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Abstract:  Problem statement: The effect of varying the number of nodes in the hidden layer and 
number of iterations are important factors in the recognition rate. In this paper, a novel and effective 
criterion based on Cross Pruning (CP) algorithm is proposed to optimize number of hidden neurons 
and number of iterations in Multi Layer Perceptron (MLP) neural based recognition system. Our 
technique uses rule-based and neural network pattern recognition methods in an integrated system in 
order to perform learning and recognition of dynamically printed numerals Approach:  The study 
investigates the effect of varying the size of the network hidden layers (pruning) and number of 
iterations (epochs) on the classification and performance of the used MLP.  The optimum number of 
hidden neurons and epochs is experimentally established through the use of our novel Cross Pruning 
(CP) algorithm and via designing special neural based software. The designed software implements 
sigmoid as its shaping function. Results: Experimental results are presented on the classification 
accuracy and recognition. Significant recognition rate improvement is achieved using 1000 epochs and 
25 hidden neurons in our MLP OCR numeral recognition system. Conclusions/Recommendations: 
Our approach has a significant improvement in learning and classification of any numeral, character 
MLP based recognition system. 
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INTRODUCTION 

 
 A major problem in applying neural networks is 
specifying the size of the network. Even for moderately 
size networks the number of parameters may become 
large compared to the number of data[1-4].  
 Artificial neural networks have been successfully 
applied to problems in pattern classification, function 
approximation, optimization, pattern matching and 
associative memories[20]. Multilayer feed forward 
networks trained using the back propagation-learning 
algorithm is limited to searching for a suitable set of 
weights. This initiates the problem of selecting 
appropriate topology (number of hidden layers) and 
weights to solve the learning problem in hand. Two 
small networks are unable to adequately learn the 
problem while excessively large networks tend to over 
fit the training data and consequently result in poor 
generalization and weak performance.  
 Most practical learning problems are known to be 
computationally complex and hard to optimize. 

Network pruning offers an excellent approach for 
dynamically determining an appropriate network 
topology. Pruning techniques involves training different 
network sizes and compare the performance in terms of 
classification and error. The process comprises 
methodical and consistence elimination or addition of 
neurons which subsequently removes or adds weights 
to the hidden layers of the system. 
 Most of available systems capture inputs as a 
sequence of coordinate points, taking into account 
character blending and merging and the problem of 
characters that have close similarity to each other. This 
is solved via pre-processing of the characters prior to 
recognition, hence, performing a shape recognition 
process. The post-processing recognition process can be 
achieved using zones that define directions of travel, 
where characters are recognized as connected zones 
using a lookup table for matching and classification. 
 The primary task of OCR recognition is to take an 
input and correctly assign it as one of the possible 
output classes. This process can be divided into two 
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general stages: feature selection and classification. 
Feature selection is critical to the whole process since 
the classifier will not be able to recognize from poorly 
selected features[21]. 
 Some requirements for character recognition 
system design suggest themselves such as: 
 
• To create a system which can recognize non-

perfect numerals 
• To create a system which can use both static and 

dynamic information components 
• To perform recognition with image data presented 

at field rate or as fast as possible 
• To recognize as quickly as possible, even before 

the full image sampling is completed 
• To use a recognition method which requires a 

small amount of computational time and memory 
• To create an expandable system which can 

recognize additional types of characters 
• High recognition rate 
• In the event of an error, non-recognition is 

implemented instead of miss-recognition, 
especially in critical conditions 

• Recognizes inputs quickly 
• Require minimal training 
 
 In this study network performance is examined as a 
function of both network size and number of iterations. 
This is carried out using a feed forward multi layer 
perceptron neural model. This system captures and 
intelligently recognizes numerals. There are many 
proposed methods for on-line recognition, which use a 
wide variety of pattern recognition techniques. Neural 
networks have been proposed as good candidates for 
character recognition. Studies have also been carried 
out for OCR recognition, comparing techniques such as 
dynamic programming, Hidden Markov Models and 
recurrent neural networks[13-16]. 
 

MATERIALS AND METHODS 
 
System design: Figure 1 shows the used OCR MLP. In 
designing our OCR system the following factors are 
considered: 
 
Initial weights: Since we used a gradient decent 
learning algorithm that is known to dynamically treat 
all weights in similar manner and to avoid a situation of 
no learning, random function is included in our 
algorithm. Such a function is specifically designed to 
guarantee that the network will not end in global 
minima which will adversely affect the system 

performance and will result in massive errors and miss 
classifications. 
 
Learning rate: The learning rate is bounded due to the 
following: 
 
• Two small a learning rate will cause the system to 

take a very long time to converge 
• To large a learning rate will cause the system to 

oscillate indefinitely and diverge 
 
 Based on the above two mentioned factors our 
learning rate was chosen to be equal 0.25. 
 
Transfer function: Even though some literature 
indicates that anti symmetric functions will cause the 
system to learn faster, this research used the standard 
sigmoid function which is known to be a stable function 
due to its range from 0-1. 
 All the above is considered in our research when 
hidden layer neurons and number of epochs are closely 
examined. 
 
Mathematical modeling: Figure 2 shows our designed 
and implemented MLP neural engine used in our OCR 
system and characterized by the following three main 
equations: 
 

( )0
i iout in The output of the input layer= →  (1) 
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Fig. 1 Used OCR MLP system 
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Fig. 2: OCR neural classification system 
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( ) ( ) ( )1 0 1
j i ij

j

out f out w The output of the hidden layer
 

= ⋅ →  
 
∑  (2) 

 

( ) ( ) ( )2 1 2
k j jk

j

out f out w The output of the output layer
 

= ⋅ →  
 
∑  (3) 

 
 Using Eq. 1-3 we can rewrite Eq. 3 to become: 
 

( ) ( ) ( ) ( ) ( )2 1 2 1 2
k j jk i ij jk

j j i

out f out w f f in w .w
    = ⋅ =           
∑ ∑ ∑  (4) 

 
 Learning in an MLP is known to occur via 
modification of weights as indicated in the following 
equations: 
 

( ) ( )( ) ( ) ( )( ) ( )2 2 2 2 1
jk k k k k j

p

w targ out out 1 out out∆ = η − ⋅ ⋅ − ⋅∑  (5) 

 
( ) ( )( ) ( ) ( )( ) ( )1 2 1 1 0
ij k k j j i

p

w targ out out 1 out out∆ = η − ⋅ ⋅ − ⋅∑  (6) 

 
Where η  the learning rate and p is is the pattern on 
which the equation is applied. 
 It is clear that for the output layer the hidden layer 
appears as an input layer and for the input layer the 
hidden layer appears as an output layer. 
 Equation 5 and 6 are obtained using the sigmoid 
function as the shaping function, which takes the 
following form: 
 

( ) ( )
1

f input
1 exp input

=
+ −

 (7) 

 
 Applying Eq. 7 to Eq. 1, 2 and 3 we obtain the 
shaped outputs for the three layers used in our MLP. 
 

( ) ( )0
i ilayer 0 : out in=  (8) 
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 Calculation of weight adjustments in our used MLP 
follows the following steps: 

• Applying Eq. 9, 10 and 11 will produce all layers 
outputs 

• Using Eq. 5 and 6, the necessary weight 
modification values are obtained 

• Adding the results of 5 and 6 to the original 
weights according to the following equations will 
update the weight matrix 

 
( ) ( )ij ij ijw t 1 w t w+ = + ∆  (11) 

 
( ) ( )jk jk jkw t 1 w t w+ = + ∆  (12) 

 
 Each time Eq. 11 and 12 are applied, a single cycle 
is completed (epoch). However there is a need to 
compute the sum squared error for each two layers and 
for the overall network using the following equation 
 

( ) ( )2

ik k k
p j

1
E w targ out

2
= −∑∑  (13) 

 
RESULTS 

 
 Table 1-3 show the effect of varying both number 
of hidden neurons and number of epochs on the 
recognition of Arabic numerals, while Table 4 and 5 
clearly  shows  classification accuracy and sum squared 
 
Table 1 Recognition results using 100 epochs 
 Reference 
Hidden -------------------------------------------------------------------- --- 
Neurons 0 1 2 3 4 5 6 7 8 9 
5 7 7 0 7 0 7 5 7 7 7 
10 7 3 5 7 6 7 6 7 7 7 
15 0 0 0 1 1 5 6 7 1 1 
20 7 7 6 5 4 5 5 7 5 7 
25 0 1 2 1 0 5 6 7 8 9 
30 0 1 2 1 4 5 6 7 8 9 
35 0 1 2 9 4 5 6 7 9 9 
40 2 1 2 3 4 5 6 7 8 9 
45 0 1 2 3 4 5 6 7 8 9 
50 0 1 2 3 4 5 6 7 8 9 

 
Table 2 Recognition results using 1000 epochs 
 Reference 
Hidden ----------------------------------------------------------------------- 
Neurons 0 1 2 3 4 5 6 7 8 9 
5 2 0 2 9 4 5 5 7 9 9 
10 7 7 7 7 5 5 6 7 6 6 
15 0 1 2 3 4 5 6 7 8 9 
20 0 1 2 3 4 5 6 7 8 9 
25 0 1 2 3 4 5 6 7 8 9 
30 0 1 2 3 4 5 6 7 8 9 
35 0 1 2 3 4 5 6 7 8 9 
40 0 1 2 3 4 5 6 7 8 9 
45 0 1 2 3 4 5 6 7 8 9 
50 0 1 2 3 4 5 6 7 8 9 
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errors. Table 6 and 7 show the extracted weight 
matrices for both input-hiddenand hidden-output, which 
is made available via the specially Designed Brain 
Database (DBD) that automatically adds the new 
trained engine weights to its contents while keeping 
track of all previously used weights. 
 
Table 3 Recognition results using 10000 epochs 

 Reference 
Hidden ---------------------------------------------------------------------- 
Neurons 0 1 2 3 4 5 6 7 8 9 

5 6 7 6 6 5 5 6 7 6 6 
10 7 7 0 7 7 7 7 7 7 7 
15 7 7 2 1 7 7 7 7 8 9 
20 0 1 2 3 4 5 6 7 8 9 
25 0 1 2 3 4 5 6 7 8 9 
30 0 1 2 1 1 7 7 7 8 9 
35 0 1 2 3 4 5 6 7 8 9 
40 0 7 2 3 3 5 6 7 8 5 
45 0 1 2 3 4 5 6 7 8 9 
50 0 1 2 3 4 5 6 7 8 9 

 
Table 4 Percentage classification 
 Percentage Percentage Percentage  
Hidden Classification classification classification 
Neurons 100 Epochs 1000 Epochs 10000 Epochs 
5 10 40 30 
10 20 30 10 
15 40 90 50 
20 30 90 100 
25 80 100 100 
30 90 100 60 
35 80 100 100 
40 90 100 70 
45 100 100 100 
50 100 100 100 

 

DISCUSSION 
 
 Traditionally, pruning is carried out on hidden 
layers  and  hidden layer neurons however we introduce 
in our work the principle of Cross Pruning (CP) or what 
we can call the pruning matrix whereby we carried out 
pruning on both hidden layer neurons and number of 
epochs which serves as a two dimensional controlling 
matrix function for the design and implementation of 
MLP based recognition systems[5-12,17-19]. 
 Figure 3 shows the effect of pruning and learning 
process on the classification accuracy and recognition 
rate of our MLP based OCR system. It is clear from the 
graphs that best accuracy and classification is obtained 
when using 1000 epochs and 25 hidden neurons. It 
observed that using 100 epochs resulted in under 
learning and poor recognition of tested numerals with 
slow oscillations due to slow recognition time while at 
the other extreme of 10000 epochs’ instability and fast 
oscillations which indicates shorter recall time and over 
learning with slightly better recognition than 100 
epochs case. 
 
Table 5 Classification and sum squared errors 
 Sum squared Sum squared Sum squared  
Hidden error error error  
Neurons (100 Epochs) (100 Epochs) (100 Epochs) 
5 0.5090 0.35100 0.50000 
10 0.5060 0.50080 0.50000 
15 0.1270 0.00390 0.13070 
20 0.5033 0.00294 0.00048 
25 0.1127 0.00293 0.00032 
30 0.0538 0.00581 0.02530 
35 0.0986 0.00330 0.00028 
40 0.0855 0.05110 0.12500 
45 0.0536 0.00106 0.00490 
50 0.0150 0.00220 0.00014 

Table 6: Hidden-output weight matrix 

W1:20 W21:40 W41:60 W61:80 W81:100 W101:120 W121:140 W141:160 W161:180 W181:200 
-0.7384 -0.716210 0.123308 0.887697 0.014582 0.302913 0.444217 -0.946150 -0.797750 -0.553820 
0.187194 0.253935 0.438999 -0.455240 0.383340 0.682899 0.493849 0.095120 0.400409 -0.135570 
-0.21763 -0.317750 -0.483780 0.502167 -0.171300 -0.063630 0.298933 -0.295410 -0.962740 0.557803 
0.75599 -0.743930 -0.913310 -0.280830 0.712710 -0.129340 -0.103260 -0.448650 -0.692260 -0.491680 
-0.06732 0.333320 -0.656110 -0.824540 -0.224590 0.358697 -0.560870 -0.639430 -0.671780 0.939861 
-0.01499 -0.419550 -0.458600 -0.640310 -0.681850 -0.103110 -0.320470 -0.240550 0.646042 -0.329020 
-0.54418 0.777422 0.416540 -0.477290 0.872413 0.650348 0.730660 -0.541800 0.929757 0.775350 
-0.96502 -0.753570 0.263159 -0.238450 0.537143 -0.839140 -0.864750 0.550791 0.242063 0.444053 
-0.30225 -0.965410 0.682166 0.236304 -0.064590 0.691711 0.622521 0.081475 -0.810210 -0.132490 
-0.61636 -0.040450 -0.576440 -0.886810 0.438242 0.787011 -0.067430 0.939009 -0.432320 0.183444 
-0.3216 0.691387 -0.420860 -0.045920 -0.788150 0.812514 -0.938130 0.392654 -0.854190 -0.148270 
-0.38814 0.850727 0.848113 -0.108260 0.919719 0.676802 -0.629370 0.827983 -0.848960 -0.126400 
0.733219 0.683133 -0.790960 0.072790 -0.914960 0.636549 0.729384 0.508201 0.291481 0.102784 
0.478894 0.129642 -0.502290 -0.577420 0.597251 -0.025530 -0.326980 0.383929 -0.723240 0.405845 
0.287646 -0.666060 0.892322 0.069366 0.411091 0.684220 0.157430 0.382600 -0.523940 0.899859 
0.599062 -0.035420 0.801635 0.915521 0.793179 -0.740560 -0.366740 0.384021 0.287710 0.083222 
-0.1732 0.717059 0.169277 -0.607440 -0.448910 0.795384 -0.206470 -0.237550 0.999136 -0.088080 
-0.46738 0.401398 0.654608 0.789937 -0.560170 0.277750 -0.575580 -0.645910 -0.699230 0.164478 
0.623036 -0.101940 -0.191160 0.487330 -0.338820 -0.064980 0.571663 -0.226630 -0.536870 0.565854 
-0.39686 0.634015 -0.609550 0.601572 0.209401 -0.474910 -0.114810 -0.192100 0.649275 0.759553 
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Table 7: Input-hidden weight matrix 
W1:80 W81:160 W161:240 W241:320 W321:400 W401:480 W481:560 W561:640 W641:720 W721:800

0.4027637 -0.5742482 0.4578005 0.3506368 0.4889897 -0.7937924 0.6900722 0.7386004 0.1621374 0.08943069
-0.9394081 0.5275164 0.3039289 0.3546679 -0.8948634 -0.4981773 0.5236177 0.1255918 0.02172875 -0.7196238
0.2715555 -0.9868838 0.566203 -0.02375829 -0.2717465 0.3931757 -0.3423754 -0.8909732 -0.3296283 0.2728473
-0.03968 0.05863595 0.252403 -0.9144807 -0.6807699 -0.740478 0.2266734 0.6004941 -0.08280802 0.4745111

0.3040608 -0.2098812 0.1497356 -0.7893106 -0.4596812 -0.5857326 0.9813191 -0.8242253 0.9734839 -0.2927119
0.9177358 0.8665442 0.4649401 0.3511703 -0.2300031 0.5636785 0.207006 -0.8241148 0.2893493 0.3706515
0.5170184 0.1996459 0.8727201 0.756754 0.7771298 0.6495029 -0.5639268 -0.6273028 -0.7374705 -0.3295215
0.2732477 0.3882072 -0.5358007 0.9339237 -0.4577699 0.6648569 0.9054878 0.06583047 0.4556599 0.7762465
0.7173284 -0.3660754 0.6203038 -0.404348 -0.737568 -0.8246866 -0.5976046 0.5107228 -0.08674395 -0.1818048
0.1217806 -0.6624317 -0.7646356 -0.09424472 -0.06968236 -0.1506116 0.07121849 0.4781699 0.3045056 -0.5104096

0.07334101 -0.7207505 0.5150603 0.1776365 0.816187 -0.4141697 0.9611114 0.04445636 0.5330824 0.4586812
0.5989089 0.1713688 -0.8236611 0.5338252 0.3649998 -0.02449656 -0.5226543 0.8147132 -0.4309499 0.4765797
-0.7435418 -0.2814783 0.06640446 0.4583012 0.4742988 -0.615513 0.7459036 0.471594 -0.9520611 -0.9776284
0.4560516 -0.7184691 -0.3504963 0.5807471 -0.2458103 -0.7014725 -0.6365523 0.4729977 -0.2741036 -0.5384662
-0.2844523 -0.6458999 -0.4846817 -0.09921277 -0.5338472 -0.4915675 -0.3838378 0.9276489 -0.276848 0.2894331
0.2372303 0.7266023 -0.05246234 0.7535331 0.5503564 -0.1023617 0.4169786 0.06210828 -0.4869988 0.2445779
-0.8533303 0.2134658 0.9368902 0.1316968 0.01246727 -0.9517418 -0.2873505 -0.4615091 -0.8263949 0.4376153
0.8698895 -0.185235 -0.01419973 -0.9369984 -0.6430304 0.5166867 -0.3937235 -0.6549392 -0.02366066 -0.4419119
0.720616 0.2001985 0.1631669 0.4466995 0.5059577 -0.2744631 -0.04152358 0.5931977 -0.4105011 -0.5270852

0.9822793 -0.6490953 -0.466223 -0.362231 0.386508 0.1315789 0.6776335 0.720247 0.5609334 0.7746992
0.130761 0.1854728 0.08881676 0.4130713 0.1373132 0.1906747 -0.68247 -0.9002808 0.5888907 -0.8944479

0.7599008 0.2378552 -0.7019129 -0.08336782 0.5825293 0.0567224 0.1932461 0.5544424 0.5532365 -0.7206247
-0.9762734 -0.8364061 0.4221071 -0.7074538 0.5289856 0.7035743 -0.7572664 -0.2141463 -0.1094543 -0.3662399
0.6535139 0.01272058 0.669554 -0.6199858 -0.2816968 0.9030333 -0.06063604 -0.8201234 0.06257796 0.8180423
-0.124642 -0.03868783 -0.5563072 0.8469802 0.4392909 -0.7403876 -0.3108054 0.1080376 -0.6303986 -0.1021138

-0.2487924 0.5026224 -0.5531621 0.1329718 -0.7154934 -0.7999933 0.7955377 0.867866 0.8541708 0.6352832
-0.1254867 0.09243691 -0.164282 0.5893282 0.09932339 0.7234284 0.7840034 -0.6695539 -0.4414564 0.8673059
-0.8729672 0.5567579 -0.6508687 0.1522658 0.4784813 0.99435 -0.228879 -0.4084904 -0.1538179 -0.2864037
-0.1228353 0.8375009 -0.8562697 -0.9575676 0.2451824 -0.9669744 -0.6727759 0.2369081 0.155996 -0.07735026

-0.02130246 0.8491538 -0.3695831 0.509994 0.1075547 0.2376773 0.9815466 0.889946 0.5833659 0.9267151
0.993313 0.6275498 -0.06609309 -0.9318753 0.7018617 -0.9633139 -0.5743164 0.5381321 0.6058215 -0.7234541

0.8668251 0.7272983 -0.3922126 0.3862865 -0.2009599 0.2757683 0.7469592 0.6466744 0.4997585 0.6765501
-0.1307865 -0.5017568 -0.7919058 -0.1708602 0.1489846 -0.9748036 0.1970729 -0.4632543 -0.6909636 -0.2882332
0.868274 -0.1501629 -0.5836711 0.1835632 -0.9502873 -0.7481124 -0.5200894 0.09443712 0.2829361 -0.2245717

0.2274157 -0.8232306 -0.8608409 0.4463428 -0.1291562 -0.4781126 -0.8931388 0.1126469 0.5310367 -0.5484906
-0.04397917 0.9258308 0.803066 -0.4451454 0.7125041 0.7366681 0.6746178 0.859165 0.1523354 0.6970699
0.7271146 -0.1359288 -0.3108472 0.9137675 0.6473619 0.3929852 0.000522971 0.5911685 0.5666376 0.5139772
0.4181058 0.3680756 0.2724695 -0.3413157 0.3382721 -0.6029437 -0.1897171 0.355485 0.3641362 -0.7225113
-0.2926854 -0.7251142 0.172788 0.333968 0.1540912 0.8407756 -0.6064237 -0.4434458 -0.7745754 -0.2807461
-0.3718596 0.1729856 -0.6039732 -0.5469859 -0.08401561 0.01681995 0.4809766 0.3462908 -0.2447932 0.07205892
-0.1246935 -0.001904607 0.05424154 -0.9638165 -0.6227468 -0.6579195 -0.9180652 -0.828838 -0.8000821 0.3543421
0.9798777 0.8395383 -0.7180603 0.3407526 -0.3723979 0.6811182 -0.4354174 -0.2172592 0.6386118 0.3603978
0.502956 -0.2601079 0.08016837 -0.3601862 0.3490895 -0.9054531 -0.3649281 -0.9769224 0.3790487 -0.8414851

0.2983451 -0.3602171 -0.8834872 -0.02067542 -0.3579752 -0.5623651 -0.2566938 0.9518476 0.8631823 0.1903112
-0.8066941 -0.4877459 -0.9106113 0.6257092 -0.2339734 -0.9667512 -0.1655031 -0.4088031 0.6694485 -0.8085202
-0.4599602 -0.9465902 -0.1999667 0.5668044 0.2605982 0.2467735 0.1882441 0.2711713 0.349649 0.7733011
-0.2200106 -0.6707653 0.1552821 0.4777716 -0.447848 0.9801008 -0.3799556 0.8121806 -0.6129495 -0.3531443
0.09468651 0.678884 0.5029879 -0.5828888 -0.7733152 0.5334148 0.7205176 0.3213549 -0.08416295 0.04413629
-0.5780426 -0.526436 0.5945143 0.957369 -0.06949651 -0.01141512 0.6064757 -0.2277743 -0.2184962 0.1734616
0.5010579 0.4336402 0.7910044 0.1367664 -0.4882035 -0.8472621 -0.7385323 -0.6405675 0.7034245 0.6969848
0.0240835 -0.103937 -0.8366741 0.5730613 -0.9353296 -0.09019721 0.7328931 -0.8466457 -0.2441002 -0.2330819
-0.3062971 -0.6441593 0.03598547 -0.7842853 -0.6092103 -0.8618925 0.8844128 0.9799628 -0.9812381 0.5106094
0.8810116 0.8103698 0.8241347 -0.1918596 -0.1667918 -0.7568897 0.1074661 -0.7499849 0.3443114 0.7940618
-0.3944154 0.8201954 0.1163032 -0.6552939 -0.8813763 0.433351 -0.7195308 -0.9347756 -0.09974432 -0.7248745
-0.0526315 0.04547942 -0.3550509 0.1684808 0.7993644 -0.2781183 -0.3900293 0.118498 0.009644389 -0.7873284
-0.7494919 -0.5196548 -0.2814426 -0.7282584 -0.9788196 -0.8464692 -0.04906607 0.3369732 -0.7751868 -0.8671787
0.7306157 -0.7814056 0.8940948 -0.3867959 0.9386183 -0.6581401 0.3146409 0.9216598 -0.6756982 0.549008
0.9967136 -0.2496932 -0.9466045 0.5100813 0.3126473 0.2020435 0.93873 -0.677737 0.6658506 -0.3544593
-0.5458428 -0.7092103 -0.1072458 -0.5693442 0.1865319 0.72098 0.2958328 0.03146422 -0.9038397 -0.3043357
0.1896145 0.1374807 0.2978959 -0.289686 0.4519632 -0.2592914 -0.5885859 -0.9541717 0.3153632 -0.5988715

0.03487837 0.5679888 -0.3121825 -0.3268677 0.3694144 -0.6730913 -0.120999 -0.04816735 0.4311661 -0.9077691
-0.7808204 0.2397215 -0.4229872 -0.7993419 -0.6491747 -0.4928489 0.9082472 -0.7384703 -0.7218807 0.4714384
0.8809975 0.7097527 0.1075469 -0.002158523 -0.4197012 -0.4751045 0.8994881 -0.3756913 0.7107702 0.351272
0.1263788 -0.2810292 0.7965841 0.3420091 -0.7542398 -0.3287528 0.563827 0.5353613 -0.6327147 0.5344031

0.07273018 0.8083819 -0.7374464 0.477353 -0.4372696 -0.9915627 0.03162563 -0.8209654 -0.09066308 0.8921143
0.06119061 -0.9360478 0.1404021 0.4427812 -0.4532437 0.5431318 0.1207836 0.9925215 0.6233919 -0.02733278
-0.0117346 0.1008302 -0.9454139 -0.1928834 0.1648692 0.6752542 0.7506486 0.6935402 -0.1644028 -0.3550512
0.4046729 0.4544296 0.5438457 0.80725 0.4749591 -0.05473113 -0.9559631 -0.9589543 -0.9891291 -0.2387173
0.937555 0.3759311 0.7556323 -0.09756911 -0.5735968 -0.4889206 0.9899219 -0.9781553 0.4243807 0.387745

0.8675952 -0.4604728 -0.04342389 0.2051451 -0.1980705 -0.4389157 0.5491173 -0.1154988 -0.7591417 0.4569664
-0.1335851 -0.07693541 -0.7801665 0.9072319 0.3607754 0.5437602 0.7155222 -0.7436293 -0.00459516 -0.2215229
0.3781345 0.5846503 -0.2932053 0.845283 -0.4970367 0.07266116 -0.19116 0.1362457 0.9948268 -0.8985794
0.6934396 0.4444977 0.7907108 0.2731951 -0.004777312 0.4301721 -0.03275907 -0.1148297 -0.4176236 -0.3548368  
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Fig.3: Effect of cross pruning on character classification 
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Fig. 4: Effect of cross pruning on classification errors 
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Fig. 5: Effect of cross pruning on miss-classification 
 
Figure 4 demonstrates application of Eq. 13 in 
conjunction with our cross pruning approach to obtain a 
much more reliable and reflective representation for the 
errors that have occurred as a result of miss 
classification. It is clear from the diagram that the 
greatest percentage of miss classification occurs when 
using a 100 epochs with larger oscillation period 
compared to a 1000 epochs the number of tested hidden 
neurons with the difference of amplitude reduction in 
the sum squared errors at earlier stage due to the large 
number of cycles but still unstable due to over teaching 
and over fitting compared to the 100 epochs case which 
suffers instability due to under learning and under 
fitting. It is clear from the curve that the optimum 

number of epochs that produce a stable classification 
system with minimum number of errors as a function of 
hidden layer neurons is a 1000 epochs.  
 Figure 5 deals with an important aspect of 
designing our MLP OCR system and in general 
contributes to designing a much more accurate 
classification system through the plotting and analyzing 
of what we can call Statistical Classification Reach 
(SCR) whereby the figure indicates through the use of 
our Cross Pruning (CP) technique the effect of varying 
both number of epochs and number of hidden layer 
neurons on the absolute statistical difference of numeral 
miss classification which can be generalized to cover 
character and word miss classification. It is clear from 
Fig. 5 and by applying our SCR technique that our 
system will be most unstable when using 100 and 
10000 epochs with low number of hidden layer neurons 
and it also shows that the numeral the system had most 
difficulty in learning and classifying is the numeral 3 as 
it shares common properties with numerals 2, 8. The 
figure also indicates that epoch numbers and hidden 
neuron numbers had no effect on the classification of 
the numeral 7 as its composition is simple and does not 
share many features with other numerals; hence it is 
difficult to be confused or misclassified.  
 

CONCLUSION 
 
 It is known that the choice of hidden units depend 
on many factors such as the amount of noise in the 
training data, the type of the shaping or activation 
function, the training algorithm, the number of input 
and output units and number of training patterns.  
 Overall, deciding how many hidden layer neurons 
to use is a complex task which this research tried to 
clarify and quantify. In doing so and to have a 
meaningful characterization for the system performance 
in terms of classification and to include and analyze the 
dependency of all the mentioned factors the concept of 
cross pruning is introduced together with the Statistical 
Classification Reach (SCR) and weight matrix auto 
update. These two techniques helped in deciding the 
optimal number of hidden layer neurons and number of 
epochs and pinpointed to the numerals that the system 
found difficult to classify. Our approach is certainly 
novel in terms of reducing time and effort and 
simplifying approaches to system design and 
modification which will assist in eliminating any weak 
points found in numeral based system in terms of 
numeral, MLP based recognition system. 
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