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Abstract: Mobile agents are processes that can be dispatched from source computer and be transported 
to remote servers for execution, have been widely argued to be an important enabling technology for 
future systems. Location management is a necessity for locating mobile agents in a network of mobile 
agent hosts for controlling, monitoring and communication during processing and it still represents an 
open research issue. The cost of location management strategies mainly depends on the cost of search 
and update. We concentrated on reducing the cost of update and improving the speed of processing of 
the agents. We proposed a location management technique applicable for multi-region environment in 
which mobile agent did not update its location at every migration. The technique named as 
Broadcasting with Search by Path Chase (BSPC). We used the tool time Petri net analyzer TINA to 
model, analyze and to simulate BSPC. We found that the BSPC behaves as expected and free from any 
deadlock. We measured the efficiency of BSPC and compared with some existing location 
management techniques by parametric evaluation. BSPC provided better scalability, location updating 
availability and interaction fault rate with theoretical considerations of network usage and network 
fault rate. It gave its best performance for applications of low CMR and having high migration rate of 
mobile agents within birth region. 
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INTRODUCTION 
 
 Mobile agents are software agents that can 
physically travel across a network to perform tasks on 
behalf of the user, under their own control as per their 
itinerary or deciding their movements dynamically 
according to execution results[18,34]. Mobile agents are 
one form of mobile code[16,37] that execute on machines 
that provide agent hosting. Mobile agent technology is 
making significant impact on almost all aspects of the 
computing discipline. It is being promoted as an 
emerging technology that makes it much easier to 
design, implement and maintain distributed systems and 
is an alternative to the client server model[8,18]. There 
are many applications of mobile agents, including 
network management, e-commerce, distributed 
information retrieval, software distribution and load 
balancing. Mobile agent research has evolved with the 
creation of many different agent platforms of similar 
characteristics and built by research groups spread all 
over the world, for optimization and better 
understanding of specific agent issues. A mobile agent 

platform is a software that can create, interpret, execute, 
clone, transfer and terminate mobile agents e.g. 
Grasshopper[19], Aglets[2], ARCA[10], PMADE[32 ] etc. A 
mobile agent host is a node in the network which has a 
mobile agent platform installed in it.  
 A mobile agent location management strategy is 
required by an agent owner to control the agent for 
many reasons like to stop processing being done by the 
mobile agent, to give some more task to the agent, to 
know the intermediary results of the processing being 
done by the agent, to change its itinerary and for agent-
agent communication and cooperation[1,7,9,14,21,31]. 
Therefore, the ability to locate mobile agents while they 
are migrating from one node of a network to another is 
of great importance in the development of agent-based 
applications which is a part of the location management 
strategy. A major issue with location management is the 
high cost associated with location updates and 
search[6,13,25,28,33,38]. The goal of an efficient location 
management strategy should be to minimize the 
combined cost of the location search and update. This 
cost is characterized by the time taken for each 
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operation, number of messages sent, size of messages, 
or the distance the messages need to travel. Some 
problems, which exist in location management 
protocols, are unnecessary communication overhead, 
location data base server bottlenecks, high location 
update and search cost. 
 We concentrated on location update schemes used 
in existing location management strategies. We propose 
a location management technique named BSPC 
(broadcasting with search-by-path-chase) which uses 
the general concepts of distributed systems[15,17,24,29] and 
is based on search-by-path-chase (SPC)[12]. In BSPC, 
We propose a location update scheme which costs less 
for applications having a low frequency of queries for 
contacting mobile agents i.e., for low call to mobility 
ratio (CMR). We model the BSPC using TIme PetriNet 
Analyzer (TINA)[39], perform the reachability analysis, 
structured analysis and simulated for total seven 
queries, some are in processing and some waiting to 
process as an initial marking of the net.  
 Some previous studies have been made on the 
location management and message delivery protocols in 
a mobile agent computing environment: DL, PP, 
Blackboard, Shadow, SPC, HB, optimal location update 
scheme, MBLM, Scalable Hash-Based Mobile Agent 
Location Mechanism, Mailbox-based scheme for 
mobile agent communications. In Database logging 
protocol (DL)[1,12] location information of mobile 
agents is stored at a specific server called location 
database server, upon every migration. The location 
information is used to find the mobile agents. As the 
location information is stored in centralized way, 
location server can represent a bottleneck in several 
conditions when number of mobile agents grows, 
mobile agents migrate frequently. If mobile agent 
moves far away from a specific server, the cost of 
location update comes to be relatively high. Moreover, 
if the location information in specific server is not latest 
means at the contact time if a mobile agent already left 
before catching the agent a following problem arises. 
 In path proxy protocol (PP)[1,12] a mobile agent 
leaves a forwarding proxy at the source node at every 
migration. Mobile agent is located by following chain 
of proxies. No location update procedure is used. If 
path proxies are long and even one of the path proxies 
fails, mobile agent cannot be located. The shadow 
protocol[7,20] is a combination of DL protocol and PP 
protocol. It provides functionality for locating agents, 
termination and for orphan detection. A mobile agent 
updates current location to an associated shadow 
according to TTL (time to live), which is a particular 
fix time interval. After the TTL a mobile agent updates 
its current location to its shadow instead of updating at 

every hop and by this method path proxies get cut short. 
In the shadow concept, each application creates one or 
more dependency objects called shadows, a data 
structure on a place. An agent is an orphan when the 
shadow no longer exists.  
 In an optimal location update and searching 
algorithm for tracking mobile agent, mobile agent 
updates its location after it migrates through continuous 
d hosts since its last update. There is an optimal 
threshold d that makes the total cost of search and 
update minimized. If d assigned dynamically, it is 
called dynamic location update scheme[25,40]. 
Blackboard protocol[41] maintains the blackboard at 
each node which is a shared information space for 
message exchange. When any mobile agent wants to 
deliver a message, it puts the message in the blackboard 
no matter where receiving mobile agents are or when 
they read it. Afterword the receiving mobile agents 
move to the corresponding node where a message is 
stored and get the message. In this protocol, every node 
has storage where messages are deposited. In order to 
receive a message, mobile agents must move to the 
corresponding node, which makes unnecessary 
communication overhead occur. Because of not regular 
migration pattern message is not delivered immediately. 
 The SPC protocol[12] is a combination of DL 
protocol and PP protocol, applied to a multi-region 
mobile agent computing environment. Location 
information is stored in a distributed way at a Region 
Agent Register (RAR) or a Site Agent Register (SAR). 
Agent is achieved by following a part of the links that 
the agent has left on two registers. Number of location 
update operations are reduced in SPC protocol by 
applying an optimal location update and searching 
algorithm for tracking mobile agent[25] on SPC. The 
modified protocol is named as MBLM (Movement 
Based Location Management)[28,32]. This protocol is 
implemented on PMADE[32] and found to have lesser 
cost of location update than SPC protocol.  
 Scalable Hash-Based Mobile Agent Location 
Mechanism[27] have special agents called information 
agents (IAgents). IAgents are responsible for 
maintaining the current location of a set of agents. Set 
of mobile agents associated with each IAgents is 
determined through the hash function. This association 
changes over time as new IAgents are created or 
existing IAgents are merged depending on the system 
workload.  
 A Home Blackboard (HB) protocol[36], location 
management and message delivery protocol, 
concentrated more for confirmed message delivery. A 
HB protocol is a hybrid of a DL protocol and a 
Blackboard protocol[41] in order to complement each 
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other and overcome. Mailbox-based scheme[11] assigns 
each agent a mailbox to buffer messages, but decouples 
the agent and mailbox to let them reside at different 
hosts and migrate separately. 
 

LOCATION MANAGEMENT WITH BSPC 
 
 The protocol function is based on an efficient 
algorithm, which follows a part of the links left by the 
agents on the registers of the visited sites or regions and 
this protocol uses broadcasting to search an agent if 
mobile agent is in its birth region.  
 

MATERIAL AND METHODS 
 
 Location finding requires the presence of a suitable 
repository of the current locations of all the agents of 
the entire distributed system. Let us refer to a Name and 
Location Base-NLB-collecting the tuples (m, α, λ) with 
m the name of the agent α which is currently placed at 
location λ. No hypothesis is made about the structure of 
m, α and λ, which merely represent identifiers for the 
relative objects regardless of their real structure, or on 
the nature of the NLB (e.g., whether it is centralized or 
distributed, or where it is really located). Any location 
protocol for mobile agents deals with three aspects: 
name binding, migration and location, each related to a 
particular phase in the agent’s life. On NLB, we define 
four operations:  
 
• Bind (m, α, λ): performed when a name m is 

assigned to mobile agent α, which is currently 
placed at location λ. This operation causes the 
insertion of the new tuple m, α, λ in the NLB. As 
the agent name has to be unique, this operation 
fails if a tuple with the name field equal to m 
already exists in the database 

• Newloc (m, α, λ´): performed when agent α 
changes its location, by migrating to λ´. This 
operation changes the tuple (m, α, λ) already 
present in the NLB, into the new tuple (m, α, λ´) 

• Find m→(m, α, λ´): performed when agent α has 
to be located in order to interact with it. Given 
agent name m, this operation returns the relevant 
tuple if present in the NLB, thus determining the 
bound agent α and its current location λ 

• Unbind (m): performed when name m is no longer 
used (e.g., the agent is disposed of). This operation 
causes the deletion of the relative tuple from the 
NLB 
 Solving the locating problem for mobile agents 
implies finding a suitable way to implement the 
NLB and the four operations previously defined. 

This is not simple, as several aspects have to be 
taken into account which may affect the 
performance of the whole multiagent system. Any 
solution has to deal with the traditional issues in 
distributed systems computing, meeting the 
reliability, efficiency and scalability requirements. 
These aspects are tied to the real architecture of the 
NLB: As a centralized solution in a wide 
distributed environment is not reliable, efficient, or 
scalable, a distributed approach opens the question 
on how and where to distribute the information 
effectively. This affects the choice of the protocols 
used for executing the four primitives, which, if not 
suitably designed, can degrade the performance of 
the multiagent application. In this sense, the most 
critical operations are newloc and find, as they are 
used very frequently during the mobile agent’s life. 
An inefficient or unreliable newloc may 
significantly affect the performances of the agent 
migration process and the same applies to the find 
primitive as concerns the interaction with a given 
agent. In addition, it is worth noting that the 
finding process does not end when the agent 
location is found, but when the given agent is 
really reached in that location. It may be the case 
that, once the current location of an agent is found, 
the latter has left the site, thus requiring repetition 
of the entire process (location finding + agent 
catching) until the agent is reached. Thus, when the 
agent is rapidly moving, several retries may be 
required, making interaction with the agent 
burdensome. 

 
System design for BSPC: Computing environment is 
considered as the collection of regions. A region is a 
collection of mobile agent hosts (Fig. 1). Different hosts 
can spawn different mobile agents, so a particular 
mobile agent is spawned by a particular host which 
belongs to a particular region; this region is called the 
birth-region of this particular mobile agent.  
 

 
 

Fig. 1:  Multi-region environment 
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Fig. 2: BSPC function scenario 
 

 
 
Fig. 3: Time petrinet model for interregional migration 

for BSPC in TINA 
 
In each region there exists a site acting as a Region 
Agent Tracker (RAT), which manages a database called 
Region Agent Location Register (RALR). RALR stores 
the information about all the agents that have been 
created in the region or have transited through it. On 
each site there is a Site Agent Location Register 
(SALR), which contains information about all the 
agents that have transited through (in the past) or are at 
that location (Fig. 3). 
 Mobile agent migrations can be intraregional or 
interregional. In case of intraregional migration when 
region is not the birth region, the relevant entries are 
updated in both SALR and RALR of the source region. 
Before starting all the updating operations, an exclusive 

lock is placed on the entry of the SALR relevant to 
particular mobile agent and is released when update 
operation is finished (or an error occurs). It ensures the 
exclusive access to SALR and resolves several 
inconsistencies which may happen in case of 
concurrency between migration and interaction. SALR 
locks allow concurrent interaction and migration 
processes to be serialized, thus avoiding the agent’s 
status inconsistencies. 
 In case of the interregional migration, the protocol 
updates SALR of the source region, RALR of the birth 
region and RALR of the source region if the source 
region is not the birth region and the RALR of the 
destination region and finally updating the SALR of the 
destination region. When the source region is different 
from the birth region the birth region RALR is updated 
in a background (concurrent) process. With the 
hypothesis, that exclusive lock on each entry of the 
register, we can assert that, for each location reached λ 
at time tl by an agent named m, querying SALRλ i.e., 
site agent location register of location λ (at time tq (with 
tq ≥ tl) will return a tuple containing either the agent (if 
it has not yet changed location) or the name of the 
location (or of the region) reached by the agent at its 
next migration (after tl). exclusive lock is used not only 
to control the concurrent access to an entry of the 
SALR, but also to prevent inconsistencies which may 
happen during concurrent interaction and migration 
processes. A similar assertion can be made for RALR, 
with respect to each region traversed by the agent.  
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 This means that, at time tq, starting from any site 
or region visited by the agent before tq, following the 
links left in the registers implies reaching a subset of 
the locations and regions of the itinerary followed by 
the agent before tq, until the agent itself is caught. 
Given this, since locating an agent could require 
following a long path before reaching the agent, the 
updating operations performed during the migration 
phase are designed in order to shorten this path, thus 
increasing interaction efficiency and reducing the 
overhead. Locating an agent follows the following 
steps: First, the name of the agent’s region of birth is 
extracted from the name, m and then the relative RAT 
is contacted; the latter’s register will contain an 
indication of the location the agent could be on or the 
name of its current region- if it is different from that of 
birth. In the latter case, the RAT of the new region is 
contacted and the search is repeated.  
 In the former case, the SALR of the location is 
queried: If the resulting tuple contains a value for α 
then the agent is found otherwise, the location 
information λ is used to restart the search. In particular, 
if λ refers to a GLI, the relevant SALR is contacted, 
while, if λ refers to a region, the relevant RALR is 
contacted. It is up to the binding and migration phase to 
maintain consistency of location information in the 
registers in such a way as to always allow agent finding 
(unless a system or network crash occurs). During 
location finding, each time a SALR is queried for an 
agent named m, an exclusive lock is set on the relevant 
tuple and is reset only if the agent does not reside in 
that place (i.e., the α field of the tuple is nil), otherwise 
the lock is maintained.  
 Maintaining SALR locked allows the execution of 
the overall location finding and interaction procedure as 
an atomic activity, thus preventing an agent that has just 
been located from migrating until the interaction has 
taken place (otherwise the agent might not be found 
and another location re-attempt will be necessary). 
Even if an interaction takes place immediately after a 
location phase, the proposed solution could increase the 
execution time of the destination agent; an alternative 
could be to forward the message to chase the migrating 
agent. However, to privilege agent collaboration with 
respect to autonomy, the first solution has to be 
preferred since a message can strongly influence the 
behavior of the destination agent (for example, it can 
influence the choice of the next site in the itinerary). 
 
BSPC protocol: Broadcasting with Search-by-Path-
Chase protocol (BSPC) functions are given below in 
algorithmic form. 

• Agent q makes a request to the location 
management protocol (l. m. p.) to locate agent m. 
Location management protocol is available with 
each host as part of the mobile agent system or as a 
separate location management module. The l. m. p. 
extracts the birth region of the agent to be located 
from its name 

• The birth region’s RAT (Region Agent Tracker) is 
contacted. As per location information, the 
following steps take place 
• If this region is the birth region, RAT 

broadcasts a query to all its member hosts 
(MH). The host on which agent m is residing 
returns the ‘agent found’ message and locks m 
for migration, else 

• The related RAT is contacted and the birth 
region RAT uses this information to start 
locating m in that region 

• RAT returns the location information to the 
requesting host’s l. m. p. which then returns the 
location of m to agent q 

• Agent q communicates with agent m and informs 
agent m’s birth region RAT when completed  

• RAT unlocks agent m, making it free to move 
 
 Complete scenario of the BSPC protocol is shown 
in Fig. 2, as the agent migrates out of its birth region or 
roams within it. Table 1 explains the meaning of the 
contents of the Region Agent Location Register and the 
Site Agent Location Register. 
 
Location update operations: Performance and 
reliability of the BSPC protocol strongly depends on the 
register update operations made during migration and 
binding operation. To avoid the burden of agent 
migration, the protocol aims to minimize interregional 
messages with respect to intraregional ones. With the 
assumption that the connections between sites in the 
same region are faster and more reliable than 
connections between different regions BSPC can have 
les overhead and improved efficiency. Commonly in 
WANs like Internet: Sites belonging to the same 
subnetwork6 are often connected by LANs (10-100 Mb 
sec−1), while connections between sub networks are 
point-to-point links working at a lower speed (64 Kb 
s−1-2 Mb s−1). 
 The binding phase occurs when agent α is 
spawned, there is registration of the agent’s name m 
and the birth location λm of α in RALRm:region (m.region 
is the region of birth). This is handled by a two-step 
protocol performed by the platform executing at 
location λs. First, RALRm:region is contacted and, here, 
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Table 1: RALR/SALR tuple meaning 
Ralr Tuple Meaning SALR Tuple Meaning 
(m, GLI) The agent is at location GLI or has traveled through it (m, nil, GLI) The agent is at location GLI or has through it. 
(m, GLI.region) The agent is at region GLI or has traveled through it (m, nil ,GLI.region) The agent is at region GLI.region  
  (m, α, nil) The agent is in the same location as the SAR 

 
the tuple (m, λs ) is registered. Then, the tuple (m, α, 
nil) is stored in SALRλs. Before starting all the updating 
operations, an exclusive lock is placed on the entry of 
the SALR relevant to m and is released when 
registration is finished (or an error occurs). 
 The migration phase involves updating the location 
information of the migrating agent. Given λs and λd, the 
source and destination location, the sequence of 
operations can be split into two steps, performed in λs 
and λd respectively, before and after agent transfer. 
These steps vary according to whether λs and λd belong 
to the same region or not. In the case of intraregional 
migration λd.region= λd.region and it is the birth region then 
the aim is to not to update the entries relevant to the 
migrating agent in both SALRλs and RALRd.region. But 
the RALR of the birth region is updated only when the 
agent is crossing the region.  
 If λs and λd belong to two different regions 
(interregional migration), the migration protocol has to 
update SALRλd, RALRm:region. (if λd.region ≠ m.region ), 
by writing λd.region as location information; it also 
updates by writing RALRλd..region as location 
information and, finally, SALRλs registering the 
presence of the agent. 
 This allows the location finding protocol, which 
starts from the region of birth of the agent, to reach the 
current region of the agent and, finally the current 
location. At location λs first the entry of the SALR is 
locked, then, after agent transfer, the tuple (m, nil, 
λd.region) is stored on the SALR, then the tuple(m, 
λd..region) is stored on RALRλd..region and, finally the lock 
is released. At the destination location λd when the 
agent transfer begins, a lock is placed on the entry of 
the SALR and the RALRλd..region is updated with λd as 
location information. When migration ends, first 
SALRλd is updated by storing the tuple (m,α,nil) then 
the lock in the SALR is released and, finally the agent 
execution is resumed. At this time, if λd.region ≠ 
m.region, a background (concurrent) process is started 
in λd that aims to remotely update RALR m.region by 
writing a tuple with λd.region as location information.  
 In the described protocol, SALR locks play a 
fundamental role: They not only ensure exclusive 
access to SALR, but above all they help to resolve 
several inconsistencies which may happen in the case of 
concurrency between migration and interactions. 

 In fact, if an interaction request arrives when the 
agent is migrating; the latter is neither at location λs nor 
at location λd but on the net, thus it cannot be contacted 
anyway. A simple solution adopted by some existing 
frameworks entails the generation of an error condition, 
forcing the interacting agent to retry in the future. In the 
author’s opinion, a better solution is to wait for 
migration completion and then contact the agent at the 
destination location. In our protocol, this is 
automatically performed exploiting SALR locks.  
 In addition, it is worthwhile to remember that in 
many object-based mobile agent frameworks (such as 
Arca, Voyager, Mole, etc.,) the interaction between 
agents is performed through a kind of remote method 
invocation. Often this means that, from the point of 
view of the receiving agent, the invoked method is 
executed concurrently with the main activity of the 
agent, i.e., the main activity and the method invocation 
execute as different threads. As both of these threads 
can access the attributes of the same object-agent, the 
migration of status and code and method invocation 
operations on the same agent must be mutually 
exclusive otherwise, an interaction performed at source 
location, which updates an attribute already transferred 
to the destination location, will cause the loss of the 
updated information. 
 A similar situation may happen during interaction, 
which causes attribute modification, the main agent’s 
threads start a migration process. Using SALR locks 
allows concurrent interaction and migration processes 
to be serialized thus avoid agent’s status 
inconsistencies.  
 
Example: To illustrate how the Broadcast-Search-by-
Path-Chase protocol works, let us consider a distributed 
environment with three regions, named abc.it, klm.org 
and pqr.com. Also, let us suppose a mobile agent, 
spawned in the site www.abc.it and named 
agent:roamer@abc.it that has to accomplish the 
following itinerary: sun03→abc.it →www.klm.org 
→eye.pqr.com→www.pqr.com. Now, let us introduce 
the following notation: 
 
• RALRRegionName = (AgentName, Location) is the 

entry in the RALR of the region RegionName 
relative to the agent AgentName. If the location 
represents a region, the name is prefixed with @  
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• SALRSiteName= (AgentName, α, Location) is the 
tuple in the SALR of the site SiteName relative to 
the agent α whose name is AgentName. 

 
 During the mobile agent lifetime, the registers of 
the regions and sites involved are updated according to 
the agent’s itinerary. Let us suppose we want to locate 
the agent. Starting from its name agent:roamer@abc.it, 
the birth region is extracted (abc.it) and the relative 
ANS is contacted. The latter will return @pqr.com as 
the location information; this means that the agent 
could be found in region wipro.com. The ANS of the 
latter region is then contacted, which returns 
www.pqr.com as location information. Finally, by 
contacting the host www.pqr.com, the agent can be 
sought. 
 

MODELING BSPC USING TINA 
 
 A PetriNet is a mathematical formalism intended to 
be used for modeling, analysis and simulation of 
different kinds of distributed and parallel systems and 
processes[3,22,23,26,30]. In PetriNets, there are places and 
transitions, places are denoted by circles and are used to 
indicate system states like processing, accessing or 
waiting etc., transitions are denoted by directional 
edges and show the change of states after an event. 
Inhibition arcs are used for modeling error conditions in 
PetriNets. An inhibitor arc from a place to a transition 
disables the transition if the corresponding input place 
is not empty. In our petrinet model we used the 
inhibitor arc for locking function, when particular agent 
Am is updating its location in the register that register 
should not be accessible for retrieving the location of 
Am means register should be locked during that period 
of location update operation. Places are allowed to 
contain several tokens. A token in a TPN may be in one 
of the two following states: available or unavailable. 
Initially each place p contains tokens available. A 
transition t may fire when, 1. There is at least one token 
in each of its input places, 2. There is no token in any of 
its inhibiting places, 3. Its enabling function evaluates 
to true and 4. No other transition u with priority over t 
and satisfying 1, 2 and 3 exists. This removes the token 
from the input place and put the token in the output 
place. A token remains unavailable in input place 
during the transition occurs.  
 The most important features of PetriNets are their 
graphical representation of modules and their precise 
mathematical foundation, which are the main reasons 
for the large number of analysis techniques developed 
for PetriNets. The main objective of PetriNet modeling 
is to check the formal properties of a proposed protocol 

or solution, particularly its liveness, to avoid potential 
deadlocks and possible conflict activities. PetriNets 
allow a clear description of the concurrency, conflicts 
and synchronization of parallel processes. Thus they 
present a simple, yet elegant formalism for modeling 
parallel processes. 
 The Timed Petrinet (TPN) is an extension of the 
ordinary Petrinet in which a transition fires after a 
predefined interval, once it is enabled. It can be used for 
the modeling, functional analysis and correctness 
evaluation of time dependent protocols. In another 
version of the Timed PetriNet, which we have used, 
two time values a and b are given for a transition. The 
actual firing is instantaneous but this must not happen 
before time a or after time b from the instant of 
enabling. We consider only the time an agent takes to 
complete a task. The number of states in the PetriNet 
does not play any significant role in the theoretical 
analysis of the model. 
 TIme petriNet Analyser software tool TINA[5,39] 
proposes the construction of a number of 
representations for the behaviour of Time Petri nets, in 
addition to the graphic-editing facilities. Various 
techniques are used to extract views of the behavior of 
nets, preserving certain classes of properties of their 
state spaces. For Petri nets, these abstractions help 
prevent combinatorial explosion, relying on partial 
order techniques such as covering steps and/or 
persistent sets. For Time Petri nets, which have, in 
general, infinite state spaces, they provide a finite 
symbolic representation of their behavior in terms of 
state classes. For BSPC we have performed the 
reachability analysis for finding the deadlock and 
liveness in BSPC models, for two different sub-
functions. Analysis is needed to check whether the 
resulting system is free of logical errors. Many process 
designs suffer from deadlocks and live locks that could 
have been detected and avoided using verification 
techniques. Validation is needed to check whether the 
system actually behaves as expected. Validation is 
context dependent while verification is not. A system 
that deadlocks is not correct in any situation. So 
verifying whether a system exhibits deadlock is context 
independent. Validation is context dependent and can 
be done only with knowledge of the intended process. 
 Eventuality of protocol operation and hence its 
liveness properties can be easily specified using Timed 
Petrinets because of the restrictions that enabled 
transitions must fire as soon as the enabled input places 
have available tokens. This is not possible to do using 
Finite State Machines (FSM) or ordinary Petrinets. 
Enumeration Analysis[4] consists of the construction of 
an accessibility graph from the initial marking M0. The 
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graph is obtained by firing one by one all the possible 
transitions starting from the initial marking until no new 
transition could be fired. Each node of the graph 
corresponds to a marking of the system, each arch to 
the transition which allowed generating the new 
marking. This is the most common method used for the 
verification of properties in Petri Nets. 
 For Colored and Predicate-Action Petri Nets, the 
principle used to construct the accessibility graph is the 
same, only the fire rules change. Some techniques of 
reduction and projection can be used during the 
enumeration analysis to reduce the size and the 
complexity of the graph. The reduction and projection 
techniques allow obtaining simplified views of the 
system. The reduction technique allows reducing the 
graph before the accessibility graph is built. The 
projection allows one to reduce the accessibility graph 
in order to obtain an equivalent abstract view. It is up to 
the person analyzing the system to specify the adequate 
equivalence relation as well as the transitions of the 
model that will remain visible (the others will become 
interns and non visible). 
 Structural Analysis consists of specifying 
invariants associated with places. The results obtained 
are independent of the initial marking. The invariants 
represent the fact that a predicate joining the marking of 
a certain number of places remains always valid. A 
transition tj is said to be live for an initial marking M0 
if for all marking accessible from Mi belonging to M0* 
there exists a firing sequence containing tj from Mi. A 
Petri Net is said to be live for an initial marking M0 if 
all the transitions are live. In other words there are not 
transitions in the Petri Net that can not be fired. 
 For a clear description of the concurrency, conflicts 
and synchronization, we plan to consider only certain 
subsystems to model and analyze each using Time 
Petrinets. We have considered the following two 
subsystems: 
• Interregional migration  
• Intraregional migration when migration is in the 

region other than the birth region 
 
 In the following discussion Af is the agent who 
queries to find another agent Am. Fig. 3 shows all 
possible places with their states and state transitions for 
the BSPC protocol in a TINA model, when locating a 
mobile agent during interregional migrations. The 
following is a description of the places and transitions: 
 

ANALYSIS AND SIMULATION 
 
 We have performed the reachability analysis[35] of 
the   BSPC   protocol   by   generating   its  PetriNet  for  

 
 
Fig. 4: Petri net model for intraregional migration of 

the mobile agent in the region other than the 
birth region 

 
 
Fig. 5: Model specification in TINA for interregional 

migration of the mobile agent 
 
interregional migration and intraregional migration. A 
time petrinet analyzer software called TINA is used to 
perform the automatic validation of properties in the 
Petri Nets, which uses enumeration approach[4]. 
 
Reachability: a marking Mi is said to be reachable 
from an initial marking M0 if there exists a sequence of 
firings that transform M0 to Mi. It has been proved that 
the reachability problem is decidable[22] although it 
takes exponential space (and time) to verify in the 
general case. 
 
Boundness: a place Pi is said to be bounded for an 
initial marking M0 if for all marking accessible from 
M0 the number of tokens in Pi is finite. A Petri Net is 
said to bounded for an initial marking M0 if all the 
places are bounded. Formal specification of BSPC 
model in TINA is shown in Fig. 5.  
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Fig. 6: Model analysis options, a snapshot in TINA 
 

 
 
Fig. 7: Output in quiet format for marking graph upto 

level 1for petrinet in Fig. 3 
 
 TINA provides the tools for reachability, structural 
analysis and stepper simulator (as shown in Fig. 6); in 
this paper we performed the reachability analysis for 
marking graph at level 1, level 2 and at level 3, 
structural analysis and stepper simulator too for models 
shown in Fig. 3 and 4. Marking graph at level 1, output 
in format quiet reports in Fig. 7, that petrinet has 13 
plces, 23 transitions, TINA takes 0.0 seconds for this 
task. 
 In reachability analysis, Petrinet (Fig. 3) is found 
bounded, has 33176 markigs, 240152 transitions and it 
takes 1.594s for this task. Liveness analysis in TINA 
reports that net is live, has nil dead markings and 
transitions, has 33176 live markings with 23 live 
transitions and takes 0.281s for this task (Fig. 7). 
Similarly reachability analyses for level 2 and level 3 of 
the petrinet (Fig. 3) is found bounded and live. 
 In reachability analysis, Petrinet (Fig. 4) is found 
bounded, has 182 markigs, 763 transitions and it takes 
0.000s for this task. Liveness analysis in TINA reports 
that net is live, has nil dead markings and transitions, 
has 182 live markings with 11 live transitions and takes 
0.000s for this task (Fig. 8). Similarly reachability 
analyses for level 2 and level 3 of the petrinet (Fig. 4) is 
found bounded and live. 

 
 
Fig. 8: Output snapshot of reachability analysis of the  

model for marking graph at level-1, for petrinet 
in Fig. 4 

 
 For simulating the BSPC, Stepper simulator is run 
for model with initial marking shown in Fig. 3. There is 
smooth running of all the queries in the form of tokens. 
With the shown initial markings and for some other 
initial markings we could see the processing of the 
seven queries successfully. Similarly model shown in 
Fig. 4 is also simulated using the same marking shown 
in the figure and for some other markings too.  
 

PARAMETRIC EVALUATION AND 
COMPARISON RESULTS 

 
 To evaluate a location management technique for 
mobile agents, following are some considerable 
parameters: 
 
• Availability: It is defined as the percentage of the 

time in which the system works. According to 
the[1], the availability can be calculated as 
following by denoting by A, A= 
MTTF/(MTTF+MTTR) where MTTF means mean 
time to fail and MTTR means mean time to repair 

• Scalability: It measures the overall system 
response when the number of agents grows 

• Migration overhead: It is defined as the 
percentage of the time spent by the execution of the 
location update operation during migration process. 
It can be determined using the following formula 

 
   Om = Tu / ( Tu + Tm)  
 
where Om is migration overhead, Tu is the time spent in 
location update operation and Tm is the duration of the 
agent migration from one host to other. 
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Interaction overhead: It is defined as the percentage 
of the time spent in operation of finding the current 
location of the agent to be located from the location 
database and the duration of the catching during an 
interaction process. The following formula using 
notation Oi can determine it; Oi = Tc / (Tc+ Ti) 
 Where, Tc is the duration of the location finding 
and the agent catching phase, while Ti is the duration of 
the interaction (i.e. message sending). Any well-
designed agent location finding technique should aim to 
achieve the best values for these parameters. It is hard 
to guarantee for having simultaneous optimization of all 
these parameters. Therefore, aim remains to obtain a 
good trade - off between all above parameters 
 
Message complexity: It is defined as the total number 
of messages needed to travel around the network to 
locate an agent. 
 We calculate the migration availability and 
interaction availability by calculating the location 
updating fault rate and location finding protocol 
availability respectively. Both we calculate in terms of 
fault rate of generic network link fault rate and site fault 
rate. Assumptions: Ignoring any node failure i.e. we 
expect there is no failure of any node. 
 Availability strongly depends on Mean Time To 
Fail (MTTF) and Mean Time To Repair (MTTR) of the 
system parts (computers, network etc.) involved in 
migration and interaction. MTTF can be expressed as 
MTTF=1/Rf where Rf is the average fault rate. Thus to 
evaluate the availability, we will compute the overall 
fault rates of the migration and interaction phases. 
 
Location updating availability: As far as migration is 
concerned, the fault rate can be expressed as the sum of 
the agent transfer fault rate and the location updating 
fault rate. The contribution of the first term does not 
depend on the location protocol used and will not be 
considered since it does not affect our comparison. For 
evaluating migration fault rate concentrating on 
location updating fault rate only, In the Database 
Logging (DL) technique, each migration implies the 
updating of a remote database and involves the network 
and a specialized site (the location database site): 
 
    Rf 

(DL) = Rfn + Rf š   (1) 
 
 In the Path proxy (PP) technique, each migration 
involves the creation of a proxy in the local site:  
 
    Rf

(PP) = Rfs   (2)  
 

 In SPC protocol, during intraregional migration 
(birth region or other region), if the RAR of the region 
cannot be updated and only Site Agent Registers (SAR) 
are updated, the agent can still be located;  
 
    Rf

(SPC) = Rfs   (3)  
 
 While, for interregional migration the updating 
operations of the RAR of the source region and the 
agent’s region of the birth can fail without affecting the 
correctness of the location phase. This implies that, in 
evaluating migration availability, we can consider the 
fault tolerance of the mandatory operations alone, 
unless the overall migration has had to fail because the 
agent could not be reached.  
 These (operations without which locating mobile 
agent is not possible) are the updating of SAR�s, for 
intraregional migration and updating of SAR�s and 
RAR�d.region, for interregional migrations. By indicating 
the percentage of intraregional migration in the whole 
distributed system with £, we can express the total 
migration fault rate of the SPC protocol as a mean 
between intraregional fault rate (Rf s) and interregional 
fault rate (Rfs + Rf š + Rf�):  
 
  Rf 

(SPC) = £ Rfs +(1-£)(Rfs + Rf š + Rf �) 
    =Rfs+(1-£)( Rf š + Rf �)   (4)
   
 In case of BSPC protocol, during intraregional 
migration within birth region of the mobile agent, no 
update operation is required; agent can still be located 
(as within birth region broadcasting is used, on locating 
request only), means no RAR or SAR update is done. 
So intraregional fault rate: 
 
   Rf 

(BSPC) = nil   (5)  
 
 During intraregional migration other than the birth 
region if RAR cannot be updated, still agent can be 
located (as SAR are updated). So intraregional fault 
rate: 
 
   Rf

(BSPC) = Rfs   (6)  
 
 While for interregional migration  
 
   Rf 

(BSPC) = Rfs+Rf š+Rf �   (7)  
 
 By indicating the percentage of intraregional (birth 
region) migration as �b, intraregional migration (other 
than birth region) as �, Now we can express the total 
migration fault rate of BSPC protocol as a mean 
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between intraregional fault rate Rfs and interregional 
fault rate (Rfs + Rf š + Rf �):   
 
Rf 

(BSPC) = �b (nil) + � Rfs +(1-( �b + �))( Rfs + Rf š + Rf � )  
or  
Rf

(BSPC) = (1- �b)(Rfs + Rf š + Rf � ) - �(Rf š + Rf � )   (8)  
 
 From Eq. 8, we observe that more is the value of �b 
less is the total fault rate and 0< �b <1 and 0< � < 1 . 
From Eq. 1, 2, 4 and 8, we can assert that PP protocol 
offers the best location updating availability degree; DL 
has the worst behavior while BSPC offer better than 
SPC for more intraregional migrations within birth-
regional. 
 
Interaction fault rate: For interaction fault tolerance, 
we will evaluate the availability of the location finding 
protocol required at time t by generic agent wants to 
interact with the ith agent. Once again, this will be 
determined by calculating the total fault rate. 
 In the DL technique, location finding involves a 
query to the location database site: 
 
   Rf

(DL)’ (i, t) = Rf n+Rf š   (9)  
 
 Where s(i, t) represents the number of migrations 
performed by the ith agent at time t. 
 If PP is used to find an agent, the complete agent 
path starting from the home site has to be followed:  
 
   Rf

(PP)’ (i, t) = s(i, t) (Rf n+Rf s)   (10) 
 
 Applying the query propagation technique, the 
interaction fault rate of the SPC protocol strongly 
depends on the updating operations performed during 
migration. The fault rate for SPC comprised between a 
minimum value Rf(best)

(SPC)’(i, t) in best case when 
during migration all the updating operations are 
performed and a maximum value Rf(worst)

(SPC)’(i, t) in 
worst case when only the mandatory operations are 
performed. Assuming that the searched agent is not in 
its birth region and in its itinerary it does not visit the 
same site and region more than once, then interaction 
fault rate for SPC in best case and worst case values 
are: 
   Rf(best)

(SPC)’(i, t) = 2(Rf n + Rf š)   (11) 
 
   Rf(worst)

(SPC)’(i, t) = r(i, t)( Rf n + Rf š)+ 
   s(i, t) (Rf �+ Rf s)  (12) 
 
 The general case can be expressed as: 
  Rf

(SPC)’(i, t) = kr(i, t) (Rf n+Rf š)+ 

  ks(i, t)( Rf �+Rf s)   (13)  
 
kr(i, t) represents the number of regions in the search 
path from the RARm.region to the current location of the 
agent. it depends on the number of last consecutive 
interregional migrations featuring only the mandatory 
updating operations. ks(i, t) represents the number of 
locations (hosts) in the search path from the RARm.region 
to the current location of the mobile agent, they 
depends on the number of last consecutive intraregional 
migrations featuring only the mandatory updating 
operations. Each time RAR�s.region cannot updated, ks(i, 
t) increases as �s is now on the search path. Each time 
RARm.region cannot be updated kr(i, t) increases as 
RAR�s.region now belongs to the search path. While 
when migration completes with a success of all the 
remote register updating, kr(i, t) and ks(i, t) immediately 
reach their minimum values ( respectively 2 and 0). So 
looking best case possibility, there is low probability 
that kr(i, t) and ks(i, t) can reach high values, unless 
there is very high fault rate. Obtaining an analytical 
expression for these two parameters requires a complex 
analysis, which, from our view does not give additional 
important information in determination of availability. 
 In BSPC protocol also, interaction fault rate 
strongly depends on the updating operations performed 
during migrations in any application domain and same 
as in SPC, if we look upon the best application domain 
area for BSPC (in which there is a low frequency of 
locating request), like in a company which has several 
franchise spread all over the world, a single franchise is 
having its own LAN and each franchise’s LAN is 
interconnected with each other. Most of the tasks are 
locally managed like pay slip generation of the 
employees. Each franchise has several departments. If 
the employees records are kept in distributed manner 
then particular mobile agent for collecting the record of 
the employees will at most roam in its birth region 
collect the record and prepare the pay slip. So most of 
the migrations will be intraregional and within the birth 
region.  
 For normal application domain, with high mobility 
of mobile agents, with many intraregional migrations 
out of the birth region and there is high frequency of 
locating request.  
 
  Rf(best)

(BSPC)’(i, t)=2(Rf n + Rf š)   (14)  
 
 For specific application domain area of low 
frequency of locating query and high degree of 
migrations within birth re: 
  Rf(best)

(BSPC)’(i, t) = Rf �+Rf š   (15)  
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  Rf(worst)
(BSPC)’(i, t) = r(i, t)( Rf n+Rf š)+ 

  (1-�b )s(i, t) (Rf �+Rf s)+�b s(i, t)(Rf �+Rf š)  (16)  
 
 The general case can be expressed as:  
 
  Rf 

(SPC)’(i, t) = kr (i, t)( Rf n + Rf š)+ 
  (1- �b )ks (i, t) (Rf �+ Rf s) + �b ks (i, t) 
  (Rf � + Rf š)   (17) 
 
 Now, we analyze the interaction availability with 
respect to the number of migrations made by the agent 
(hop count). The results are reported in the form of 
graph. Where SPC and BSPC are evaluated for some 
reference values of kr (i, t), ks (i, t) and s(i, t). The graph 
in Fig. 2 shows that BSPC-best case in specific 
application domain offer the highest interaction 
availability and also the BSPC-general case presents a 
very high value. The worst performance is registered by 
the PP technique, which, for a high number of hop-
count is also worse than the BSPC. 
 For making these comparisons for the BSPC 
protocol, we have considered the case of searching of 
the agent always begin from Agent Name Server of the 
agent’s birth region. 
 
Scalability: Scalability can be evaluated by considering 
the overall distributed system response when the 
number of agents n(t) and the number of migrations of 
each agent s(i, t) increase. These parameters affect the 
network usage (Un). Network usage increases as the 
number of agents to locate grows. Site usage (Us) 
indicates the number of entries used in all the location 
database of the distributed environment (including 
proxy elements). We express the global system usage 
(U) as the sum of Un and Us suitably weighted.  
 The determination of the usage parameters may be 
hard, so a simplification of the system model is 
required. In determining an expression for Un, the 
topology of the global network should be considered 
which leads to evaluating the usage of the links 
between the various sites (Site Agent Registers) and the 
specialized sites (like Region Agent Registers). 
However if we assume a uniform distribution of the 
sites over the various links, the overall network usage 
of each link can be expressed as proportional to a factor 
Tm/n, where Tm is the total number of messages and n 
is the total number of sites queried. In this case, 
network usage could play a substantial role if we 
consider the presence of a small number of location 
database sites n. If C is the average capacity each link 
then for the condition Tm/n>C. If we assume that n is 
adequate for the considered environment such that 

Tm/n<C,  we  can concentrate our analysis on the role 
of Us.  
 We calculate system usage by looking two factors 
first one is the number of entries related to the 
particular mobile agent at the sites (as the mobile agent 
register itself at the site) and second is the number of 
agents.  
 For DL we assume the number of database sites 
such that network congestion is not caused. Sites 
involved in DL are the location database site and the 
current site of the agent where agent registers its 
presence.  
So  
   U(DL)(t) = 2n(t)   (18) 
 
 For PP there is proxy on each site for reference to 
the next location of the agent, thus 
 

   
n(t)

i 1

U(PP) (t) = (1 s(i, t))
=

+�   (19)  

For SPC, site usage can be evaluated by considering the 
registers growth in the worst case - when all the 
registers are updated during migration. In best case 
when only mandatory updating is performed; 
 

   
n(t)

i 1

Uw(SPC) (t) = (s(i, t) r(i, t))
=

+�    (20) 

 

   
n(t)

i 1

Ub(SPC)(t) = (1 r(i, t))
=

+�    (21) 

In general global system usage can be expressed as; 
 

   
n(t )

i 1

U(SPC) (t) = (1 ks(i, t) r(i, t))
=

+ +�    (22) 

 
For BSPC[23], consideration of intraregional migrations 
is the best case, as per its best application domain we 
assume that each region has adequate number of sites 
and mobile agents locating queries such that no network 
congestion occur when within the birth region 
broadcasting is used to locate the agent; 
 
   

n(t )

i 1

Ub(BSPC) (t) = s(i, t)
=
�    (23) 

 
For BSPC, worst case is when there are more inter-
regional migrations and intra-regional migrations 
within the birth region are nil then it performs like SPC, 
so equation no. 20 is suitable for worst case of BSPC; 
 

  
n(t )

i 1

Uw (BSPC) (t) = (s(i, t) r(i, t))
=

+�    (24) 



J. Computer Sci., 4 (3): 256-271, 2008 
 

 268 

  
n(t )

i 1

U(BSPC)(t) = (ks(i, t) r(i, t))
=

+�    (25) 

 
 Now, if we consider that the database sites can be 
designed to handle a large number of entries, their 
contribution in evaluating scalability can be ignored. 
This leads to the following equations: 
 
   U(DL)’(t) = n(t)  (26) 
 

   
n(t )

i 1

U(PP)'(t) = (1 s(i, t))
=

+�   (27) 

 
   Ub(SPC)’(t)= n(t)   (28)  
 

   
n(t)

i 1

Uw(SPC)'(t)= s(i, t)
=
�    (29) 

 

   
n(t)

i 1

U(SPC)'(t) = (1 ks(i, t))
=

+�    (30) 

 

   
n( t)

i 1

Ub(BSPC)'(t) a = s(i, t)
=
�    (31) 

 

   
n( t )

i 1

Uw(BSPC)'(t) = s(i, t)
=
�    (32) 

 

   
n( t)

i 1

U(BSPC)'(t) = (ks(i, t))
=
�    (33) 

 
 Above relations shows that DL and SPC-best case 
present the best scalability, while PP is the worst 
technique. In general BSPC scalability is better than 
SPC.  
 
Message complexity of SPC & BSPC: Network 
overhead occurs because of travel time of messages to 
find mobile agent location in response to a location 
finding query. We can calculate network overhead in 
terms of the messages complexity. We define the 
message complexity as the total number of messages 
needed to travel on the network, for serving single 
location finding query. So we derive the following 
expression for network overhead for single query: 
 Network overhead ∝ message complexity For 
BSPC protocol in case of intraregional migration (birth 
region), for any query 1 message will come first to the 
birth region of the mobile agent which is to be 
contacted for any reference then if there are suppose 
maximum m hosts in a region and minimum 1 hosts 
then m number of messages will be broadcasted to all 

hosts and the only one massage will be sent back from 
the host where the agent will be residing, so total nh+2 
messages are required for serving a single query, where 
nh=m, irrespective of number of hops of the mobile 
agent and nh denotes the number of hosts (queried) in a 
region.  
 The message complexity for SPC protocol is nh+2 
where 1≤nh≤m, it depends on the number of mobile 
agent hops. As per the best of our knowledge we 
calculated it first time. Figure 5 shows the simulation 
results- message complexity in BSPC is not more than 
the maximum possible limit in SPC but equal to 
maximum possible limit. 
 In interregional migration, let the agent can 
migrates through (from its birth region) at the most n 
regions. Assume that there are m sites in each region. 
For total n region, one will be birth region. So 1≤nr≤n. 
If mobile agent crossed nr regions and in final 
destination region is only at one site, one message is 
required to reach from RALR to SALR. 
 Now if it is on the same SAR agent is found by 
using nr+2. If there are at most m migrations within that 
region then maximum nr+1+nh (1≤nr≤n,1≤nh≤m) (nr is 
the number of regions migrated or crossed over by the 
mobile agent and nh is the number of hosts migrated 
within a region) total messages will be required. 
 
Advantage of BSPC over SPC: 
 
• In SPC there is an update operation at each 

migration whether the agent is in its birth region or 
in any other region, while in BSPC these update 
operations get canceled in case of the agent is in its 
birth region. Therefore cost of update operation for 
BSPC is reduced. Figure 11 shows the same for 10 
hosts in a region, it shows that cost of update 
operations is saved completely consequently, the 
speed of processing of the agent also increases, as 
at the time of migration, time is not wasted in 
doing the operation of leaving proxy and no need 
of contacting to the RALRm:region (birth region’s 
Region Agent Location Register) also  

• It will be very effective for very large network, 
with large number of regions and where each 
region has not large number of hosts, as 
broadcasting is expensive for large area (in our 
protocol it is limited by broadcasting in birth 
region only)  

• Best possible results are expected at low frequency 
of queries for an agent and the low frequency of 
interregional migrations and high frequency of 
intraregional migrations (in birth region)  
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• Locating agents is also comparatively faster in 
BSPC as following the long path is not needed 

• BSPC uses the memory more efficiently by 
reduction in saving of proxies at the host machines 
in case mobile agent is migrating within birth 
region at high frequency 

 
RESULTS AND DISCUSSION 

 
 We developed a novel location management 
protocol BSPC applicable for multi-region 
environment. BSPC is designed for the applications 
having low frequency of locating queries (i.e., low call 
to mobility ratio) and with high frequency of migrations 
of mobile agents in its birth region compared to any 
other region. To locate the mobile agent when it is 
roaming in its birth region broadcasting is used. To 
locate the agent not present in its birth region path of 
proxies are followed. It allows the agents to roam more 
freely in their birth region without contacting to the 
home node or source node as no update operation is 
required and no proxy is to be left at migration within 
birth region. This improves the speed of performing the 
task by the mobile agent. Location database is 
distributed in region’s registers RALR and SALR.  
 Petri net modeling has been chosen because of the 
complexity of the system and the configuration of the 
network. Inhibitor arcs were used for modeling lock 
function for the registers. This is explained by the fact 
that from every regular place, a transition is possible to 
the next regular place but if some error occurs (here 
error is basically the state when register is locked as 
being in use by the agent for location updating), 
transition cannot occur. Eventuality of protocol 
operation and hence its liveness properties can be easily 
specified using Time Petrinets, because of the 
restrictions that enabled transitions must fire as soon as 
their input places have available tokens.  
 Analysis results at different marking levels and in 
different output formats report that model is having 13 
places and 23 transitions, reachability graph is bounded 
and live. Analysis clearly reports that there are nil dead 
markings and nil dead transitions. It is found that the 
Petri Net model for interregional, intraregional 
migration is found bounded and live. 
 The liveness property encapsulates the concept of a 
system which will be able to run continuously means a 
system which does not deadlock. In the presented 
Petrinet model, the request goes in the form of the 
token, which starts from the birth region of the mobile 
agent (to be searched) and passing through all other 

region agent registers and site agent registers, 
depending on the mobile agent migration path, finally 
token reaches to the final state (named agent found) and 
the protocol informs the found location information to 
the user/agent who requested to locate the mobile agent.  
 A Petri Net modeling, analysis and simulation of 
the BSPC using TINA, which is using the enumerative 
approach for analyzing the time Petri net and found the 
model bounded and live. Verification, validation and 
simulation based on TINA are found to be an efficient 
way to improve the design process.  
 We measured the efficiency of Database logging, 
path proxy and search by path chase and broadcasting 
with search by path chase mobile agent location 
management techniques by evaluating the parameters 
location updating availability, interaction fault rate and 
scalability. 
 We calculated migration availability and 
interaction availability BSPC[19] in terms of fault rate of 
generic network link and generic site ( 0.02fault h−1) 
with MTTF = 50 h and fault rate of generic network 
link belonging to a sub net (0.01fault h−1) with MTTF = 
100 h, results shown in Fig. 9 tells that interaction fault 
rate for BSPC is lower than SPC. PP protocol offers the 
best location updating availability degree; DL has the 
worst behavior while BSPC offers better than SPC for 
more intraregional migrations within birth-region. DL 
and SPC-best case present the best scalability, while PP 
is the worst technique. In general case BSPC scalability 
is better than SPC.  
 Message complexity of BSPC also does not go 
beyond the maximum value which goes in SPC[10]. 
Figure 10 and 11 shows that BSPC costs less with 
respect to message complexity and number of update 
operations for low Call to Mobility Ratio (CMR) and 
for high frequency of migrations within birth region. In 
this way BSPC perform better, as a reactive approach 
for locating mobile agents, than the path proxies, 
database logging and SPC. Even than best applicable 
application domain of BSPC is, where there is low 
frequency of request for locating mobile agents and 
there are more (in birth region) intraregional migrations 
of the mobile agents like pay slips generations of the 
employees of an organization having worldwide 
branches, in which each branch have their own network 
like LAN, a particular mobile agent is performing the 
task of collecting the employee’s database locally from 
different sections of the branch and generating the pay 
slips i.e. most of the migrations are within birth region.  
 BSPC protocol can be extended to use multicasting 
by RALR (called Region Agent Tracker also) for its  
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Fig. 9: Interaction fault rate vs mobile agent hop count 
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Fig. 10: Number of sites migration vs. message 
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Fig. 11: Cost of update operations Vs. no. of 
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own generated mobile agents only (whenever are they 
in the network) instead of broadcasting within birth-
region. We intend to try for this extension in future in 
addition with BSPC implementation on Aglet network. 

Further we intend to calculate some more parameters 
like interaction overhead, migration overhead for DL, 
PP, SPC, BSPC and for some other existing mobile 
agent location management techniques. 
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