 s(i, t) (Rf �+ Rf s) (12)

 The general case can be expressed as:
 Rf

(SPC)’(i, t) = kr(i, t) (Rf n+Rf š)+

 ks(i, t)(Rf �+Rf s) (13)

kr(i, t) represents the number of regions in the search
path from the RARm.region to the current location of the
agent. it depends on the number of last consecutive
interregional migrations featuring only the mandatory
updating operations. ks(i, t) represents the number of
locations (hosts) in the search path from the RARm.region
to the current location of the mobile agent, they
depends on the number of last consecutive intraregional
migrations featuring only the mandatory updating
operations. Each time RAR�s.region cannot updated, ks(i,
t) increases as �s is now on the search path. Each time
RARm.region cannot be updated kr(i, t) increases as
RAR�s.region now belongs to the search path. While
when migration completes with a success of all the
remote register updating, kr(i, t) and ks(i, t) immediately
reach their minimum values (respectively 2 and 0). So
looking best case possibility, there is low probability
that kr(i, t) and ks(i, t) can reach high values, unless
there is very high fault rate. Obtaining an analytical
expression for these two parameters requires a complex
analysis, which, from our view does not give additional
important information in determination of availability.
 In BSPC protocol also, interaction fault rate
strongly depends on the updating operations performed
during migrations in any application domain and same
as in SPC, if we look upon the best application domain
area for BSPC (in which there is a low frequency of
locating request), like in a company which has several
franchise spread all over the world, a single franchise is
having its own LAN and each franchise’s LAN is
interconnected with each other. Most of the tasks are
locally managed like pay slip generation of the
employees. Each franchise has several departments. If
the employees records are kept in distributed manner
then particular mobile agent for collecting the record of
the employees will at most roam in its birth region
collect the record and prepare the pay slip. So most of
the migrations will be intraregional and within the birth
region.
 For normal application domain, with high mobility
of mobile agents, with many intraregional migrations
out of the birth region and there is high frequency of
locating request.

 Rf(best)

(BSPC)’(i, t)=2(Rf n + Rf š) (14)

 For specific application domain area of low
frequency of locating query and high degree of
migrations within birth re:
 Rf(best)

(BSPC)’(i, t) = Rf �+Rf š (15)

J. Computer Sci., 4 (3): 256-271, 2008

 267

 Rf(worst)
(BSPC)’(i, t) = r(i, t)(Rf n+Rf š)+

 (1-�b)s(i, t) (Rf �+Rf s)+�b s(i, t)(Rf �+Rf š) (16)

 The general case can be expressed as:

 Rf

(SPC)’(i, t) = kr (i, t)(Rf n + Rf š)+
 (1- �b)ks (i, t) (Rf �+ Rf s) + �b ks (i, t)
 (Rf � + Rf š) (17)

 Now, we analyze the interaction availability with
respect to the number of migrations made by the agent
(hop count). The results are reported in the form of
graph. Where SPC and BSPC are evaluated for some
reference values of kr (i, t), ks (i, t) and s(i, t). The graph
in Fig. 2 shows that BSPC-best case in specific
application domain offer the highest interaction
availability and also the BSPC-general case presents a
very high value. The worst performance is registered by
the PP technique, which, for a high number of hop-
count is also worse than the BSPC.
 For making these comparisons for the BSPC
protocol, we have considered the case of searching of
the agent always begin from Agent Name Server of the
agent’s birth region.

Scalability: Scalability can be evaluated by considering
the overall distributed system response when the
number of agents n(t) and the number of migrations of
each agent s(i, t) increase. These parameters affect the
network usage (Un). Network usage increases as the
number of agents to locate grows. Site usage (Us)
indicates the number of entries used in all the location
database of the distributed environment (including
proxy elements). We express the global system usage
(U) as the sum of Un and Us suitably weighted.
 The determination of the usage parameters may be
hard, so a simplification of the system model is
required. In determining an expression for Un, the
topology of the global network should be considered
which leads to evaluating the usage of the links
between the various sites (Site Agent Registers) and the
specialized sites (like Region Agent Registers).
However if we assume a uniform distribution of the
sites over the various links, the overall network usage
of each link can be expressed as proportional to a factor
Tm/n, where Tm is the total number of messages and n
is the total number of sites queried. In this case,
network usage could play a substantial role if we
consider the presence of a small number of location
database sites n. If C is the average capacity each link
then for the condition Tm/n>C. If we assume that n is
adequate for the considered environment such that

Tm/n<C, we can concentrate our analysis on the role
of Us.
 We calculate system usage by looking two factors
first one is the number of entries related to the
particular mobile agent at the sites (as the mobile agent
register itself at the site) and second is the number of
agents.
 For DL we assume the number of database sites
such that network congestion is not caused. Sites
involved in DL are the location database site and the
current site of the agent where agent registers its
presence.
So
 U(DL)(t) = 2n(t) (18)

 For PP there is proxy on each site for reference to
the next location of the agent, thus

n(t)

i 1

U(PP) (t) = (1 s(i, t))
=

+� (19)

For SPC, site usage can be evaluated by considering the
registers growth in the worst case - when all the
registers are updated during migration. In best case
when only mandatory updating is performed;

n(t)

i 1

Uw(SPC) (t) = (s(i, t) r(i, t))
=

+� (20)

n(t)

i 1

Ub(SPC)(t) = (1 r(i, t))
=

+� (21)

In general global system usage can be expressed as;

n(t)

i 1

U(SPC) (t) = (1 ks(i, t) r(i, t))
=

+ +� (22)

For BSPC[23], consideration of intraregional migrations
is the best case, as per its best application domain we
assume that each region has adequate number of sites
and mobile agents locating queries such that no network
congestion occur when within the birth region
broadcasting is used to locate the agent;

n(t)

i 1

Ub(BSPC) (t) = s(i, t)
=
� (23)

For BSPC, worst case is when there are more inter-
regional migrations and intra-regional migrations
within the birth region are nil then it performs like SPC,
so equation no. 20 is suitable for worst case of BSPC;

n(t)

i 1

Uw (BSPC) (t) = (s(i, t) r(i, t))
=

+� (24)

J. Computer Sci., 4 (3): 256-271, 2008

 268

n(t)

i 1

U(BSPC)(t) = (ks(i, t) r(i, t))
=

+� (25)

 Now, if we consider that the database sites can be
designed to handle a large number of entries, their
contribution in evaluating scalability can be ignored.
This leads to the following equations:

 U(DL)’(t) = n(t) (26)

n(t)

i 1

U(PP)'(t) = (1 s(i, t))
=

+� (27)

 Ub(SPC)’(t)= n(t) (28)

n(t)

i 1

Uw(SPC)'(t)= s(i, t)
=
� (29)

n(t)

i 1

U(SPC)'(t) = (1 ks(i, t))
=

+� (30)

n(t)

i 1

Ub(BSPC)'(t) a = s(i, t)
=
� (31)

n(t)

i 1

Uw(BSPC)'(t) = s(i, t)
=
� (32)

n(t)

i 1

U(BSPC)'(t) = (ks(i, t))
=
� (33)

 Above relations shows that DL and SPC-best case
present the best scalability, while PP is the worst
technique. In general BSPC scalability is better than
SPC.

Message complexity of SPC & BSPC: Network
overhead occurs because of travel time of messages to
find mobile agent location in response to a location
finding query. We can calculate network overhead in
terms of the messages complexity. We define the
message complexity as the total number of messages
needed to travel on the network, for serving single
location finding query. So we derive the following
expression for network overhead for single query:
 Network overhead ∝ message complexity For
BSPC protocol in case of intraregional migration (birth
region), for any query 1 message will come first to the
birth region of the mobile agent which is to be
contacted for any reference then if there are suppose
maximum m hosts in a region and minimum 1 hosts
then m number of messages will be broadcasted to all

hosts and the only one massage will be sent back from
the host where the agent will be residing, so total nh+2
messages are required for serving a single query, where
nh=m, irrespective of number of hops of the mobile
agent and nh denotes the number of hosts (queried) in a
region.
 The message complexity for SPC protocol is nh+2
where 1≤nh≤m, it depends on the number of mobile
agent hops. As per the best of our knowledge we
calculated it first time. Figure 5 shows the simulation
results- message complexity in BSPC is not more than
the maximum possible limit in SPC but equal to
maximum possible limit.
 In interregional migration, let the agent can
migrates through (from its birth region) at the most n
regions. Assume that there are m sites in each region.
For total n region, one will be birth region. So 1≤nr≤n.
If mobile agent crossed nr regions and in final
destination region is only at one site, one message is
required to reach from RALR to SALR.
 Now if it is on the same SAR agent is found by
using nr+2. If there are at most m migrations within that
region then maximum nr+1+nh (1≤nr≤n,1≤nh≤m) (nr is
the number of regions migrated or crossed over by the
mobile agent and nh is the number of hosts migrated
within a region) total messages will be required.

Advantage of BSPC over SPC:

• In SPC there is an update operation at each

migration whether the agent is in its birth region or
in any other region, while in BSPC these update
operations get canceled in case of the agent is in its
birth region. Therefore cost of update operation for
BSPC is reduced. Figure 11 shows the same for 10
hosts in a region, it shows that cost of update
operations is saved completely consequently, the
speed of processing of the agent also increases, as
at the time of migration, time is not wasted in
doing the operation of leaving proxy and no need
of contacting to the RALRm:region (birth region’s
Region Agent Location Register) also

• It will be very effective for very large network,
with large number of regions and where each
region has not large number of hosts, as
broadcasting is expensive for large area (in our
protocol it is limited by broadcasting in birth
region only)

• Best possible results are expected at low frequency
of queries for an agent and the low frequency of
interregional migrations and high frequency of
intraregional migrations (in birth region)

J. Computer Sci., 4 (3): 256-271, 2008

 269

• Locating agents is also comparatively faster in
BSPC as following the long path is not needed

• BSPC uses the memory more efficiently by
reduction in saving of proxies at the host machines
in case mobile agent is migrating within birth
region at high frequency

RESULTS AND DISCUSSION

 We developed a novel location management
protocol BSPC applicable for multi-region
environment. BSPC is designed for the applications
having low frequency of locating queries (i.e., low call
to mobility ratio) and with high frequency of migrations
of mobile agents in its birth region compared to any
other region. To locate the mobile agent when it is
roaming in its birth region broadcasting is used. To
locate the agent not present in its birth region path of
proxies are followed. It allows the agents to roam more
freely in their birth region without contacting to the
home node or source node as no update operation is
required and no proxy is to be left at migration within
birth region. This improves the speed of performing the
task by the mobile agent. Location database is
distributed in region’s registers RALR and SALR.
 Petri net modeling has been chosen because of the
complexity of the system and the configuration of the
network. Inhibitor arcs were used for modeling lock
function for the registers. This is explained by the fact
that from every regular place, a transition is possible to
the next regular place but if some error occurs (here
error is basically the state when register is locked as
being in use by the agent for location updating),
transition cannot occur. Eventuality of protocol
operation and hence its liveness properties can be easily
specified using Time Petrinets, because of the
restrictions that enabled transitions must fire as soon as
their input places have available tokens.
 Analysis results at different marking levels and in
different output formats report that model is having 13
places and 23 transitions, reachability graph is bounded
and live. Analysis clearly reports that there are nil dead
markings and nil dead transitions. It is found that the
Petri Net model for interregional, intraregional
migration is found bounded and live.
 The liveness property encapsulates the concept of a
system which will be able to run continuously means a
system which does not deadlock. In the presented
Petrinet model, the request goes in the form of the
token, which starts from the birth region of the mobile
agent (to be searched) and passing through all other

region agent registers and site agent registers,
depending on the mobile agent migration path, finally
token reaches to the final state (named agent found) and
the protocol informs the found location information to
the user/agent who requested to locate the mobile agent.
 A Petri Net modeling, analysis and simulation of
the BSPC using TINA, which is using the enumerative
approach for analyzing the time Petri net and found the
model bounded and live. Verification, validation and
simulation based on TINA are found to be an efficient
way to improve the design process.
 We measured the efficiency of Database logging,
path proxy and search by path chase and broadcasting
with search by path chase mobile agent location
management techniques by evaluating the parameters
location updating availability, interaction fault rate and
scalability.
 We calculated migration availability and
interaction availability BSPC[19] in terms of fault rate of
generic network link and generic site (0.02fault h−1)
with MTTF = 50 h and fault rate of generic network
link belonging to a sub net (0.01fault h−1) with MTTF =
100 h, results shown in Fig. 9 tells that interaction fault
rate for BSPC is lower than SPC. PP protocol offers the
best location updating availability degree; DL has the
worst behavior while BSPC offers better than SPC for
more intraregional migrations within birth-region. DL
and SPC-best case present the best scalability, while PP
is the worst technique. In general case BSPC scalability
is better than SPC.
 Message complexity of BSPC also does not go
beyond the maximum value which goes in SPC[10].
Figure 10 and 11 shows that BSPC costs less with
respect to message complexity and number of update
operations for low Call to Mobility Ratio (CMR) and
for high frequency of migrations within birth region. In
this way BSPC perform better, as a reactive approach
for locating mobile agents, than the path proxies,
database logging and SPC. Even than best applicable
application domain of BSPC is, where there is low
frequency of request for locating mobile agents and
there are more (in birth region) intraregional migrations
of the mobile agents like pay slips generations of the
employees of an organization having worldwide
branches, in which each branch have their own network
like LAN, a particular mobile agent is performing the
task of collecting the employee’s database locally from
different sections of the branch and generating the pay
slips i.e. most of the migrations are within birth region.
 BSPC protocol can be extended to use multicasting
by RALR (called Region Agent Tracker also) for its

J. Computer Sci., 4 (3): 256-271, 2008

 270

Fig. 9: Interaction fault rate vs mobile agent hop count

0

5

10

15

20

25

m
es

sa
ge

 c
om

pl
ex

ity

1 2 3 4 5 6 7 8 9 10
No. of sites migration

intraregional migration

BSPC SPC

Fig. 10: Number of sites migration vs. message

complexity

update operations vs. birth intraregional migrations

0

2

4

6

8

10

12

0 2 4 6 8 10 12
No. of migrations

no
. o

f u
pd

at
e

op
er

at
io

ns

SPC BSPC

Fig. 11: Cost of update operations Vs. no. of

intraregional migrations

own generated mobile agents only (whenever are they
in the network) instead of broadcasting within birth-
region. We intend to try for this extension in future in
addition with BSPC implementation on Aglet network.

Further we intend to calculate some more parameters
like interaction overhead, migration overhead for DL,
PP, SPC, BSPC and for some other existing mobile
agent location management techniques.

REFERENCES

1. Stefano, A.D., L.L. Bello and C. Santoro, 1999.

Naming and locating mobile agents in an internet
environment. Proceeding 3rd International
Conference Enterprise Distributed Objects
(EDOC ’99), Sep. 27-30, pp: 844-864.

2. Aglets Software Development Kit from IBM,
Aglets 2.0.2, http://aglets.sourceforge.net/
usermanual.html, 2006.

3. Berthomieu, B. and Michel Diaz, 1991. Modeling
and verification of time dependent systems
using time petri nets. IEEE Trans. Softw. Eng.,
17: 259-273.

4. Berthomieu, V and M. Menasche, 1983. A
Enumerative approach for analyzing time petri
nets. Proceedings of the IFIP 9th World Computer
Congress, Paris, France, Sep. 19-23, 1983, North-
Holland/IFIP, ISBN 0-444-86729-5,
http://www.laas.fr/tina/papers.php

5. Berthomieu, B., P.O. Ribet and F. Vernadat, 2004.
The tool TINA-construction of abstract state spaces
for petri nets and time petri nets. Int. J. Prod. Res.,
42: 2741-2756 http//www.laas.fr/~poribet/
PUBLICATIONS/ribet_2004_ijpr.ps

6. Noy, B., I. Kessler and M. Sidi, 1995. Mobile
users: To update or not to update? ACM-Baltzer J.
Wireless Networks (WINET), 1: 175-186.

7. Baumann, J., 1999. A comparision of mechanisms
for locating mobile agents. TR 1999/11, Unv. of
Stuttgart, Faculty of Computer Science, pp. 1-25,
http://elib.uni-stuttgart.de/opus/volltexte/
1999/515/

8. Berson, A., 1996. Client/Server Architecture. 2nd
Edn., McGrawHill Inc, New York, NY, USA,
ISBN: 0-07-005664-1, 1996.

9. Bhattacharya and S.K. Das, 1999. LeZi-Update:
An information theoretic approach to track mobile
users in PCS networks. Proc. 5th ACM/IEEE Ann.
Conf. Mobile Computing and Networking
(MOBICOM ’99), pp: 1-12, Aug. 1999.

10. Santoro, C., 1998. ARCA: A framework for mobile
agent programming white paper and programmer’s
tutorial. TR, Univ. of Catania.
http://www.diit.unict.it/users/csanto/publications.ht
ml#educational.

11. Cao, X. Feng, J. Lu and S.K. Das, 2002. Mailbox-
based scheme for mobile agent communications.
IEEE Comput., vol 35, pp: 54-60.

12. Stefano, A.D. and C. Santoro, 2002. Locating
mobile agents in wide distributed environment.
IEEE Trans. Parallel Distrib. Syst., 13(8), 844-864.

J. Computer Sci., 4 (3): 256-271, 2008

 271

13. Stefano, D. and C. Santoro, 2000. The coordination
infrastructure of the ARCA framework. Proc.
Fourth Int’l ACM Conf. Autonomous Agents
(Agents 2000), June 2000.

14. Pitoura, E. and G. Samaras, 2001. Locating objects
in mobile computing. IEEE Trans. Knowl. Data
Eng., 13: 571-592.

15. Pitoura, E. and I. Fudos, 2001. Distributed location
databases for tracking highly mobile objects.
Comput. J., 44: 75-91.

16. Fuggetta, G.P. Picco and G. Vigna, 1998.
Understanding code mobility. IEEE Trans. Softw.
Eng., 24: 342-361.

17. Ceri, S. and G. Pelagatti, 1984. Distributed
Database: Principles and Systems. McGraw Hill,
New Yark.

18. Harrison, D.M, 1995. Chess and A. Kershenbaum
Mobile agents: Are they a good idea? Technical
Report, IBM research division, T.J. Watson reserch
center, Yorktown heights, NY-10598.

19. Baumer, C., M. Breugst, S. Choy and
T. Magedanz, 2000. Grasshopper: A universal
agent platform based on OMG MASIF and FIPA
standards. Technical report, IKV++ GmbH.
http://citeseer.ist.psu.edu/baumer00grasshopper.ht
ml

20. Baumann, J.,1999. Control Algorithms for Mobile
Agents. Ph.D. thesis IPVR Stuttgart.

21. Desbiens, J., M. Lavoie and F. Renaud, 1998.
Communication and tracking infrastructure of a
mobile agent system. In: Proceeding 31st Hawaii
International Conference on System Sciences,
Agent Mobility and Communication, pp: 54-63.

22. Esparza, J. and M. Nielsen, 1994. Decidability
Issues for Petri Nets- a survey, Inform. Proc.
Cybernet., 30: 143-160.

23. Peterson, J.L., 1981. Petri Net Theory and the
Modeling of Systems. Prentice-Hall, Englewood
Cliffs, N.J.

24. Van Steen, J., H.P. Homburg and A.S. Tanenbaum,
1998. Locating objects in wide-area systems. IEEE
Commun. Magz., 36: 104-109.

25. Jie Li, H. Kameda and Keqin Li. Optimal Dynamic
Mobility Management for PCS Networks.
IEEE/ACM Trans. Networking, 8(3), pp: 319-327,
June 2000.

26. Garg, K., 1984. Design and performance validation
techniques for distributed system using timed
Petrinets. Ph D. Thesis, Imperial College of science
and Technology.

27. Kastidou, E. Pitoura and G. Samaras. A scalable
hash-based mobile agent location mechanism.
Proc. Of the 23rd Intl. conference on distributed
computing systems workshops (ICDCSW’03), 19-
22 May, IEEE.

28. Bavandla, M., 2004. Improving the performance of
location management protocols in a multiregion
environment. Master Thesis I.I.T. Roorkee.

29. Van Steen, M., P. Homburg and A.S. Tanenbaum,
1999. Globe: A Wide-Area Distributed System.
IEEE Concurrency, pp: 70-78, Jan-Mar.

30. Opsenica et al. 2000. Petri net based modeling and
simulation of email alert system. Proc. of 10th
MELECON 2000 Conf., 1: 49-52.

31. Wojciechowski, P.T., 2001. Algorithms for
Location-Independent communication between
mobile agents. Technical Report 2001/13,
Commun. Syst. Dept., EPFL, March 2001.

32. Patel, R.B. and K. Garg, 2001. Pmade- a platform
for mobile agent distribution and execution. in the
proceedings of the 7th International conference on
information system analysis and synthesis
(ISAS2001), Orlando, Florida, USA, July 22-25,
pp: 287-293.

33. Sushil, R., K. Garg, R. Bhargava, 2007. Mobile
agents: When to update their location? Proc, Int.
Conf, Information and Communication
Technology, IICT07, July 2007, Dehradun, India,
pp: 852-857.

34. Tripathi, R., T. Ahamad and N.M. Karnik, 2001.
Experiences and future challenges in mobile agents
programming. Microsystems, 25: 121-129.

35. Ramchandani, 1973. Analysis of asynchronous
concurrent systems with Timed Petrinet. Ph.D.
Thesis, MIT.

36. Choi, S., M. Baik, C. Hwang, 2004. Location
Management and Message Delivery Protocol in
Multi-region Mobile Agent Computing
Environment. Proceedings of the 24th International
Conference on Distributed Computing Systems
(ICDCS’04), 1063-6927/04, 2004 IEEE.

37. Milojicic, S., W. LaForge and D. Chauhan, 1998.
Mobile Objects and Agents (MOA). Dist. Syst.
Eng., 5(4).

38. Li, T.Y. and J.F. Zhang, 2002. An Optimal
Location Update and searching Algorithm for
Tracking Mobile Agent. AAMAS’02, July 15-19,
2002, Bologna, Italy.

39. The software and instruction manuals for TINA,
OLC http://www.laas.fr/OLC/OLC.html.en group
of LAAS/CNRS http://www.laas.fr/,
http://www2.laas.fr/tina/distribution.php.

40. Roth, V. and J. Peters, 2001. A Scalable and
Secure Global Tracking Service for Mobile Agents.
In MA’2001, LNCS 2240, pp: 169-181.

41. Tao, X. and J. Lul, 2000. Communication
Mechanism in Mogent System. J. Software, 11:
1060-1065.

