
Journal of Computer Science 4 (7): 530-537, 2008
ISSN 1549-3636
© 2008 Science Publications

Corresponding Author: Seyyed Morteza Babamir, Department of Computer Engineering, University of Kashan, Kashan, Iran
Tel: +98-361-5555333 Fax: +98-5559930

530

Synthesizing Behavioral Model of Event-Based Requirements

Seyyed Morteza Babamir

Department of Computer Engineering, University of Kashan, Kashan, Iran

Abstract: Problem Statement: in the software engineering field, satisfaction of user's requirements
by software has been a matter of concern. Therefore, monitoring software behavior against user's high-
level requirements has already received a considerable and significant attention. However, the gap
between low-level software behavior and high-level requirements has put an obstacle in the way of
monitoring. Approach: to overcome the obstacle, we presented a method to synthesize a behavioral
model of the event-based requirements in three steps: (1) eliciting event-based requirements; (2)
specifying the requirements in event-based formulae and (3) mapping the formulae into a behavioral
model. Results: to show effectiveness of the method, it was applied to requirements of a safety critical
system, called Railroad Crossing Control (RCC) one and a behavioral model was synthesized. The
model was used to synthesize monitor of the RCC system. The monitor is responsible for surveillance
of software behavior for preventing the collision between the train and some car at the junction of rail
and road.Conclusions: we proposed a systematic method started from users' requirements elicitation
and concluded with its behavioral specification. Focus of the method was on event-based real-time
requirements which were stated by scenarios in a sequence of real-time interactions.

Key words: Requirements Specification, Event-Based, Behavior Model

INTRODUCTION

 A concern in some software engineering fields
such as software monitoring, software development
process, for example, has been reconciling behavior of
system software with high-level users' requirements.
For run-time software monitoring, for example, the
reconciliation helps us to able to monitor the system
software behavior and determine whether the software
behavior is in accord with high-level users'
requirements or not.
 Since in real-time systems, users' requirements
indicate real-time constraints posing on the system
environment, the concern has been reconciling behavior
of system software with the real-time constraints. A
class of real-time systems is the event-based one in
which the system is responsible for adequate response
to the system environment events. The adequate
response is a timely response to the environment on
observing an environment event.
 A Railroad Crossing Control (RCC) system, for
example, is a real-time system that a "train arrival" is a
system environment event, "moving down the gate"
is a system reaction and "moving down the gate timely
on observing the train-arrival event" is a user
requirement.

 The aim of this study was to present a method to
synthesize a behavioral model from event-based users'
requirements. In the first step, we considered system
environment consisting of some concerns and then
elicited event-based user's requirements in environment
events and its related reactions. For example, in the
RCC system, "train" is an environment concern and the
arrival activity is an event and moving down the gate is
its related reaction, which it is used to control the
system environment.
 Having elicited the requirements, in the second
step, we presented a formal specification of the
requirements in predicates having an event-variable in
its premise and an action-variable in its conclusion. So,
each predicate premise indicates an environment event
and each predicate conclusion indicates a required
action. Lastly, the requirements were mapped to a
formal mode-based specification, which a mode
indicates a system software operation and corresponds
with a system action. The mode-based specification
indicating behavior model of the system software was
shown in the Petri-Nets automaton[1].
 To synthesize the behavioral model, we
systematically mapped a sequence of event happening
and reaction to a required mode changing of the system
software. The need for the mapping, which has
stipulated by[2], has shown by Fig. 1[3].

J. Computer Sci., 4 (7): 530-537, 2008

 531

Fig. 1: Reconciling event-based requirements with

software behavior[3]

Problem Statement: In the software engineering field,
satisfaction of user's requirements by software has been
a matter of concern. To get this satisfaction, software
behavior should be monitored against user's high-level
requirements. However, the gap between low-level
software behavior and high-level requirements has put
an obstacle in the way of monitoring. To bridge on the
gap, we reconciled high-level (user-level) requirements
with low-level (operational-level) ones in three steps:
we (1) elicited event-based requirements; (2) specified
the elicited requirements in event-based formulae and
(3) mapped the formulae to a behavioral model.

MATERIAL AND METHODS

 Reconciling high-level (user-level) requirements to
low-level (operational-level) ones is a matter of
concern, which has already proposed by others. The
common method to state high-level requirements is a
narrative style of requirements i.e., scenarios specified
in Message Sequence Charts (MSC)[4,5] and the
common method to specify low-level requirements i.e.,
behavioral model is an automata-based one. For
instance[6-9], specify high-level requirements in MSC
and then generate a behavioral model in Labeled
Transition System (LTS). Kruger et al.[10] shows high-
level requirements in MSC and then generates a
behavioral model in UML Statecharts. Lamsweerd and
Willemet[11] shows user-level requirements in MSC and
generates requirements specification in Linear
Temporal Logic (LTL) formula and then generates a
state-based (mode-based) model in Buchi automata. In
a similar manner, some[12,13] show scenarios in UML
Sequence Diagrams and then generate behavioral model
in UML Statecharts. The derivation of the SCR tabular
model from goal-oriented specification of requirements
is a translation from special high-level requirements to
behavioral model used by[14].
 However in this research, we consider real-time
requirements via the scenarios stated in a sequence of

real-time event- action variables called real-time
interactions and is formally specified based on Event
Calculus (EC)[15] formulae. Then a behavioral model in
Petri-Nets is generated from the formula. The EC is
capable of stating interrelationship between occurrences
of environment events and initiating environment
states. This feature assists us in the bridging gap
between the event-based specification and the state-
based one. While each EC formula formally shows an
interrelationship between an environment event and an
environment state changing, the Petri-Net shows the
system state changing corresponding with the formula.
In[16], in a reverse manner, we stated the expected
behavior (states) of a program in a tabular method and
then extracted the program security policies in the EC
formulae from the table.

The approach principles: Our approach deals with
operationalization of user-level requirements by
synthesizing a behavioral model of the requirements.
Some efforts stated were recently made to systematize
this process by deriving a behavior model from
scenarios of interactions between the system
environment and the system software; however, we
focus on event-based real-time systems and therefore it
is necessary to use a event-aware formal method to
specify event-based requirements and use a mode-based
formal method supporting clearly events to specify
behavioral model.
 To contribute to resolve the above mentioned
concern, this study aims to present a method to map
event-based real-time users' requirements to
corresponding system software behaviors. The mapping
is accomplished in three steps. In the first step, system
environment events and system reactions to the events
are elicited from user's and expert's vocabulary, which
is consists of their concerns. On observing an event by
the system, it should timely and properly takes some
action to react to the event. The sequence event-
reaction indicates an interaction between the system
and its environment. Since an interaction is a real-
time one, its specification should be time aware.
The elicitation of events and their related actions
from user's and expert's concerns constituting user's
requirements are described in the research.
 In the second step, we generate an implication rule
for each interaction in form of Rule R1.1 or Rule R1.2
with an event in its premise and an action in its
conclusion. The rules indicate a mandatory and a
prohibitory reaction respectively. The first rule states if
Event ei happens at time τ, the system is obliged to take
Action ai at most after ∆τ. Rule R1.2 states if Event ej

J. Computer Sci., 4 (7): 530-537, 2008

 532

happens at time τ, the system is prohibited to take
Action aj. Time ∆τ is an allowable deadline for the
mandatory reaction, which the system should meet it
before the next event happening. Generation of the
rules is described in the study. An instance of the rules
for the RCC system is shown by Rule R1.3 and Rule R1.4
respectively.

(R1.1): Happens(ei, τ) → TakeAct(ai, τ+∆τ)
(R1.2): Happens(ej, τ) → TakeNotAct(aj)
(R1.3): Happens(train-arrival, τ) → TakeAct(gate

moving down, τ+∆τ) ∧ ∆τ < τ
(R1.4): Happens(enter-to-cross, τ) → TakeNotAct (gate

moving up)

 In the third step, the event-based specification is
mapped to a mode-based one indicating a transition
from the current mode of the system software to a new
one, which is specified by Petri-Nets automaton. A
mode indicates a system software operation and
corresponds with a system action. The mapping is
described in this study.

Obtaining Event-Based Requirements, Step One: An
event is an environment activity and an action is a
system response to the activity, which we obtain them
from user's and expert's vocabulary (Table 1). User's
concerns are the environment concerns should be
observed by the system. Table 1 shows event-based
requirements in which we: (1) considered user's
concerns and took an event-variable for each event of a
concern entity. If a mandatory action should be taken in
response to an event, we will assign an action to action
variable; however, if some prohibited action to be
taken, we will assign a Null value to the action variable,
(2) determine a maximum allowable delay for each
action taking.
 For the RCC system, an instance of a concern of
Table 1 is as follows: the C1 = train is a concern whose
events are E11 = Arrival (to arrive at input line),
E12 = Entrance (to enter to cross) and E13 = Departure
(to pass from output line).

Formalizing event-based requirements, step two:
The sequences of event-action requirement in Table 1
show a real-time interaction between the system and its
environment; so, the requirements should be time-
aware. This shows need to time-based specification of
the interactions, which originally implied by the R1.1
obligatory Rule and the R1.2 prohibitory Rule in the
research.

Table 1: Event-based requirements
Seq Concern Event Action Max delay

 ei1 ai1 ∆τi1

I ci … … …
 ein ain ∆τin

 Now, we deal with formalizing Table 1 to formally
specify the requirements. For each row of Table 1, we
take Rule R1.1 or Rule R1.2 and consider an
environment state initiated by the event. In the RCC
system, for example, we consider the approaching state
initiated by the arrival event. Then, we make Rules
R1.1 and R1.2 state-aware in Rules R1.3 and R1.4,
which sij indicates the environment state. The new rules
consist of three variable, event, state and action.

(R1.3): Happens(eij, τ) ∧ Initiates(eij, sij) → TakeAct(aij,

τ+∆τ)
(R1.4): Happens(eij, τ) ∧ Initiates(eij, si) →

 Now, we use the central axiom S in the Simplified
Event Calculus (SEC)[17]. The axiom has shown by
Formula F1.1 in which β is a fluent and α0 and α1 are
events. A fluent is a variable or a predicate changes its
truth value during time; therefore, it is analogous with a
state variable. So, if we replace the fluent by the state
variable and the premise of Rules R1.3/R1.4 by the right-
hand side of Formula F1.2, we will have Rules 1.5 and
1.6 by which we able to show relation between
environment states and related system actions. For the
RCC system, an instance of Rule R1.5 is Rule R1.7

(F1.1): HoldsAt(β, τ) ← Happens (α0, τ0) ∧ Ιnitiates

(α0, β) ∧ ~ Clipped (τ0, β, τ) Clipped (τ0, β, τ) ≡
Happens (α1 , τ1) ∧ Terminates (α1,
β) ∧ τ0 < τ1 < τ

(R1.5): HoldsAt(sij, τ) → TakeAct(aij, τ+∆τ)
(R1.6): HoldsAt(sij, τ) → TakeNotAct (aij)
(R1.7): Happens(arrival, τ) → TakeAct(MoveDown,

τ+∆τ)

Specifying mode-based requirements, step three: In
this study, we aim to represent a behavioral
specification of event-based requirements stated by
Rules R1.1 and R1.2 and mapped to the rules to Rules
R1.5 and R1.6. For this purpose, we use an automata-
based specification called Petri-Nets. To represent
behavioral specification by Petri-Nets, we should map
premise and conclusion parts of the rules predicates to
elements of a Petri-Net.
 A Petri-Net consists of places, arcs and transitions
which places are connected to transitions by arcs.
Places constitute inputs/outputs to/from transitions.

J. Computer Sci., 4 (7): 530-537, 2008

 533

Fig. 2: A TTPN (a) before and (b) after firing

Each place may own some token(s) and associated with
each transition there are an event and some
condition(s). A transition is enabled when its input(s)
place own some tokens. When the associated event on
an enabled transition happens and its condition(s) hold,
the transition will fire. On firing a transition, the
token(s) of input place(s) of the transition will be
removed and its output place(s) will take token(s).
 Transitions of a Petri-Net can be time-aware which
called timed transition Petri-Net (TTPN)[18]. In a TTPN,
firing an enabled transition can be delayed or can be set
by a deadline. Figure 2a shows a TTPN before firing its
transition in which transition T1 has two input places
(P1 and P2), an output place (P3), 2 time units delay and
3 time units deadline. Since all input places of T1 own
tokens, it is enabled and will fire not before 2 time units
and not after 3 time units when event E1 happens and
conditions Cs hold. Figure 2b shows the TTPN after
firing its transition in which a token has removed from
the input place and the output place has taken a token.
 By using Petri-Nets, we can show behavioral
specification of the system and its environment
concurrently. For this purpose, we first designate a
Petri-Net for each environment concern in study and
complete it in research for the system behavior.

Specifying the environment behavior: Considering
the premise of Rule R1.5, we designated a Petri-Net for
each concern as follows. For each j (state of a concern),
we designated a transition whose input and output
places are sij-1 and sij respectively and its event and
decline deadline are eij and δτij respectively (Fig. 3).
 Before firing the transition, token of the input place
indicates the environment is in the sij-1 state. After
firing, the token is removed from the input place and
the output place takes a token indicating the
environment is in the sij state. So, the Petri-Net implies
both of the HoldsAt (sij, τ) and the ~HoldsAt (sij-

1,τ) predicates.
 We show the evolution of a TTPN of Fig. 3 by
Reachability Graph ρ1 in which mv0 and ev0 are
marking and enabling vectors respectively.

Fig. 3: The TTPN representing the environment

behavior

ij
Tj/ ij

1

0 0 1 1

. .
. .

1 0
: 0

0 1
. .

. .

(a)m ev (b)mv ev

δτ

   
      
      ρ δτ →      
         

      

Reachabilty graph ρ1 representing Fig. 3

Each number in the marking vector indicates the
number of tokens of a place and each number in
enabling vector indicates deadline of firing a transition.
Reachabilty graph ρ1 states that: (1) state sij-1 owns one
token and state sij owns no token before firing transition
Tij, (2) state sij-1 owns no token and state sij owns one
token after firing the transition and (3) transition Tij is
enabled before firing and disabled after firing. Graph
ρ1, in fact, represents behavioral specification of the
system environment for a concern.

Specifying the system behavior: In this research by
representing the system behavior, we complete the
Petri-Net designated in the study. For this purpose, we
consider the conclusion part of obligatory/prohibitory
Rules R1.5/R1.6. The rules show relation between states
of the system environment and the system actions. If we
think of a system action as a system mode of operation
including the idle mode, the TakeAct predicate will
represent happening a new mode of system operation;
therefore, each TakeAct predicate will represent a
transition from current system mode of operation (oij-1)
to new one (oij) which has shown in Relation Re1. We
designate two places representing current and new
modes of operation with a transition between them in
the Petri-Net. For the TakeNoAct predicate, however,
no places are considered.

(Re1): TakeAct(aij, τ+∆τij) ≡ (HoldsAt(oij-1, τ) ∧

HoldsAt(oij, τ+∆τij)

 We complete Fig. 3 as a TTPN in Fig. 4 in which
oij-1 and oij indicate the system operation modes before
and after taking the action respectively. The behavior of
the TTPN is as follows: because environment transition
Tij and the system transition are enabled, on happening
event eij transition Tij will fire before deadline δτij.

J. Computer Sci., 4 (7): 530-537, 2008

 534

Fig. 4: Behavioral specification of an event-based

system

ij ij

l
.

ij ij

k / ij ij l ij

. . . .

1 . 0 . 1 . 0

0 1 0 0 1
TT T /.

1 0 0 1 1

0 . 1 . 0 . 0

. . . .

      
      

          
          δτ δτ          δ ∆ δ     → →     
          ∆τ ∆τ          
               

     
      

ij

.

0 0 1 1 0 0 1 1

.

0

.

mv ev mv ev mv ev mv ev

(1 a) (1 b) (2 a) (2 b)



  
  
  
  
   ∆  
    

 


− − − −

Reachabilty Graph ρ2 representing evolution of Fig. 4

Then during ∆τij, if system takes action aij, tokens will
remove from places sij-1 and oij-1 and places sij and oij
will take the token; however, if the system takes no
action, token will only be removed from Place sij-1 and
Place sij will take the token.

For the TTPN in Fig. 4, Reachability Graph ρ1 is
completed as Reachability Graph ρ2. Enabled vector
mv0 has 2n elements in which elements 1 to n represent
state si1 to state sin and elements n+1 to 2n represent
state oi1 to sate oin. In Graph ρ2, evolving TTPN from
(1-a) into (1-b) represents firing both of the transition
(i.e., both event eij happens and action aij is obligated);
while, evolving TTPN from (2-a) into (2-b) represents
firing only the environment transition (i.e., event eij
happens, but any action is prohibited by the system).
Vector ev1 indicates that transition Tij is no longer
enabled after firing.

RESULTS

 We applied our method to an event-based real-
time system called Railroad Crossing Control (RCC)
one: (1) we dealt with specification of the RCC system
user's requirements and presented behavioral
specification of the requirements. The RCC system has
been intended to prevent from the collision between the
train and some car at the junction of rail and road.

Table 2: Deadlines of the RCC real-time system
Deadline Description
Approach The distance between the input sensor and the crossing
to cross point is given (after the train detected by the input
 sensor, at least it takes t time units until the train
 arrives at the crossing point.
Exit to The interval time between two successive trains is
detect given (there is at least t/3 time units between a train
 departure from the crossing point and the next train
 arrival at the input sensor)
Pass Maximum speed of train is given (at least it will take a
 time unit until the train passes the crossing point)

The system comprised of an input sensor to monitor an
approaching train to the cross, an output sensor to
monitor a train exit from the cross, a timer to monitor
the passing of time, a gate to close and open the road
and a control unit. The unit controls the gate by the
system application. On sensing the train, the input
sensor (or the output one) notifies the control unit to
move down (or move up) the gate. Therefore, the
system contains three monitoring and one controlling
components. The system responses deadlines to the
events are shown in Table 2 in which the first and the
second row indicate the acceptable maximum time to
close and to open the road respectively.

DISCUSSION

Obtaining event-based requirements: The system
environment consists of the train and the road which the
train needs to monitor; therefore, the set of concerns is
[c1 = train] and the set of the concern events is
Etrain = [e11 = arrival, e12 = entrance, ane13 = departure].
In response to the events, the system actions are:
Asystem= [a11 = "gate move down" for the arrival event,
a12 = "no action" for the entrance event and a13 = "gate
move up" for the passed event]. Corresponding with
Table 1, Table 3 shows train events and the
corresponding system actions.
 Present study declared, to formalize event-base
requirements stated in Table 2, we should determine the
environment (train) states. Event e11 raises the
approaching state, Event e12 raises the inside state and
the Event e13 raises the passed event; so the concern
states consist of: Strain = [s11 = distant (far from the rail
crossing), s12 = approaching (near the rail crossing),
s13 = inside (within the rail crossing) and s14 = passed
(departure from the crossing)] which the default value
is the “distant” value.
 Moreover, there is a timer to monitor the passage
of time, which the system application sets it to zero
when the application receives an Etrain event and
increments it by one when it receives an Interrupt
event; so the timer value always shows the elapsed time
of an event (i.e., δτ).

J. Computer Sci., 4 (7): 530-537, 2008

 535

Table 3: Event-action constraints of the RCC system
S Concern Event Action Max delay

 e11 a11 ∆τ<t
1 c1 e12 a12 = ~a13 -
 e13 a13 ∆τ13<t/3

Fig. 5: The TTPN of the train behavior in the RCC

system

11

1 11 2 12
12

13

3 13

/

1 0 0
0 0

0 1 0T T /0 0
0 0 1

0 0
0 0 0

0
0

0T / 0
0

0
1

     
δτ          
     δτ δτ     → δτ →          
     δτ          

          

 
  
 δτ  →   
    

  

Reachabilty graph ρ3, representing evolution of Fig. 5

Formalizing event-based requirements: To formalize
event-based requirements, we use Rules R1.3 and R1.4
and generate Rules R2.1 and R2.2 for the train. Now
considering Rules R2.1 to R2.3, we use Rules R1.5 and
R1.6 and generate Rules R3.1 to R3.4.

(R2.1): Happens(e11,τ) ∧ Initiates(e11,s12) → TakeAct

(a11, τ+∆τ)
(R2.2): Happens(e12, τ) ∧ Initiates(e12, s13) →

TakeNotAct(a12)
(R2.3): Happens(e13,τ) ∧ Initiates(e13,s14) → TakeAct

(a13, τ+∆τ)
(R3.1): InitiallyT(s11)
(R3.2): HoldsAt(s12, τ) → TakeAct(a11, τ∆τ) ∧ ∆τ < τ
(R3.3): HoldsAt(s13, τ) → TakeNotAct (a13)
(R3.4): HoldsAt(s14, τ) → TakeAct(a13, τ∆τ) ∧ ∆τ < τ

Specifying the environment behavior: To specify the
train (environment) behavior, we consider: (1) Rule
R3.1, (2) the premise part of the Rules R2.1 and R3.2, (3)
the premise part of the Rules R2.2 and R3.3 and (4) the
premise of Rules R2.3 and R3.4 and synthesize TTPN of
the train (Fig. 5). For each state s1j (1≤j≤4), we take a
place and for each Happens, we take a transition
including the e1j event which the s11 state initially has a
token. Having taken the places and the transitions,
above-mentioned cases (2), (3) and (4) constitutes the
TTPN.

Fig. 6: The TTPN of the RCC system behavior

11

12

1 11 2 4 12 11
13

11

3 1

/

1 0 0

0 1 0 0 0

0 0 0 1 0
T T T /0 0 0 0 0

1 0 1 0 0

0 0 0 0 1 0

0 0 0

T /

     
     δτ          

          δτ          δτ δτ ∆τ       →     → δτ     
          ∆τ          
               

     
     

δτ 3 5 12

12

0 0

0 0 0 0

0 0 0 0
T /1 0 1 0

0 0 0 0

1 0 0

0 1

   
   

      
      
      ∆τ     →   →   
      
      
   ∆τ      

   
   

Reachabilty graph ρ4, representing evolution of the
TTPN in Fig. 6

 The Happens (e1j, τ) predicate (j = 1, 2, 3)
indicates firing the transition and the Initiates(e1j, s1j)
predicate (j = 1, 2, 3) indicates moving token from the
input place of the transition to its output place. After
firing the transition, the Petri-Net implies the
HoldsAt(s1j+1, τ) predicates (j = 1, 2, 3). We have
shown the evolution of the TTPN of Fig. 5 by
Reachability Graph ρ3.

Specifying the system behavior: Now, to specify the
system behavior, we use obligatory/prohibitory Rules
R2.1 to R2.3 and R3.1 to R3.4 to complete the Petri-Net
designated in Fig. 5. The rules show relation between
states of the train and the system actions. Present study
declared, each TakeAct predicate can be represent by
Relation Re1; so, we designate a pair of two places
representing the HoldsAt(up, τ) and HoldsAt(down,
τ+∆τ) predicates with a transition between them in the
Petri-Net.
 We completed Fig. 5 as the TTPN in Fig. 6 in
which the up and down places indicate the system

J. Computer Sci., 4 (7): 530-537, 2008

 536

operation modes before and after taking the action
respectively. The behavior of the TTPN in Fig. 6 is as
follows: on happening e11 Transition T1 will fire before
δτ11. Then during ∆11, if system takes a11, tokens will
remove from s11 and up places and then s12 and down
places will take the token.
 For the TTPN in Fig. 6, Reachability Graph ρ3 was
completed as Reachability Graph ρ4. Each element of
the graph has a marking vector and an enabling one.
 Each marking vector consists of seven numerical
values (four values for the train states and three values
for the system states) in which each numerical value
indicates the number of tokens of a corresponding place
of Fig. 6. Each enabling vector consists of four
numerical values (three values for the train events and
two values for the system actions) in which each
positive numerical value indicates an enabled
transition/action deadline and each zero value indicates
an disabled transition/action.

CONCLUSION

 In this study, we proposed a method to map event
and interaction based specification of real-time
requirements to the behavioral one in which the former
was specified based on Event Calculus Formulae and
the latter was specified in Petri-Nets and its
corresponding Reachability Graph.

In compare with the other related research, we
considered some issues not proposed by them:

• We proposed a systematic method started from

users' requirements elicitation and concluded with
behavioral specification of them. In our opinion,
before formalizing users' requirements, they should
be elicited in a proper manner. This helps
requirements both to be taken comprehensively and
to be ready to formalize. This is why we use a
tabular method to elicit users' requirements. Using
tabular method to state users' requirements is an
appropriate method has already used by others[14].

• While others have used MSCs to state scenarios
and considered un-timed requirements, we
considered event-based real-time requirements and
stated them by scenarios in a sequence of real-time
interactions. The scenarios were formalized in
time-aware formulae and rules which the formulae
were stated based on Event-Calculus predicates.
Because the calculus is capable of stating
interrelationship between event happenings and
states, we could bridge gap between the
interaction-based specification and the behavioral
one.

• The used automaton we presented to specify
behavior was Petri-Net. Since the net supports both
concurrency and time-aware constraints, it is
capable of behavioral specifying complex and real-
time requirements; while the used automata by
others, such as the LTS one has not the capability
to the requirements. However, since the UML
Statecharts automaton supports hierarchical and
nested states, the detailed and in-depth
requirements can be specified more detailed than
Petri-Nets.

 Dealing with the goal-oriented requirements is an
interesting issue used by[14] which we didn't consider
them in this research. They have derived the event-
based specification of requirements from goal-oriented
ones in a tabular method.

REFERENCES

1. David, R. and H. Alla, 2005. Discrete, Continuous

and Hybrid Petri Nets. 2nd Edn., Springer-Verlag,
ISBN: 978-3-540-22480-8, pp: 524.

2. Feather, M.S., S. Fickas, A.V. Lamsweerde and
C. Ponsard, 1998. Reconciling system
requirements and runtime behavior. Proceedings of
the 9th International Workshop on Software
Specification and Design, Apr. 16-18, IEEE
Computer Society, Washington, DC., USA.,
pp: 50-55. http://portal.acm.org/citation.cfm?
id=857205.858297.

3. Delgado, N., A.Q. Gates and S.A. Roach, 2004.
Taxonomy and catalog of runtime software-fault
monitoring tools. IEEE Trans. Software Eng.,
30: 859-872. DOI: 10.1109/TSE.2004.91.

4. ITU-TS, 2000. Application of formal description
techniques Z.110-Z.119, Message sequence chart
Z.120-Z.129. http://www.itu.int/ITU-T/2001-
2004/com17/languages/Z.120AnnB-0498.pdf.

5. Maum, S., 1996. The formalization of message
sequence charts. Comput. Networks ISDN Syst.,
28: 1643-1657. DOI: 10.1016/0169-
7552(95)00123-9.

6. Damas, C., B. Lambeau and A.V. Lamsweerde,
2006. Scenarios, goals and state machines: A win-
win partnership for model synthesis. Proceedings
of 16th ACM SIGSOFT International Symposium
on Foundations of Software Engineering (FSE),
Nov. 5-11, Portland, Oregon, USA., pp: 197-207.
DOI: 10.1145/1181775.1181800.

J. Computer Sci., 4 (7): 530-537, 2008

 537

7. Damas, C., B. Lambeau, P. Dupont and
A.V. Lamsweerds, 2005. Generating annotated
behavior models from end-user scenarios. IEEE
Trans. Software Eng., 31: 1056-1073. DOI:
10.1109/TSE.2005.138.

8. Uchitel, J., J. Kramer and J. Magee, 2003.
Synthesis of Behavioral Models from Scenarios.
IEEE Trans. Software Eng., 29: 99-115. DOI:
10.1109/TSE.2003.1178048.

9. Letier, E., J. Kramer, J. Magee and S. Uchitel,
2005. Monitoring and control in scenario-based
requirements analysis. Proceedings of 27th
International Conference on Software Engineering
(ICSE), May 15-21, St. Louis, MO., USA.,
pp: 382-391. http://portal.acm.org/citation.cfm?
id=1062527.

10. Kruger, I., R. Grosu, P. Scholz and M. Broy, 1998.
From MSCs to statecharts. Proceedings of IFIP
International Workshop on Distributed and Parallel
Embedded Systems, Kluwer Academic Publishers,
1998, Norwell, MA., USA., pp: 61-71.
http://portal.acm.org/citation.cfm?id=328655.

11. Lamsweerd, A.V. and L. Willemet, 1998. Inferring
declarative requirements specifications from
operational scenarios. IEEE Trans. Software Eng.,
24: 1089-1114. DOI: 10.1109/32.738341.

12. Whittle, J. and J. Schumann, 2000. Generating
statechart designs from scenarios. Proceedings of
22nd International Conference on Software
Engineering (ICSE), June 4-11, IEEE Xplore Press,
USA., pp: 314-323. DOI: http://ieeexplore.ieee.
org/xpl/freeabs_all.jsp?arnumber=870422.

13. Makinen, E. and T. Systa, 2001. MAS-an
interactive synthesizer to support behavioral
modeling in UML. Proceedings of 23rd
International Conference on Software Engineering
(ICSE), May 12-19, pp: 15-24, IEEE Xplore Press,
USA., DOI: 10.1109/ICSE. 2001.919077.

14. Landtsheer, R.D., E. Letier and A.V. Lamsweerde,
2003. Deriving tabular event-based specifications
from goal-oriented requirements models.
Proceedings of 11th IEEE Joint International
Conference on Requirements Engineering, Sept. 8-
12, IEEE Xplore Press, USA., pp: 200-210.
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnum
ber=1232751.

15. Hermelen, F.V., V. Lifschitz and B. Porter, 2007.
Handbook of Knowledge Representation. 1st Edn.,
Elsevier Science, USA., ISBN-10: 0444522115,
pp: 1034.

16. Babamir, S.M. and S. Jalili, 2006. A logical based
approach to detection of intrusions against
programs. Proceedings of the 2nd Conference on
Global E-Security, (ICGeS-06), London, pp: 72-79.

17. Sadri, F. And R. Kowalski, 1995. Variants of the
event calculus. Proceedings of the 12th
International Conference on Logic Programming
(ICLP), June 13-16, MIT Press, USA., pp: 67-82.
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=
10.1.1.18.296.

18. Ghezzi, C., M. Jazayeri and D. Mandrioli, 2002.
Fundamentals of Software Engineering. 2nd Edn.,
Prentice-Hall, USA., ISBN: 10: 0133056996,
pp: 624.

