
Journal of Computer Science 4 (7): 503-508, 2008
ISSN 1549-3636
© 2008 Science Publications

Corresponding Author: Mabroka A. Mayouf, Faculty of Technology and Information Science, University Kebangsaan Malaysia,
 43600 UKM Bangi, Selangor, Malaysia Tel: +60162320942, +60126623470 Fax: +60390575075

503

Animation of Natural Language Specifications of

Authentication Protocols

Mabroka Ali Mayouf and Zarina Shukur
Faculty of Technology and Information Science,

University Kebangsaan Malaysia, Selangor, Malaysia

Abstract: Problem Statement: A few visualization tools have been created for protocol design and
analysis. Although these tools provide an environment for designing security protocols, each one has its
own protocol definition language (its also called informal specification language). The problem is that
the user should understand the language which related to the used tool in order to define an exist protocol
or design a new one. For specification, a language needs to be intuitive as well as easily usable and
understandable by the security protocol engineer. It must be able to precisely and unambiguously specify
the behavior of security protocol. Approach: In this study, we propose an approach for protocol
specification based on the Natural language definitions of protocol semantics. By using programmatic
semantics together with animations, representational flexibility of different protocol demonstration is
retained for as long as it is needed. Result: This study provides an environment that can be used by
protocols designers to develop and investigate different scenarios of security protocols especially
authentication protocols. Natural Language Protocol Specifications (NLPS) approach is used to define
the protocol. The environment accepts the natural language text of protocol specifications and converts it
to animations of protocol behavior. Conclusions/Recommendations: NLPS environment can really help
protocol designer to consider and investigate the behavior of security protocols. It can also be used for
teaching-learning security protocol concepts. In further, we will consider the possibility of analyzing
security protocols using our NLPS environment and animation techniques in order to improve the
correctness; that is determining whether or not the intended security properties of a protocol do hold.

Key words: Animation, natural language programming, authentication protocol, protocol specifications,

 storytelling

INTRODUCTION

 In the field of software engineering, graphical and
diagrammatic representations are used to support many
activities of the software development process such as
specification design and analysis. Interactive visual
representation of requirements specifications will help
users to create, review and understand formal
specifications which are used for protocol analysis.
Providing an animated interactive environment for
design security protocol will improvise readability and
understandability of secure communication between
individuals.
 An authentication protocol is an exchange of
messages having a specific form for authentication of
principals using cryptographic algorithms [5].
Specifications that describe and design authentication
protocols are usually very complex to read and
understand with a lot of different entities of different

types being passed back and forth between actors in the
system. Requirements specifications of authentication
protocols are usually described in an informal standard
notation. The standard notation specifies these types of
protocols at high level of abstraction indicating the
order, the direction of flow and the contents of protocol
messages.
 However, informal standard notation does not
explicitly state the necessary actions to verify messages
received by neither the principals nor the meaning of
the message contents. Furthermore, many informal
standard notations have been created to describe the
specifications of protocol and users confused as to
which one should be used for describing protocol.
Although tools for designing and analyzing security
protocols exist[1-3] , the definition of the protocol
specifications are still written informally.
 Natural language definitions of protocol semantics
are intuitive but they are inherent ambiguities.

J. Computer Sci., 4 (7): 503-508, 2008

 504

Fig. 1: Extend BNF ProtoViz specification language

While some see the inherent “ambiguity” of natural
language as a problem, we see it as an important
advantage[4]. By using natural language understanding
to construct the mapping between natural language
protocol specifications and object-oriented
programming language details on a dynamic basis,
representational flexibility is retained for as long as it is
needed.
 From storytelling viewpoint, it is true that every
program tells a story. Programming, then, is the art of
constructing a story about the objects in the
program and what they do in various situations[4].
From the definition of authentication protocol[5], it can
also be mentioned that every protocol tells a story.
So, it is possible for natural language protocol
specifications to be converted into programs and
animations in order to demonstrate the behavior of
protocol. Animation technique facilitates ‘‘reuse’’ more
naturally, since the basic components and functions of
security protocols and animation can be reused for
several different protocol animation scenarios. This is
evidenced by the rapid prototyping capability of
computer and video games where although the
characters and story lines change, the basic animation
remains constant[6].
 This research describes the possibility of an
animation of Natural Language Protocol Specifications
(NLPS) of authentication protocol by presenting an
environment which help protocol designer to create,
review and understand the behavior of security
protocols.

Theoretical background: Many animated visualization
tools has been developed in computer sciences
education. There is a widespread belief among
computer educators that visualization technology can
improve the effectiveness of learning[7]. Although tools
for illustrating computer networking and security
protocols concepts exist[8-11], users are not able to add

Fig. 2: GRASP commands for Deffie-Hellman protocol

or modify these tools in order to consider different
concepts or protocols.
 For protocol design, few tools have been
developed. One of the protocol visualization tools is
ProtoViz which is reported by Elmqvist[1]. This tool
allows arbitrary protocols to be described in a step-by-
step fashion. The visualization consists of animated
message packets moving back and forth between actors.
It accepts a protocol description specified using a
simple language (Fig. 1) and then transforms its entities
and actors into a visual form.
 However, this language is informal and user
should understand this language in order to define and
specify his protocol. GRASP[3] is another tool
which employs a similar approach to ProtoViz.
It describes a protocol by using a simple protocol
specification language that allows an arbitrary number
of actors and message passing. The language is also
informal and slightly more complex than ProtoViz
(Fig. 2).
 Most of the tools have its own protocol
specifications definition and users are not sure which
one is more suitable to be used. In this research, an
environment for protocol design is provided which
most users who study security protocol concepts can
utilize almost immediately.

MATERIALS AND METHODS

 The story is a concept used by several research
communities in several different ways. In regards to
both security protocol specifications and programming
storytelling, a story is hereby defined as a series of
scenes or events.

J. Computer Sci., 4 (7): 503-508, 2008

 505

Table 1: Protocol actors
Name Explanation Visual form

Alice First participant in all the protocols

Bob Second participant in all the protocols

Carol Participant in the three- and four
 party of protocols

Dave Participant in the four party of protocols

Eve Eavesdropper (someone is listening to
 your message)

Mallory Malicious active attacker (someone is stealing
 your message and making change to it)

Trent Trusted arbitrator (it might be a server, in
 this research protocols will be called a Key
 Distribution Center (KDC))

 Table 2: Operations on message
Method Description
Create message Create a message box
Generates Create value
Extracts Get value from the message box
Concatenates Put the information into the message box
Encrypt Lock the message box with suitable key
Decrypt Unlock the message with the key that it is locked by
Sign Sign the message with the suitable key
Verify signature Focus on the signed message
Verify value Focus on the verified value
Confirm value Value is equal to the value that has been sent last

 A protocol is a series of steps, involving two or
more parties, designed to accomplish a task[12]. From
this definition, a “series of steps” means that the
protocol has a sequence of “scenes” from start to end.
Every step “scene” must be executed in turn. “involving
two or more parties” means that at least two people
“actors” are required to complete the protocol. A person
alone does not make a protocol.
 If the protocol is organized as a series of scenes,
the execution of the protocol proceeds linearly through
the scenes and each scene involves at least one of two
things: computations by one or more of the actors, or
messages sent among the actors, then this organization
will be equivalent to a story.

Natural Language Protocol Specifications (NLPS):
the first step in designing security protocol is to define
the protocol specifications using text form (natural
language texts), then translate these texts into informal
specifications using the standard notation. A simple

protocol, where actor A (denoted to Alice) sends actor
B (denoted to Bob) a message consisting of her
identifier A and a random number (it is also called
nonce) RA, all encrypted E with B’s public keyKB,
would be specified as:

A B: EKB{A, RA}

 The notation above is informal. It does not
explicitly state the actions necessary to verify messages
received by the actors, nor the meaning of the message
contents. For specification, a language needs to be
intuitive as well as easily usable and understandable by
the security protocol engineer. It must be able to
precisely and unambiguously specify the behavior of
security protocol. Natural language definitions of
protocol semantics are intuitive, but they are inherent
ambiguities. By using programmatic semantics[13]
together with animations, representational flexibility of
different protocol demonstration is retained for as long
as it is needed.
 The concepts of writing natural language protocol
specifications is based on the strategy used by
Schneier[12] . In order to demonstrate protocols, enlisted
are the aid of several actors (Table 1). Alice and Bob
are the first two. They will perform all general two-
person protocols. As a rule, Alice will initiate all
protocols and Bob will respond. If the protocol requires
a third or fourth person, Carol and Dave will perform
those roles. Other actors will play specialized roles as
needed.

Rules of writing natural language protocol
specifications: According to local environment, the
script of protocol specifications must be written as
follows:

• Each protocol has its own script
• Each script consists of a series of scenes
• The execution of protocol proceeds linearly
 through the scenes
• Each scene involves two actors and one message
 sent
• Message content is explained during the scene
• Operations on messages (Table 2) should also be
 explained during the scene.

An example interaction: Below is a demonstration of
a run through of a brief scenario using Wide-Mouth
Frog protocol[14]. This protocol is the simplest
symmetric-key cryptography and Trent (a trusted
server). Both Alice and Bob share a secret key with
Trent. The keys are just used for key distribution and

J. Computer Sci., 4 (7): 503-508, 2008

 506

(Scene 1a)

(Scene 1b)

(Scene 1c)

(Scene 2)
Fig. 3: The Animated scenes of wide-mouth frog protocol

not to encrypt any actual messages between users. To
demonstrate this protocol, first, the user chooses actors
from actor’s gallery before writing protocol script. The
actor’s gallery consists of images for each actor which
has been enlisted in Table 1. Second, the user writes the
protocol specifications as a script as below:

• Alice concatenates a timestamp, Bob’s name and a
 random session key and encrypts the whole
 message with the key she shares with Trent. She
 sends this to trent, along with her name
• Trent decrypts the message from Alice. Then he
 concatenates a new timestamp, Alice’s name an
 the random session key. He encrypts the whole
 message with the key he shares with Bob and then
 sends this message to Bob

 The input two scenes to our environment are
parsed using the MontyLingua natural language
understanding system[15], the system first performs a
surface parse of each input scene (one sentence or
more) into VSOO (verb-subject-object-object) form,
then semantic recognizer mulls over the VSOO to
identify existing object-oriented semantic where each
verb is interpreted as a method and nouns as an object.
 A simple class is built and passed to the action
animator engine to animate the appropriate methods
upon the chosen actors from the actor’s gallery. For the
previous example, the class which is built for the first
scene will be as:

Class scene1{
SENDER=”Alice”;
RECEIVER=”Trent”;

J. Computer Sci., 4 (7): 503-508, 2008

 507

MSG1[]=”Alice’s name”,
ENMSG;
ENMSG[]=”Alice’s keyshare”
”timestamp”,
“Bob’s name”,
“session key”,
Public void animate (SENDER, RECEIVER,
MSG1)
{
Animate(SENDER, RECEVIER, MSG1)
}
}

 The second scene class is as:

 Class scene2{

SENDER=”Trent”;
RECEIVER=”Bob”;
MSG1[]=ENMSG;
ENMSG[]=”Bob’s keyshare”
”Bobtimestamp”,
“Alice’s name”,
“session key”,
Public void animate (SENDER, RECEIVER,
MSG1)
{
Animate(SENDER, RECEVIER, MSG1)
}
}

 The animated scenes progressively demonstrate the
idea of the considered protocol is shown in Fig. 3.

RESULTS

NLPS environment: In this study an environment for
designing and describing security protocols, especially
authentication protocols, is proposed. The introduction
of NLPS approach can be used to design protocol
specifications. The possibility of designing a new
protocol is strongly provided. The environment consists
of six components which are scene/script editor, actor’s
gallery, parser, semantic recognizer, action animator
and protocol demonstration storage. The conceptual
design of our environment is shown in Fig. 4.

Scene/script editor: The role of this editor is to enable
users to write NLPS as texts. Each protocol consists of
a series of sequence scenes. Each scene demonstrates at
least two actors and one way message sent.

Actor’s gallery: User selects actors from actors’
gallery. The important actors of protocol demonstration
are enlisted in Table 1. As a rule, Alice should initiate

Scene/script
editor

The parser

Semantic
recognizer

Action
animator

Actor’s
gallery

Protocol
storage

Protocol
demonstration

User
User

Fig. 4: The conceptual design of NLPS environment

all protocols and any other actors may be selected to
respond.

The parser: The MontyLingua natural language
understanding system[15] is used to parse each input
script into VSOO (verb-subject-object-object) form.

Semantic recognizer: Semantic recognizer mulls over
the VSOO to identify existing object-oriented semantic
where each verb is interpreted as a method and noun as
an object. A simple class is built and passed to action
animator component.

Action animator: The passed objects/methods class is
linked to the action animator to animate the protocol
specifications (actors, operations on message, message
passing and messages contents).

Protocol demonstration storage: In order to view the
behavior of the protocol, storage is required so that the
protocol can be demonstrated anytime.

DISCUSSION

 The idea of NLPS approach is based on the
Programmatic Semantics of natural language and
storytelling approach. Programmatic Semantics is a
mapping between natural linguistic structures and basic
programming language structures, by taking the
position that programming is storytelling[13].
 The presented concepts of writing natural language
protocol specifications is based on the strategy used by
Schneier[12] . Therefore, protocol is hereby considered
as a series of scenes and each scene consists of one or
more sentences which involve two or more actors and
one message passing. Each sentence is parsed into
VSOO. Each verb is considered as a method which will
be animated together with the passed message. By
using programmatic semantics together with

J. Computer Sci., 4 (7): 503-508, 2008

 508

animations, the representational flexibility of different
protocol demonstration is retained as long as it is
needed. An animation of NLPS certainly has the
capability of improving the readability and
understandability of protocol behavior and security
protocol concepts.

CONCLUSION

 Our environment provides the possibility of
converting NLPS to classes where each verb is
interpreted as a method and noun as an object. Then,
action animator will animate the proper objects and
methods to demonstrate the behavior of the considered
protocol. We believe that such environment can really
help protocol designer to consider the behavior of
security protocol. The possibility of analyzing security
protocols using our NLPS environment will be
considered as a future work.

ACKNOWLEDGMENT

 We acknowledge MontyLingua and it’s author
Hugo Liu (http://www.web.media.mit.edu/~hugo/
montylingua).

REFERENCES

1. Elmqvist, N., 2004. ProtoViz: A simple security

protocol visualization. http://www.cs.chalmers.
se/~elm/courses/security/report.pdf.

2. Saul, E., 2001. Facilitating the Modeling and
Automated Analysis of Cryptographic Protocols.
Master thesis, University of Capetown, SA.
http://www.cs.uct.ac.za/Reasearch/DNA/SPEAR2.

3. Schweitzer, D. and W. Brown, 2007. Interactive
visualization for the active learning classroom.
ACM SIGCSE Bull., 39: 208-212.
http://doi.acm.org/10.1145/1227504.1227384.

4. Liu, H. and H. Lieberman, 2005. Metafor:
Visualizing stories as code. Proceeding of the 10th
International Conference on Intelligent User
Interface, Jan. 10-13, ACM Press, New York,
USA., pp: 305-307. http://doi.acm.org/10.1145/
1040830.1040908.

5. Syverson, P.F. and I. Cervesato, 2001. The logic of
authentication protocols. Lecture Notes Comput.
Sci., 2171: 63-137. http://www.
springerlink.com/content/5hj434d3m0pc7eln/.

6. Chen, D.J., W.C. Chen and K.M. Kavi, 2002.
Visual requirement representation. J. Syst.
Software, 61: 129-143. DOI: 10.1016/S0164-
1212(01)00108-X.

7. Naps, T.L., G. Rößling, V. Almstrum, W. Dann,
R. Fleischer, C. Hundhausen, A.K. Helsinki,
L.M. Helsinki, M. McNally, S. Rodger and
J.Á. Velázquez-Iturbide, 2003. Exploring the role
of visualization and engagement in computer
science education. ACM SIGCSE Bull.,
35: 131-152. http://doi.acm.org/10.1145/
782941.782998.

8. Baxley, T., J. Xu, H. Yu, J. Zhang, X. Yuan and
J. Brickhouse, 2006. LAN attacker: A visual
education tool. Proceeding of the 3rd Annual
Conference on Information Security Curriculum
Development, Sep. 22-23, Kennesaw, Georgia,
pp: 118-123. http://doi.acm.org/10.1145/
1231047.1231072.

9. Holliday, M.A., 2003 Animation of computer
networking concepts. J. Educ. Resource. Comput.,
3. http://doi.acm.org/10.1145/982753.982755.

10. Yuan, X., Y. Qadah, J. Xu, H. Yu, R. Archer and
B. Chu, 2007. An animated learning tool for
Kerberos authentication architecture. J. Comput.
Sci. Coll., 22: 147-155. http://portal.acm.org/
citation.cfm?id=1231091.1231116.

11. Yuan, X., P. Vega, J. Xu, H. Yu and Y. Li, 2007.
Using packet sniffer simulator in the class:
Experience and evaluation. Proceedings of the 45th
Annual Southeast Regional Conference, Mar. 23-
24, Winston-Salem, North Carolina, pp: 116-121.
http://doi.acm.org/10.1145/1233341.1233363.

12. Schneier, B., 1996. Applied Cryptography.
2nd Edn., Published by Wiley and Sons, Inc.,
USA., ISBN: 0-471-12845-7, pp: 21-23.

13. Liu, H. and H. Lieberman, 2005. Programmatic
semantics for natural language interfaces.
Proceedings of the ACM Conference on Human
Factors in Computing Systems, Apr. 2-7, ACM
Press, Portland, OR., USA., pp: 1597-1600.
http://doi.acm.org/10.1145/1056808.1056975.

14. Burrows, M., M. Abadi and R. Needham, 1990. A
logic of authentication. ACM Trans. Comput.
Syst., 8: 18-36. http://doi.acm.org/10.1145/
77648.77649.

15. Liu, H., 2004. MontyLingua: An end-to-end
natural language processor with common sense.
web.media.mit.edu/~hugo/montylingua.

