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Abstract: Problem Statement: in the software engineering field, satisfaction of user's requirements 
by software has been a matter of concern. Therefore, monitoring software behavior against user's high-
level requirements has already received a considerable and significant attention. However, the gap 
between low-level software behavior and high-level requirements has put an obstacle in the way of 
monitoring. Approach: to overcome the obstacle, we presented a method to synthesize a behavioral 
model of the event-based requirements in three steps: (1) eliciting event-based requirements; (2) 
specifying the requirements in event-based formulae and (3) mapping the formulae into a behavioral 
model. Results: to show effectiveness of the method, it was applied to requirements of a safety critical 
system, called Railroad Crossing Control (RCC) one and a behavioral model was synthesized. The 
model was used to synthesize monitor of the RCC system. The monitor is responsible for surveillance 
of software behavior for preventing the collision between the train and some car at the junction of rail 
and road.Conclusions: we proposed a systematic method started from users' requirements elicitation 
and concluded with its behavioral specification. Focus of the method was on event-based real-time 
requirements which were stated by scenarios in a sequence of real-time interactions. 
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INTRODUCTION 

 
 A concern in some software engineering fields 
such as software monitoring, software development 
process, for example, has been reconciling behavior of 
system software with high-level users' requirements. 
For run-time software monitoring, for example, the 
reconciliation helps us to able to monitor the system 
software behavior and determine whether the software 
behavior is in accord with high-level users' 
requirements or not. 
 Since in real-time systems, users' requirements 
indicate real-time constraints posing on the system 
environment, the concern has been reconciling behavior 
of system software with the real-time constraints. A 
class of real-time systems is the event-based one in 
which the system is responsible for adequate response 
to the system environment events. The adequate 
response is a timely response to the environment on 
observing an environment event.  
 A Railroad Crossing Control (RCC) system, for 
example, is a real-time system that a "train arrival" is a 
system  environment  event,   "moving down the gate" 
is a system reaction and "moving down the gate timely 
on observing the train-arrival event" is a user 
requirement.  

 The aim of this study was to present a method to 
synthesize a behavioral model from event-based users' 
requirements. In the first step, we considered system 
environment consisting of some concerns and then 
elicited event-based user's requirements in environment 
events and its related reactions. For example, in the 
RCC system, "train" is an environment concern and the 
arrival activity is an event and moving down the gate is 
its related reaction, which it is used to control the 
system environment. 
 Having elicited the requirements, in the second 
step, we presented a formal specification of the 
requirements in predicates having an event-variable in 
its premise and an action-variable in its conclusion. So, 
each predicate premise indicates an environment event 
and each predicate conclusion indicates a required 
action. Lastly, the requirements were mapped to a 
formal mode-based specification, which a mode 
indicates a system software operation and corresponds 
with a system action. The mode-based specification 
indicating behavior model of the system software was 
shown in the Petri-Nets automaton[1].  
 To synthesize the behavioral model, we 
systematically mapped a sequence of event happening 
and reaction to a required mode changing of the system 
software. The need for the mapping, which has 
stipulated by[2], has shown by Fig. 1[3]. 
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Fig. 1: Reconciling event-based requirements with 

software behavior[3] 

 
Problem Statement: In the software engineering field, 
satisfaction of user's requirements by software has been 
a matter of concern. To get this satisfaction, software 
behavior should be monitored against user's high-level 
requirements. However, the gap between low-level 
software behavior and high-level requirements has put 
an obstacle in the way of monitoring. To bridge on the 
gap, we reconciled high-level (user-level) requirements 
with low-level (operational-level) ones in three steps: 
we (1) elicited event-based requirements; (2) specified 
the elicited requirements in event-based formulae and 
(3) mapped the formulae to a behavioral model. 
 

MATERIAL AND METHODS 
 
 Reconciling high-level (user-level) requirements to 
low-level (operational-level) ones is a matter of 
concern, which has already proposed by others. The 
common method to state high-level requirements is a 
narrative style of requirements i.e., scenarios specified 
in Message Sequence Charts (MSC)[4,5] and the 
common method to specify low-level requirements i.e., 
behavioral model is an automata-based one. For 
instance[6-9], specify high-level requirements in MSC 
and then generate a behavioral model in Labeled 
Transition System (LTS). Kruger et al.[10] shows high-
level requirements in MSC and then generates a 
behavioral model in UML Statecharts. Lamsweerd and 
Willemet[11] shows user-level requirements in MSC and 
generates requirements specification in Linear 
Temporal Logic (LTL) formula and then generates a 
state-based (mode-based) model in Buchi automata. In 
a similar manner, some[12,13] show scenarios in UML 
Sequence Diagrams and then generate behavioral model 
in UML Statecharts. The derivation of the SCR tabular 
model from goal-oriented specification of requirements 
is a translation from special high-level requirements to 
behavioral model used by[14]. 
 However in this research, we consider real-time 
requirements via the scenarios stated in a sequence of 

real-time event- action variables called real-time 
interactions and is formally specified based on Event 
Calculus (EC)[15] formulae. Then a behavioral model in 
Petri-Nets is generated from the formula. The EC is 
capable of stating interrelationship between occurrences 
of environment events and initiating environment 
states. This feature assists us in the bridging gap 
between the event-based specification and the state-
based one. While each EC formula formally shows an 
interrelationship between an environment event and an 
environment state changing, the Petri-Net shows the 
system state changing corresponding with the formula. 
In[16], in a reverse manner, we stated the expected 
behavior (states) of a program in a tabular method and 
then extracted the program security policies in the EC 
formulae from the table.  
 
The approach principles: Our approach deals with 
operationalization of user-level requirements by 
synthesizing a behavioral model of the requirements. 
Some efforts stated were recently made to systematize 
this process by deriving a behavior model from 
scenarios of interactions between the system 
environment and the system software; however, we 
focus on event-based real-time systems and therefore it 
is necessary to use a event-aware formal method to 
specify event-based requirements and use a mode-based 
formal method supporting clearly events to specify 
behavioral model.  
 To contribute to resolve the above mentioned 
concern, this study aims to present a method to map 
event-based real-time users' requirements to 
corresponding system software behaviors. The mapping 
is accomplished in three steps. In the first step, system 
environment events and system reactions to the events 
are elicited from user's and expert's vocabulary, which 
is consists of their concerns. On observing an event by 
the system, it should timely and properly takes some 
action to react to the event. The sequence event-
reaction indicates an interaction  between  the  system 
and  its  environment. Since  an  interaction  is a real-
time  one,  its specification  should  be  time  aware. 
The  elicitation of events  and  their  related  actions 
from  user's  and expert's  concerns  constituting  user's 
requirements  are described in the research.   
 In the second step, we generate an implication rule 
for each interaction in form of Rule R1.1 or Rule R1.2 
with an event in its premise and an action in its 
conclusion. The rules indicate a mandatory and a 
prohibitory reaction respectively. The first rule states if 
Event ei happens at time τ, the system is obliged to take 
Action ai at most after ∆τ. Rule R1.2 states if Event ej 
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happens at time τ, the system is prohibited to take 
Action aj. Time ∆τ is an allowable deadline for the 
mandatory reaction, which the system should meet it 
before the next event happening. Generation of the 
rules is described in the study. An instance of the rules 
for the RCC system is shown by Rule R1.3 and Rule R1.4 
respectively. 
 
(R1.1): Happens(ei, τ) → TakeAct(ai, τ+∆τ) 
(R1.2): Happens(ej, τ) → TakeNotAct(aj) 
(R1.3): Happens(train-arrival, τ) → TakeAct(gate 

moving down, τ+∆τ) ∧ ∆τ < τ 
(R1.4): Happens(enter-to-cross, τ) → TakeNotAct (gate 

moving up) 
 
 In the third step, the event-based specification is 
mapped to a mode-based one indicating a transition 
from the current mode of the system software to a new 
one, which is specified by Petri-Nets automaton. A 
mode indicates a system software operation and 
corresponds with a system action. The mapping is 
described in this study. 
 
Obtaining Event-Based Requirements, Step One: An 
event is an environment activity and an action is a 
system response to the activity, which we obtain them 
from user's and expert's vocabulary (Table 1). User's 
concerns are the environment concerns should be 
observed by the system. Table 1 shows event-based 
requirements in which we: (1) considered user's 
concerns and took an event-variable for each event of a 
concern entity. If a mandatory action should be taken in 
response to an event, we will assign an action to action 
variable; however, if some prohibited action to be 
taken, we will assign a Null value to the action variable, 
(2) determine a maximum allowable delay for each 
action taking.  
 For the RCC system, an instance of a concern of 
Table 1 is as follows: the C1 = train is a concern whose 
events  are  E11 = Arrival   (to   arrive   at   input  line), 
E12 = Entrance (to enter to cross) and E13 = Departure 
(to  pass from output line). 
 
Formalizing event-based requirements, step two: 
The sequences of event-action  requirement in Table 1 
show a real-time interaction between the system and its 
environment; so, the requirements should be time-
aware. This shows need to time-based specification of 
the interactions, which originally implied by the R1.1 
obligatory Rule and the R1.2 prohibitory Rule in the 
research.  

Table 1: Event-based requirements 
Seq Concern Event Action Max delay 

  ei1 ai1 ∆τi1 

I ci … … … 
  ein ain ∆τin 

 
 Now, we deal with formalizing Table 1 to formally 
specify the requirements. For each row of Table 1, we 
take Rule R1.1 or Rule R1.2 and consider an 
environment state initiated by the event. In the RCC 
system, for example, we consider the approaching state 
initiated by the arrival event. Then, we make Rules 
R1.1 and R1.2 state-aware in Rules R1.3 and R1.4, 
which sij  indicates the environment state. The new rules 
consist of three variable, event, state and action. 
 
(R1.3): Happens(eij, τ) ∧ Initiates(eij, sij) → TakeAct(aij, 

τ+∆τ) 
(R1.4): Happens(eij, τ) ∧ Initiates(eij, si) → 
 
 Now, we use the central axiom S in the Simplified 
Event Calculus (SEC)[17]. The axiom has shown by 
Formula F1.1 in which β is a fluent and α0 and α1 are 
events. A fluent is a variable or a predicate changes its 
truth value during time; therefore, it is analogous with a 
state variable. So, if we replace the fluent by the state 
variable and the premise of Rules R1.3/R1.4 by the right-
hand side of Formula F1.2, we will have Rules 1.5 and 
1.6 by which we able to show relation between 
environment states and related system actions. For the 
RCC system, an instance of Rule R1.5 is Rule R1.7  
 
(F1.1): HoldsAt(β, τ) ← Happens (α0, τ0) ∧ Ιnitiates 

(α0, β) ∧ ~ Clipped (τ0, β, τ) Clipped (τ0, β, τ) ≡ 
Happens (α1 , τ1) ∧ Terminates (α1, 
β) ∧ τ0 < τ1 < τ  

(R1.5): HoldsAt(sij, τ) → TakeAct(aij, τ+∆τ) 
(R1.6): HoldsAt(sij, τ) → TakeNotAct (aij) 
(R1.7): Happens(arrival, τ) → TakeAct(MoveDown, 

τ+∆τ) 
 
Specifying mode-based requirements, step three: In 
this study, we aim to represent a behavioral 
specification of event-based requirements stated by 
Rules R1.1 and R1.2 and mapped to the rules to Rules 
R1.5 and R1.6. For this purpose, we use an automata-
based specification called Petri-Nets. To represent 
behavioral specification by Petri-Nets, we should map 
premise and conclusion parts of the rules predicates to 
elements of a Petri-Net.  
 A Petri-Net consists of places, arcs and transitions 
which places are connected to transitions by arcs. 
Places   constitute   inputs/outputs  to/from   transitions. 



J. Computer Sci., 4 (7): 530-537, 2008 
 

 533 

 
 
Fig. 2: A TTPN (a) before and (b) after firing 
 
Each place may own some token(s) and associated with 
each transition there are an event and some 
condition(s). A transition is enabled when its input(s) 
place own some tokens. When the associated event on 
an enabled transition happens and its condition(s) hold, 
the transition will fire. On firing a transition, the 
token(s) of input place(s) of the transition will be 
removed and its output place(s) will take token(s).  
 Transitions of a Petri-Net can be time-aware which 
called timed transition Petri-Net (TTPN)[18]. In a TTPN, 
firing an enabled transition can be delayed or can be set 
by a deadline. Figure 2a shows a TTPN before firing its 
transition in which transition T1 has two input places 
(P1 and P2), an output place (P3), 2 time units delay and 
3 time units deadline. Since all input places of T1 own 
tokens, it is enabled and will fire not before 2 time units 
and not after 3 time units when event E1 happens and 
conditions Cs hold. Figure 2b shows the TTPN after 
firing its transition in which a token has removed from 
the input place and the output place has taken a token. 
 By using Petri-Nets, we can show behavioral 
specification of the system and its environment 
concurrently. For this purpose, we first designate a 
Petri-Net for each environment concern in study and 
complete it in research for the system behavior. 
 
Specifying the environment behavior: Considering 
the premise of Rule R1.5, we designated a Petri-Net for 
each concern as follows. For each j (state of a concern), 
we designated a transition whose input and output 
places are sij-1 and sij respectively and its event and 
decline  deadline are eij and δτij respectively (Fig. 3).  
 Before firing the transition, token of the input place 
indicates the environment is in the sij-1 state. After 
firing, the token is removed from the input place and 
the output place takes a token indicating the 
environment is in the sij state. So, the Petri-Net implies 
both of the HoldsAt (sij, τ) and the ~HoldsAt (sij-

1,τ) predicates.  
 We show the evolution of a TTPN of Fig. 3 by 
Reachability Graph ρ1 in which mv0 and ev0 are 
marking      and      enabling      vectors       respectively. 

 
 
Fig. 3: The TTPN representing the environment 

behavior 
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Reachabilty graph ρ1 representing Fig. 3 
 
Each number in the marking vector indicates the 
number of tokens of a place and each number in 
enabling vector indicates deadline of firing a transition. 
Reachabilty graph ρ1 states that: (1) state sij-1 owns one 
token and state sij owns no token before firing transition 
Tij, (2) state sij-1 owns no token and state sij owns one 
token after firing the transition and (3) transition Tij is 
enabled before firing and disabled after firing. Graph 
ρ1, in fact, represents behavioral specification of the 
system environment for a concern. 
 
Specifying the system behavior: In this research by 
representing the system behavior, we complete the 
Petri-Net designated in the study. For this purpose, we 
consider the conclusion part of obligatory/prohibitory 
Rules R1.5/R1.6. The rules show relation between states 
of the system environment and the system actions. If we 
think of a system action as a system mode of operation 
including the idle mode, the TakeAct predicate will 
represent happening a new mode of system operation; 
therefore, each TakeAct predicate will represent a 
transition from current system mode of operation (oij-1) 
to new one (oij) which has shown in Relation Re1. We 
designate two places representing current and new 
modes of operation with a transition between them in 
the Petri-Net. For the TakeNoAct predicate, however, 
no places are considered. 
 
(Re1): TakeAct(aij, τ+∆τij) ≡ (HoldsAt(oij-1, τ) ∧ 

HoldsAt(oij, τ+∆τij) 
 
 We complete Fig. 3 as a TTPN in Fig. 4 in which 
oij-1 and oij indicate the system operation modes before 
and after taking the action respectively. The behavior of 
the TTPN is as follows: because environment transition 
Tij and the system transition are enabled, on happening 
event  eij   transition  Tij  will  fire  before  deadline  δτij. 
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Fig. 4: Behavioral specification of an event-based 

system 
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Reachabilty Graph ρ2 representing evolution of Fig. 4 
 
Then during ∆τij, if system takes action aij, tokens will 
remove from places sij-1 and oij-1 and places sij and oij 
will take the token; however, if the system takes no 
action, token will only be removed from Place sij-1 and 
Place sij will take the token. 

For the TTPN in Fig. 4, Reachability Graph ρ1 is 
completed as Reachability Graph ρ2. Enabled vector 
mv0 has 2n elements in which elements 1 to n represent 
state si1 to state sin and elements n+1 to 2n represent 
state oi1 to sate oin. In Graph ρ2, evolving TTPN from 
(1-a) into (1-b) represents firing both of the transition 
(i.e., both event eij happens and action aij is obligated); 
while, evolving TTPN from (2-a) into (2-b) represents 
firing only the environment transition (i.e., event eij 
happens, but any action is prohibited by the system). 
Vector ev1 indicates that transition Tij is no longer 
enabled after firing. 
 

RESULTS  
 
 We  applied our method to an event-based real-
time system called Railroad Crossing Control (RCC) 
one: (1) we dealt with specification of the RCC system 
user's requirements and presented behavioral 
specification of the requirements. The RCC system has 
been intended to prevent from the collision between the 
train  and  some  car  at  the  junction  of  rail  and  road. 

Table 2: Deadlines of the RCC real-time system 
Deadline Description 
Approach The distance between the input sensor and the crossing 
to cross point is given (after the train detected by the input 
 sensor, at least it takes t time units until the train 
 arrives at the crossing point.  
Exit to The interval time between two successive trains is 
detect given (there is at least t/3 time units between a train 
 departure from the crossing point and the next train 
 arrival at the input sensor) 
Pass Maximum speed of train is given (at least it will take a 
 time unit until the train passes the crossing point) 

 
The system comprised of an input sensor to monitor an 
approaching train to the cross, an output sensor to 
monitor a train exit from the cross, a timer to monitor 
the passing of time, a gate to close and open the road 
and a control unit. The unit controls the gate by the 
system application. On sensing the train, the input 
sensor (or the output one) notifies the control unit to 
move down (or move up) the gate. Therefore, the 
system contains three monitoring and one controlling 
components. The system responses deadlines to the 
events are shown in Table 2 in which the first and the 
second row indicate the acceptable maximum time to 
close and to open the road respectively. 
 

DISCUSSION 
 
Obtaining event-based requirements:  The system 
environment consists of the train and the road which the 
train needs to monitor; therefore, the set of concerns is 
[c1 = train]  and  the  set  of   the  concern  events  is 
Etrain = [e11 = arrival, e12 = entrance, ane13 = departure]. 
In response to the events, the system actions are: 
Asystem= [a11 = "gate move down" for the arrival event, 
a12 = "no action" for the entrance event and a13 = "gate 
move up" for the passed event]. Corresponding with 
Table 1, Table 3 shows train events and the 
corresponding system actions. 
 Present study declared, to formalize event-base 
requirements stated in Table 2, we should determine the 
environment (train) states. Event e11 raises the 
approaching state, Event e12 raises the inside state and 
the Event e13 raises the passed event; so the concern 
states consist of: Strain = [s11 = distant (far from the rail 
crossing),  s12 = approaching  (near  the rail crossing), 
s13 = inside (within the rail crossing) and s14 = passed 
(departure from the crossing)] which the default value 
is the “distant” value. 
 Moreover, there is a timer to monitor the passage 
of time, which the system application sets it to zero 
when the application receives an Etrain event and 
increments it by one when it receives an Interrupt 
event; so the timer value always shows the elapsed time 
of an event (i.e., δτ).  
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Table 3: Event-action constraints of the RCC system 
S Concern Event Action Max delay 

  e11 a11 ∆τ<t 
1 c1 e12 a12 = ~a13 - 
  e13 a13 ∆τ13<t/3 

 

 
 
Fig. 5: The TTPN of the train behavior in the RCC 

system 
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Reachabilty graph ρ3, representing evolution of Fig. 5 
 
Formalizing event-based requirements: To formalize 
event-based requirements, we use Rules R1.3 and R1.4 
and generate Rules R2.1 and R2.2 for the train. Now 
considering Rules R2.1 to R2.3, we use Rules R1.5 and 
R1.6 and generate Rules R3.1 to R3.4.   
 
(R2.1): Happens(e11,τ) ∧ Initiates(e11,s12) → TakeAct 

(a11, τ+∆τ) 
(R2.2): Happens(e12, τ) ∧ Initiates(e12, s13) → 

TakeNotAct(a12) 
(R2.3): Happens(e13,τ) ∧ Initiates(e13,s14) → TakeAct 

(a13, τ+∆τ) 
(R3.1): InitiallyT(s11) 
(R3.2): HoldsAt(s12, τ) → TakeAct(a11, τ∆τ) ∧ ∆τ < τ 
(R3.3): HoldsAt(s13, τ) → TakeNotAct (a13) 
(R3.4): HoldsAt(s14, τ) → TakeAct(a13, τ∆τ) ∧ ∆τ < τ 
 
Specifying the environment behavior: To specify the 
train (environment) behavior, we consider: (1) Rule 
R3.1, (2) the premise part of the Rules R2.1 and R3.2, (3) 
the premise part of the Rules R2.2 and R3.3 and (4) the 
premise of Rules R2.3 and R3.4 and synthesize TTPN of 
the train (Fig. 5). For each state s1j (1≤j≤4), we take a 
place and for each Happens, we take a transition 
including the e1j event which the s11 state initially has a 
token. Having taken the places and the transitions, 
above-mentioned cases (2), (3) and (4) constitutes the 
TTPN.  

 
 
Fig. 6: The TTPN of the RCC system behavior 
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Reachabilty graph ρ4, representing evolution of the 
TTPN in Fig. 6 
 
 The Happens (e1j, τ) predicate (j = 1, 2, 3)  
indicates firing the transition and the Initiates(e1j, s1j) 
predicate (j = 1, 2, 3) indicates moving token from the 
input place of the transition to its output place. After 
firing the transition, the Petri-Net implies the 
HoldsAt(s1j+1, τ) predicates (j = 1, 2, 3). We have 
shown the evolution of the TTPN of Fig. 5 by 
Reachability Graph ρ3. 
 
Specifying the system behavior: Now, to specify the 
system behavior, we use obligatory/prohibitory Rules 
R2.1 to R2.3 and R3.1 to R3.4 to complete the Petri-Net 
designated in Fig. 5. The rules show relation between 
states of the train and the system actions. Present study 
declared, each TakeAct predicate can be represent by 
Relation Re1; so, we designate a pair of two places 
representing the HoldsAt(up, τ) and HoldsAt(down, 
τ+∆τ) predicates with a transition between them in the 
Petri-Net.   
 We completed Fig. 5 as the TTPN in Fig. 6 in 
which the up and down places indicate the system 
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operation modes before and after taking the action 
respectively. The behavior of the TTPN in Fig. 6 is as 
follows: on happening e11 Transition T1 will fire before 
δτ11. Then during ∆11, if system takes a11, tokens will 
remove from s11 and up places and then s12 and down 
places will take the token.  
 For the TTPN in Fig. 6, Reachability Graph ρ3 was 
completed as Reachability Graph ρ4. Each element of 
the graph has a marking vector and an enabling one. 
 Each marking vector consists of seven numerical 
values (four values for the train states and three values 
for the system states) in which each numerical value 
indicates the number of tokens of a corresponding place 
of Fig. 6. Each enabling vector consists of four 
numerical values (three values for the train events and 
two values for the system actions) in which each 
positive numerical value indicates an enabled 
transition/action deadline and each zero value indicates 
an disabled transition/action. 
 

CONCLUSION 
 
 In this study, we proposed a method to map event 
and interaction based specification of real-time 
requirements to the behavioral one in which the former 
was specified based on Event Calculus Formulae and 
the latter was specified in Petri-Nets and its 
corresponding Reachability Graph.  

In compare with the other related research, we 
considered some issues not proposed by them: 
 
• We proposed a systematic method started from 

users' requirements elicitation and concluded with 
behavioral specification of them. In our opinion, 
before formalizing users' requirements, they should 
be elicited in a proper manner. This helps 
requirements both to be taken comprehensively and 
to be ready to formalize. This is why we use a 
tabular method to elicit users' requirements. Using 
tabular method to state users' requirements is an 
appropriate method has already used by others[14].  

• While others have used MSCs to state scenarios 
and considered un-timed requirements, we 
considered event-based real-time requirements and 
stated them by scenarios in a sequence of real-time 
interactions. The scenarios were formalized in 
time-aware formulae and rules which the formulae 
were stated based on Event-Calculus predicates. 
Because the calculus is capable of stating 
interrelationship between event happenings and 
states, we could bridge gap between the 
interaction-based specification and the behavioral 
one.  

• The used automaton we presented to specify 
behavior was Petri-Net. Since the net supports both 
concurrency and time-aware constraints, it is 
capable of behavioral specifying complex and real-
time requirements; while the used automata by 
others, such as the LTS one has not the capability 
to the requirements. However, since the UML 
Statecharts automaton supports hierarchical and 
nested states, the detailed and in-depth 
requirements can be specified more detailed than 
Petri-Nets. 

 
 Dealing with the goal-oriented requirements is an 
interesting issue used by[14] which we didn't consider 
them in this research. They have derived the event-
based specification of requirements from goal-oriented 
ones in a tabular method. 
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