
Journal of Computer Science 4 (7): 578-584, 2008
ISSN 1549-3636
© 2008 Science Publications

Corresponding Author:Nidal F. Shilbayeh, Faculty of Information Technology for Graduate Studies, Middle East University
for Graduate Studies, P.O. Box 42, Post Code: 11610

578

Effect of Hidden Layer Neurons on the Classification of Optical

Character Recognition Typed Arabic Numerals

1Nidal F. Shilbayeh and 2Mahmoud Z. Iskandarani
1Faculty of Information Technology for Graduate Studies,

Middle East University for Graduate Studies, P.O. Box 42, Post Code: 11610
2Faculty of Science and Information Technology, Al-Zaytoonah Private University of Jordan,

P.O. Box 911597, Post Code: 11191, Amman-Jordan

Abstract: Problem statement: The effect of varying the number of nodes in the hidden layer and
number of iterations are important factors in the recognition rate. In this paper, a novel and effective
criterion based on Cross Pruning (CP) algorithm is proposed to optimize number of hidden neurons
and number of iterations in Multi Layer Perceptron (MLP) neural based recognition system. Our
technique uses rule-based and neural network pattern recognition methods in an integrated system in
order to perform learning and recognition of dynamically printed numerals Approach: The study
investigates the effect of varying the size of the network hidden layers (pruning) and number of
iterations (epochs) on the classification and performance of the used MLP. The optimum number of
hidden neurons and epochs is experimentally established through the use of our novel Cross Pruning
(CP) algorithm and via designing special neural based software. The designed software implements
sigmoid as its shaping function. Results: Experimental results are presented on the classification
accuracy and recognition. Significant recognition rate improvement is achieved using 1000 epochs and
25 hidden neurons in our MLP OCR numeral recognition system. Conclusions/Recommendations:
Our approach has a significant improvement in learning and classification of any numeral, character
MLP based recognition system.

Key words: Neural network, MLP, pruning, pattern recognition, classification, OCR

INTRODUCTION

 A major problem in applying neural networks is
specifying the size of the network. Even for moderately
size networks the number of parameters may become
large compared to the number of data[1-4].
 Artificial neural networks have been successfully
applied to problems in pattern classification, function
approximation, optimization, pattern matching and
associative memories[20]. Multilayer feed forward
networks trained using the back propagation-learning
algorithm is limited to searching for a suitable set of
weights. This initiates the problem of selecting
appropriate topology (number of hidden layers) and
weights to solve the learning problem in hand. Two
small networks are unable to adequately learn the
problem while excessively large networks tend to over
fit the training data and consequently result in poor
generalization and weak performance.
 Most practical learning problems are known to be
computationally complex and hard to optimize.

Network pruning offers an excellent approach for
dynamically determining an appropriate network
topology. Pruning techniques involves training different
network sizes and compare the performance in terms of
classification and error. The process comprises
methodical and consistence elimination or addition of
neurons which subsequently removes or adds weights
to the hidden layers of the system.
 Most of available systems capture inputs as a
sequence of coordinate points, taking into account
character blending and merging and the problem of
characters that have close similarity to each other. This
is solved via pre-processing of the characters prior to
recognition, hence, performing a shape recognition
process. The post-processing recognition process can be
achieved using zones that define directions of travel,
where characters are recognized as connected zones
using a lookup table for matching and classification.
 The primary task of OCR recognition is to take an
input and correctly assign it as one of the possible
output classes. This process can be divided into two

J. Computer Sci., 4 (7): 578-584, 2008

 579

general stages: feature selection and classification.
Feature selection is critical to the whole process since
the classifier will not be able to recognize from poorly
selected features[21].
 Some requirements for character recognition
system design suggest themselves such as:

• To create a system which can recognize non-

perfect numerals
• To create a system which can use both static and

dynamic information components
• To perform recognition with image data presented

at field rate or as fast as possible
• To recognize as quickly as possible, even before

the full image sampling is completed
• To use a recognition method which requires a

small amount of computational time and memory
• To create an expandable system which can

recognize additional types of characters
• High recognition rate
• In the event of an error, non-recognition is

implemented instead of miss-recognition,
especially in critical conditions

• Recognizes inputs quickly
• Require minimal training

 In this study network performance is examined as a
function of both network size and number of iterations.
This is carried out using a feed forward multi layer
perceptron neural model. This system captures and
intelligently recognizes numerals. There are many
proposed methods for on-line recognition, which use a
wide variety of pattern recognition techniques. Neural
networks have been proposed as good candidates for
character recognition. Studies have also been carried
out for OCR recognition, comparing techniques such as
dynamic programming, Hidden Markov Models and
recurrent neural networks[13-16].

MATERIALS AND METHODS

System design: Figure 1 shows the used OCR MLP. In
designing our OCR system the following factors are
considered:

Initial weights: Since we used a gradient decent
learning algorithm that is known to dynamically treat
all weights in similar manner and to avoid a situation of
no learning, random function is included in our
algorithm. Such a function is specifically designed to
guarantee that the network will not end in global
minima which will adversely affect the system

performance and will result in massive errors and miss
classifications.

Learning rate: The learning rate is bounded due to the
following:

• Two small a learning rate will cause the system to

take a very long time to converge
• To large a learning rate will cause the system to

oscillate indefinitely and diverge

 Based on the above two mentioned factors our
learning rate was chosen to be equal 0.25.

Transfer function: Even though some literature
indicates that anti symmetric functions will cause the
system to learn faster, this research used the standard
sigmoid function which is known to be a stable function
due to its range from 0-1.
 All the above is considered in our research when
hidden layer neurons and number of epochs are closely
examined.

Mathematical modeling: Figure 2 shows our designed
and implemented MLP neural engine used in our OCR
system and characterized by the following three main
equations:

()0
i iout in The output of the input layer= → (1)

Adjust Weight

Neural network Input
Compare

Target

Fig. 1 Used OCR MLP system

3

2

1 1

2

3

16

4

50

4

1

4

3

2
Recognition

Process
Postprocessing

Preparation
Stage

Preprocessing

) Exp (1+
1

input?

∑
() 2
jk

w () 1
ij

w

Fig. 2: OCR neural classification system

J. Computer Sci., 4 (7): 578-584, 2008

 580

() () ()1 0 1
j i ij

j

out f out w The output of the hidden layer
 

= ⋅ →  
 
∑ (2)

() () ()2 1 2
k j jk

j

out f out w The output of the output layer
 

= ⋅ →  
 
∑ (3)

 Using Eq. 1-3 we can rewrite Eq. 3 to become:

() () () () ()2 1 2 1 2
k j jk i ij jk

j j i

out f out w f f in w .w
    = ⋅ =           
∑ ∑ ∑ (4)

 Learning in an MLP is known to occur via
modification of weights as indicated in the following
equations:

() ()() () ()() ()2 2 2 2 1
jk k k k k j

p

w targ out out 1 out out∆ = η − ⋅ ⋅ − ⋅∑ (5)

() ()() () ()() ()1 2 1 1 0
ij k k j j i

p

w targ out out 1 out out∆ = η − ⋅ ⋅ − ⋅∑ (6)

Where η the learning rate and p is is the pattern on
which the equation is applied.
 It is clear that for the output layer the hidden layer
appears as an input layer and for the input layer the
hidden layer appears as an output layer.
 Equation 5 and 6 are obtained using the sigmoid
function as the shaping function, which takes the
following form:

() ()
1

f input
1 exp input

=
+ −

 (7)

 Applying Eq. 7 to Eq. 1, 2 and 3 we obtain the
shaped outputs for the three layers used in our MLP.

() ()0
i ilayer 0 : out in= (8)

() ()

() ()

1
j

0 1
i ij

i

1
layer 1 : out

1 exp out w

=
  + − ⋅   
  
∑

 (9)

() ()

() ()

2
k

1 2
j jk

i

1
layer 2 : out

1 exp out w

=
  + − ⋅   
  
∑

 (10)

 Calculation of weight adjustments in our used MLP
follows the following steps:

• Applying Eq. 9, 10 and 11 will produce all layers
outputs

• Using Eq. 5 and 6, the necessary weight
modification values are obtained

• Adding the results of 5 and 6 to the original
weights according to the following equations will
update the weight matrix

() ()ij ij ijw t 1 w t w+ = + ∆ (11)

() ()jk jk jkw t 1 w t w+ = + ∆ (12)

 Each time Eq. 11 and 12 are applied, a single cycle
is completed (epoch). However there is a need to
compute the sum squared error for each two layers and
for the overall network using the following equation

() ()2

ik k k
p j

1
E w targ out

2
= −∑∑ (13)

RESULTS

 Table 1-3 show the effect of varying both number
of hidden neurons and number of epochs on the
recognition of Arabic numerals, while Table 4 and 5
clearly shows classification accuracy and sum squared

Table 1 Recognition results using 100 epochs
 Reference
Hidden -- ---
Neurons 0 1 2 3 4 5 6 7 8 9
5 7 7 0 7 0 7 5 7 7 7
10 7 3 5 7 6 7 6 7 7 7
15 0 0 0 1 1 5 6 7 1 1
20 7 7 6 5 4 5 5 7 5 7
25 0 1 2 1 0 5 6 7 8 9
30 0 1 2 1 4 5 6 7 8 9
35 0 1 2 9 4 5 6 7 9 9
40 2 1 2 3 4 5 6 7 8 9
45 0 1 2 3 4 5 6 7 8 9
50 0 1 2 3 4 5 6 7 8 9

Table 2 Recognition results using 1000 epochs
 Reference
Hidden ---
Neurons 0 1 2 3 4 5 6 7 8 9
5 2 0 2 9 4 5 5 7 9 9
10 7 7 7 7 5 5 6 7 6 6
15 0 1 2 3 4 5 6 7 8 9
20 0 1 2 3 4 5 6 7 8 9
25 0 1 2 3 4 5 6 7 8 9
30 0 1 2 3 4 5 6 7 8 9
35 0 1 2 3 4 5 6 7 8 9
40 0 1 2 3 4 5 6 7 8 9
45 0 1 2 3 4 5 6 7 8 9
50 0 1 2 3 4 5 6 7 8 9

J. Computer Sci., 4 (7): 578-584, 2008

 581

errors. Table 6 and 7 show the extracted weight
matrices for both input-hiddenand hidden-output, which
is made available via the specially Designed Brain
Database (DBD) that automatically adds the new
trained engine weights to its contents while keeping
track of all previously used weights.

Table 3 Recognition results using 10000 epochs

 Reference
Hidden --
Neurons 0 1 2 3 4 5 6 7 8 9

5 6 7 6 6 5 5 6 7 6 6
10 7 7 0 7 7 7 7 7 7 7
15 7 7 2 1 7 7 7 7 8 9
20 0 1 2 3 4 5 6 7 8 9
25 0 1 2 3 4 5 6 7 8 9
30 0 1 2 1 1 7 7 7 8 9
35 0 1 2 3 4 5 6 7 8 9
40 0 7 2 3 3 5 6 7 8 5
45 0 1 2 3 4 5 6 7 8 9
50 0 1 2 3 4 5 6 7 8 9

Table 4 Percentage classification
 Percentage Percentage Percentage
Hidden Classification classification classification
Neurons 100 Epochs 1000 Epochs 10000 Epochs
5 10 40 30
10 20 30 10
15 40 90 50
20 30 90 100
25 80 100 100
30 90 100 60
35 80 100 100
40 90 100 70
45 100 100 100
50 100 100 100

DISCUSSION

 Traditionally, pruning is carried out on hidden
layers and hidden layer neurons however we introduce
in our work the principle of Cross Pruning (CP) or what
we can call the pruning matrix whereby we carried out
pruning on both hidden layer neurons and number of
epochs which serves as a two dimensional controlling
matrix function for the design and implementation of
MLP based recognition systems[5-12,17-19].
 Figure 3 shows the effect of pruning and learning
process on the classification accuracy and recognition
rate of our MLP based OCR system. It is clear from the
graphs that best accuracy and classification is obtained
when using 1000 epochs and 25 hidden neurons. It
observed that using 100 epochs resulted in under
learning and poor recognition of tested numerals with
slow oscillations due to slow recognition time while at
the other extreme of 10000 epochs’ instability and fast
oscillations which indicates shorter recall time and over
learning with slightly better recognition than 100
epochs case.

Table 5 Classification and sum squared errors
 Sum squared Sum squared Sum squared
Hidden error error error
Neurons (100 Epochs) (100 Epochs) (100 Epochs)
5 0.5090 0.35100 0.50000
10 0.5060 0.50080 0.50000
15 0.1270 0.00390 0.13070
20 0.5033 0.00294 0.00048
25 0.1127 0.00293 0.00032
30 0.0538 0.00581 0.02530
35 0.0986 0.00330 0.00028
40 0.0855 0.05110 0.12500
45 0.0536 0.00106 0.00490
50 0.0150 0.00220 0.00014

Table 6: Hidden-output weight matrix

W1:20 W21:40 W41:60 W61:80 W81:100 W101:120 W121:140 W141:160 W161:180 W181:200
-0.7384 -0.716210 0.123308 0.887697 0.014582 0.302913 0.444217 -0.946150 -0.797750 -0.553820
0.187194 0.253935 0.438999 -0.455240 0.383340 0.682899 0.493849 0.095120 0.400409 -0.135570
-0.21763 -0.317750 -0.483780 0.502167 -0.171300 -0.063630 0.298933 -0.295410 -0.962740 0.557803
0.75599 -0.743930 -0.913310 -0.280830 0.712710 -0.129340 -0.103260 -0.448650 -0.692260 -0.491680
-0.06732 0.333320 -0.656110 -0.824540 -0.224590 0.358697 -0.560870 -0.639430 -0.671780 0.939861
-0.01499 -0.419550 -0.458600 -0.640310 -0.681850 -0.103110 -0.320470 -0.240550 0.646042 -0.329020
-0.54418 0.777422 0.416540 -0.477290 0.872413 0.650348 0.730660 -0.541800 0.929757 0.775350
-0.96502 -0.753570 0.263159 -0.238450 0.537143 -0.839140 -0.864750 0.550791 0.242063 0.444053
-0.30225 -0.965410 0.682166 0.236304 -0.064590 0.691711 0.622521 0.081475 -0.810210 -0.132490
-0.61636 -0.040450 -0.576440 -0.886810 0.438242 0.787011 -0.067430 0.939009 -0.432320 0.183444
-0.3216 0.691387 -0.420860 -0.045920 -0.788150 0.812514 -0.938130 0.392654 -0.854190 -0.148270
-0.38814 0.850727 0.848113 -0.108260 0.919719 0.676802 -0.629370 0.827983 -0.848960 -0.126400
0.733219 0.683133 -0.790960 0.072790 -0.914960 0.636549 0.729384 0.508201 0.291481 0.102784
0.478894 0.129642 -0.502290 -0.577420 0.597251 -0.025530 -0.326980 0.383929 -0.723240 0.405845
0.287646 -0.666060 0.892322 0.069366 0.411091 0.684220 0.157430 0.382600 -0.523940 0.899859
0.599062 -0.035420 0.801635 0.915521 0.793179 -0.740560 -0.366740 0.384021 0.287710 0.083222
-0.1732 0.717059 0.169277 -0.607440 -0.448910 0.795384 -0.206470 -0.237550 0.999136 -0.088080
-0.46738 0.401398 0.654608 0.789937 -0.560170 0.277750 -0.575580 -0.645910 -0.699230 0.164478
0.623036 -0.101940 -0.191160 0.487330 -0.338820 -0.064980 0.571663 -0.226630 -0.536870 0.565854
-0.39686 0.634015 -0.609550 0.601572 0.209401 -0.474910 -0.114810 -0.192100 0.649275 0.759553

J. Computer Sci., 4 (7): 578-584, 2008

 582

Table 7: Input-hidden weight matrix
W1:80 W81:160 W161:240 W241:320 W321:400 W401:480 W481:560 W561:640 W641:720 W721:800

0.4027637 -0.5742482 0.4578005 0.3506368 0.4889897 -0.7937924 0.6900722 0.7386004 0.1621374 0.08943069
-0.9394081 0.5275164 0.3039289 0.3546679 -0.8948634 -0.4981773 0.5236177 0.1255918 0.02172875 -0.7196238
0.2715555 -0.9868838 0.566203 -0.02375829 -0.2717465 0.3931757 -0.3423754 -0.8909732 -0.3296283 0.2728473
-0.03968 0.05863595 0.252403 -0.9144807 -0.6807699 -0.740478 0.2266734 0.6004941 -0.08280802 0.4745111

0.3040608 -0.2098812 0.1497356 -0.7893106 -0.4596812 -0.5857326 0.9813191 -0.8242253 0.9734839 -0.2927119
0.9177358 0.8665442 0.4649401 0.3511703 -0.2300031 0.5636785 0.207006 -0.8241148 0.2893493 0.3706515
0.5170184 0.1996459 0.8727201 0.756754 0.7771298 0.6495029 -0.5639268 -0.6273028 -0.7374705 -0.3295215
0.2732477 0.3882072 -0.5358007 0.9339237 -0.4577699 0.6648569 0.9054878 0.06583047 0.4556599 0.7762465
0.7173284 -0.3660754 0.6203038 -0.404348 -0.737568 -0.8246866 -0.5976046 0.5107228 -0.08674395 -0.1818048
0.1217806 -0.6624317 -0.7646356 -0.09424472 -0.06968236 -0.1506116 0.07121849 0.4781699 0.3045056 -0.5104096

0.07334101 -0.7207505 0.5150603 0.1776365 0.816187 -0.4141697 0.9611114 0.04445636 0.5330824 0.4586812
0.5989089 0.1713688 -0.8236611 0.5338252 0.3649998 -0.02449656 -0.5226543 0.8147132 -0.4309499 0.4765797
-0.7435418 -0.2814783 0.06640446 0.4583012 0.4742988 -0.615513 0.7459036 0.471594 -0.9520611 -0.9776284
0.4560516 -0.7184691 -0.3504963 0.5807471 -0.2458103 -0.7014725 -0.6365523 0.4729977 -0.2741036 -0.5384662
-0.2844523 -0.6458999 -0.4846817 -0.09921277 -0.5338472 -0.4915675 -0.3838378 0.9276489 -0.276848 0.2894331
0.2372303 0.7266023 -0.05246234 0.7535331 0.5503564 -0.1023617 0.4169786 0.06210828 -0.4869988 0.2445779
-0.8533303 0.2134658 0.9368902 0.1316968 0.01246727 -0.9517418 -0.2873505 -0.4615091 -0.8263949 0.4376153
0.8698895 -0.185235 -0.01419973 -0.9369984 -0.6430304 0.5166867 -0.3937235 -0.6549392 -0.02366066 -0.4419119
0.720616 0.2001985 0.1631669 0.4466995 0.5059577 -0.2744631 -0.04152358 0.5931977 -0.4105011 -0.5270852

0.9822793 -0.6490953 -0.466223 -0.362231 0.386508 0.1315789 0.6776335 0.720247 0.5609334 0.7746992
0.130761 0.1854728 0.08881676 0.4130713 0.1373132 0.1906747 -0.68247 -0.9002808 0.5888907 -0.8944479

0.7599008 0.2378552 -0.7019129 -0.08336782 0.5825293 0.0567224 0.1932461 0.5544424 0.5532365 -0.7206247
-0.9762734 -0.8364061 0.4221071 -0.7074538 0.5289856 0.7035743 -0.7572664 -0.2141463 -0.1094543 -0.3662399
0.6535139 0.01272058 0.669554 -0.6199858 -0.2816968 0.9030333 -0.06063604 -0.8201234 0.06257796 0.8180423
-0.124642 -0.03868783 -0.5563072 0.8469802 0.4392909 -0.7403876 -0.3108054 0.1080376 -0.6303986 -0.1021138

-0.2487924 0.5026224 -0.5531621 0.1329718 -0.7154934 -0.7999933 0.7955377 0.867866 0.8541708 0.6352832
-0.1254867 0.09243691 -0.164282 0.5893282 0.09932339 0.7234284 0.7840034 -0.6695539 -0.4414564 0.8673059
-0.8729672 0.5567579 -0.6508687 0.1522658 0.4784813 0.99435 -0.228879 -0.4084904 -0.1538179 -0.2864037
-0.1228353 0.8375009 -0.8562697 -0.9575676 0.2451824 -0.9669744 -0.6727759 0.2369081 0.155996 -0.07735026

-0.02130246 0.8491538 -0.3695831 0.509994 0.1075547 0.2376773 0.9815466 0.889946 0.5833659 0.9267151
0.993313 0.6275498 -0.06609309 -0.9318753 0.7018617 -0.9633139 -0.5743164 0.5381321 0.6058215 -0.7234541

0.8668251 0.7272983 -0.3922126 0.3862865 -0.2009599 0.2757683 0.7469592 0.6466744 0.4997585 0.6765501
-0.1307865 -0.5017568 -0.7919058 -0.1708602 0.1489846 -0.9748036 0.1970729 -0.4632543 -0.6909636 -0.2882332
0.868274 -0.1501629 -0.5836711 0.1835632 -0.9502873 -0.7481124 -0.5200894 0.09443712 0.2829361 -0.2245717

0.2274157 -0.8232306 -0.8608409 0.4463428 -0.1291562 -0.4781126 -0.8931388 0.1126469 0.5310367 -0.5484906
-0.04397917 0.9258308 0.803066 -0.4451454 0.7125041 0.7366681 0.6746178 0.859165 0.1523354 0.6970699
0.7271146 -0.1359288 -0.3108472 0.9137675 0.6473619 0.3929852 0.000522971 0.5911685 0.5666376 0.5139772
0.4181058 0.3680756 0.2724695 -0.3413157 0.3382721 -0.6029437 -0.1897171 0.355485 0.3641362 -0.7225113
-0.2926854 -0.7251142 0.172788 0.333968 0.1540912 0.8407756 -0.6064237 -0.4434458 -0.7745754 -0.2807461
-0.3718596 0.1729856 -0.6039732 -0.5469859 -0.08401561 0.01681995 0.4809766 0.3462908 -0.2447932 0.07205892
-0.1246935 -0.001904607 0.05424154 -0.9638165 -0.6227468 -0.6579195 -0.9180652 -0.828838 -0.8000821 0.3543421
0.9798777 0.8395383 -0.7180603 0.3407526 -0.3723979 0.6811182 -0.4354174 -0.2172592 0.6386118 0.3603978
0.502956 -0.2601079 0.08016837 -0.3601862 0.3490895 -0.9054531 -0.3649281 -0.9769224 0.3790487 -0.8414851

0.2983451 -0.3602171 -0.8834872 -0.02067542 -0.3579752 -0.5623651 -0.2566938 0.9518476 0.8631823 0.1903112
-0.8066941 -0.4877459 -0.9106113 0.6257092 -0.2339734 -0.9667512 -0.1655031 -0.4088031 0.6694485 -0.8085202
-0.4599602 -0.9465902 -0.1999667 0.5668044 0.2605982 0.2467735 0.1882441 0.2711713 0.349649 0.7733011
-0.2200106 -0.6707653 0.1552821 0.4777716 -0.447848 0.9801008 -0.3799556 0.8121806 -0.6129495 -0.3531443
0.09468651 0.678884 0.5029879 -0.5828888 -0.7733152 0.5334148 0.7205176 0.3213549 -0.08416295 0.04413629
-0.5780426 -0.526436 0.5945143 0.957369 -0.06949651 -0.01141512 0.6064757 -0.2277743 -0.2184962 0.1734616
0.5010579 0.4336402 0.7910044 0.1367664 -0.4882035 -0.8472621 -0.7385323 -0.6405675 0.7034245 0.6969848
0.0240835 -0.103937 -0.8366741 0.5730613 -0.9353296 -0.09019721 0.7328931 -0.8466457 -0.2441002 -0.2330819
-0.3062971 -0.6441593 0.03598547 -0.7842853 -0.6092103 -0.8618925 0.8844128 0.9799628 -0.9812381 0.5106094
0.8810116 0.8103698 0.8241347 -0.1918596 -0.1667918 -0.7568897 0.1074661 -0.7499849 0.3443114 0.7940618
-0.3944154 0.8201954 0.1163032 -0.6552939 -0.8813763 0.433351 -0.7195308 -0.9347756 -0.09974432 -0.7248745
-0.0526315 0.04547942 -0.3550509 0.1684808 0.7993644 -0.2781183 -0.3900293 0.118498 0.009644389 -0.7873284
-0.7494919 -0.5196548 -0.2814426 -0.7282584 -0.9788196 -0.8464692 -0.04906607 0.3369732 -0.7751868 -0.8671787
0.7306157 -0.7814056 0.8940948 -0.3867959 0.9386183 -0.6581401 0.3146409 0.9216598 -0.6756982 0.549008
0.9967136 -0.2496932 -0.9466045 0.5100813 0.3126473 0.2020435 0.93873 -0.677737 0.6658506 -0.3544593
-0.5458428 -0.7092103 -0.1072458 -0.5693442 0.1865319 0.72098 0.2958328 0.03146422 -0.9038397 -0.3043357
0.1896145 0.1374807 0.2978959 -0.289686 0.4519632 -0.2592914 -0.5885859 -0.9541717 0.3153632 -0.5988715

0.03487837 0.5679888 -0.3121825 -0.3268677 0.3694144 -0.6730913 -0.120999 -0.04816735 0.4311661 -0.9077691
-0.7808204 0.2397215 -0.4229872 -0.7993419 -0.6491747 -0.4928489 0.9082472 -0.7384703 -0.7218807 0.4714384
0.8809975 0.7097527 0.1075469 -0.002158523 -0.4197012 -0.4751045 0.8994881 -0.3756913 0.7107702 0.351272
0.1263788 -0.2810292 0.7965841 0.3420091 -0.7542398 -0.3287528 0.563827 0.5353613 -0.6327147 0.5344031

0.07273018 0.8083819 -0.7374464 0.477353 -0.4372696 -0.9915627 0.03162563 -0.8209654 -0.09066308 0.8921143
0.06119061 -0.9360478 0.1404021 0.4427812 -0.4532437 0.5431318 0.1207836 0.9925215 0.6233919 -0.02733278
-0.0117346 0.1008302 -0.9454139 -0.1928834 0.1648692 0.6752542 0.7506486 0.6935402 -0.1644028 -0.3550512
0.4046729 0.4544296 0.5438457 0.80725 0.4749591 -0.05473113 -0.9559631 -0.9589543 -0.9891291 -0.2387173
0.937555 0.3759311 0.7556323 -0.09756911 -0.5735968 -0.4889206 0.9899219 -0.9781553 0.4243807 0.387745

0.8675952 -0.4604728 -0.04342389 0.2051451 -0.1980705 -0.4389157 0.5491173 -0.1154988 -0.7591417 0.4569664
-0.1335851 -0.07693541 -0.7801665 0.9072319 0.3607754 0.5437602 0.7155222 -0.7436293 -0.00459516 -0.2215229
0.3781345 0.5846503 -0.2932053 0.845283 -0.4970367 0.07266116 -0.19116 0.1362457 0.9948268 -0.8985794
0.6934396 0.4444977 0.7907108 0.2731951 -0.004777312 0.4301721 -0.03275907 -0.1148297 -0.4176236 -0.3548368

J. Computer Sci., 4 (7): 578-584, 2008

 583

 Character classification

0

20

40

60

80

100

120

0 5 10 15 20 25 30 35 40 45 50 55
No. of hidden neurons

P
e

rc
e

n
ta

g
e

 c
la

ss
ifi

ca
tio

n

100 Epochs

1000 Epochs

10000 Epochs

Fig.3: Effect of cross pruning on character classification

 Numerals miss-classifications

0
1
2
3
4
5
6
7
8

0 1 2 3 4 5 6 7 8 9 10
Reference values

N
u

m
b

e
r

o
f I

n
co

rr
e

ct

cl
a

ss
ifi

ca
tio

n
s

Typed 100

Typed 1000

Typed 10000

Fig. 4: Effect of cross pruning on classification errors

 Numerals miss-classifications

0
1
2
3
4
5
6
7
8

0 1 2 3 4 5 6 7 8 9 10
Reference values

N
u

m
b

er
 o

f I
n

co
rr

ec
t

cl
a

ss
ifi

ca
tio

n
s

Typed 100
Typed 1000
Typed 10000

Fig. 5: Effect of cross pruning on miss-classification

Figure 4 demonstrates application of Eq. 13 in
conjunction with our cross pruning approach to obtain a
much more reliable and reflective representation for the
errors that have occurred as a result of miss
classification. It is clear from the diagram that the
greatest percentage of miss classification occurs when
using a 100 epochs with larger oscillation period
compared to a 1000 epochs the number of tested hidden
neurons with the difference of amplitude reduction in
the sum squared errors at earlier stage due to the large
number of cycles but still unstable due to over teaching
and over fitting compared to the 100 epochs case which
suffers instability due to under learning and under
fitting. It is clear from the curve that the optimum

number of epochs that produce a stable classification
system with minimum number of errors as a function of
hidden layer neurons is a 1000 epochs.
 Figure 5 deals with an important aspect of
designing our MLP OCR system and in general
contributes to designing a much more accurate
classification system through the plotting and analyzing
of what we can call Statistical Classification Reach
(SCR) whereby the figure indicates through the use of
our Cross Pruning (CP) technique the effect of varying
both number of epochs and number of hidden layer
neurons on the absolute statistical difference of numeral
miss classification which can be generalized to cover
character and word miss classification. It is clear from
Fig. 5 and by applying our SCR technique that our
system will be most unstable when using 100 and
10000 epochs with low number of hidden layer neurons
and it also shows that the numeral the system had most
difficulty in learning and classifying is the numeral 3 as
it shares common properties with numerals 2, 8. The
figure also indicates that epoch numbers and hidden
neuron numbers had no effect on the classification of
the numeral 7 as its composition is simple and does not
share many features with other numerals; hence it is
difficult to be confused or misclassified.

CONCLUSION

 It is known that the choice of hidden units depend
on many factors such as the amount of noise in the
training data, the type of the shaping or activation
function, the training algorithm, the number of input
and output units and number of training patterns.
 Overall, deciding how many hidden layer neurons
to use is a complex task which this research tried to
clarify and quantify. In doing so and to have a
meaningful characterization for the system performance
in terms of classification and to include and analyze the
dependency of all the mentioned factors the concept of
cross pruning is introduced together with the Statistical
Classification Reach (SCR) and weight matrix auto
update. These two techniques helped in deciding the
optimal number of hidden layer neurons and number of
epochs and pinpointed to the numerals that the system
found difficult to classify. Our approach is certainly
novel in terms of reducing time and effort and
simplifying approaches to system design and
modification which will assist in eliminating any weak
points found in numeral based system in terms of
numeral, MLP based recognition system.

J. Computer Sci., 4 (7): 578-584, 2008

 584

REFERENCES

1. Thivierge, J.P., F. Rivestand and T.R. Shultz, 2003.

A dual-phase technique for pruning constructive
networks. Proceedings of the IEEE International
Joint Conference on Neural Networks, July 20-24,
IEEE Xplore Press, USA., pp: 559-564.
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnum
ber=1223407.

2. Parekh, R., J. Yang and V. Honavar, 2000.
Constructive neural-network learning algorithms
for pattern classification. IEEE Trans. Neural
Networks, 11: 436-451. http://ieeexplore.ieee.org/
xpl/freeabs_all.jsp?tp=&arnumber=839013&isnum
ber=18100.

3. Engelbrecht, A., 2001. A new pruning heuristic
based on variance analysis of sensitivity
information. IEEE Trans. Neural Networks,
12: 1386-1399. DOI: 10.1109/72.963775.

4. Parekh, R., J. Yang and V. Honavar, 2000.
Constructive neural network learning algorithms
for multi-category pattern classification. IEEE
Trans. Neural Networks, 11: 436-451. Digital
Object Identifier 10.1109/72.839013.

5. Yang, J., R. Parekh and V. Honavar, 2000.
Comparison of performance of variants of single-
layer perceptron algorithms on non-separable data.
Neural, Parallel Sci. Comput., 8: 415-438.
http://citeseerx.ist.psu.edu/viewdoc/summary;jsessi
onid=4B392260D248E984926072CCCC1A647B?
doi=10.1.1.70.9449.

6. Chen, C.H. and V. Honavar, 1999. A neural
network architecture for syntax analysis. IEEE
Trans. Neural Networks, 10: 94-114.
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=
10.1.1.51.5727

7. Yang, J., R. Parekh and V. Honavar, 1998. DistAl:
An inter-pattern distance based constructive
learning algorithm. Technical Report TR97-05.
http://archives.cs.iastate.edu/documents/disk0/00/0
0/01/50/index.html.

8. Yao, X., 1993. A review of evolutionary artificial
neural networks. Int. J. Intell. Syst., 4: 539-567.
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=
10.1.1.52.9598

9. Cantú-Paz, E., 2003. Pruning neural networks with
distribution estimation algorithms. Lecture Notes
Comput. Sci., 2723: 790-800. http://citeseerx.
ist.psu.edu/viewdoc/summary?doi=10.1.1.10.5167.

10. Amin, H., K.M. Curtis and B.R. Hayes Gill, 1997.
Dynamically pruning output weights in an
expanding multilayer perceptron neural network.
Proceedings of the 13th International Conference
on Digital Signal Processing, July 2-4, Santorini,
Greece, pp: 991-994. DOI:
10.1109/ICDSP.1997.628530.

11. Chen, H.H., M.T. Manry and H. Chandrasekaran,
1999. A neural network training algorithm utilizing
multiple sets of linear equations. Neurocomputing,
25: 55-72. http://citeseerx.ist.psu.edu/
viewdoc/summary?doi=10.1.1.32.4223.

12. Ponnapalli, 1999. A formal selection and pruning
algorithm for feedforward artificial network
optimization. IEEE Trans. Neural Networks,
10: 964-968. DOI: 10.1109/72.774273.

13. Polikar, R., L. Udpa, S. Udpa and V. Honavar,
2001. Learn++: An incremental learning algorithm
for supervised neural networks. IEEE Trans.
Syst., Manand Cybernetics-Part C: Appl. Rev.,
31: 497-508. DOI: 10.1109/5326.983933.

14. Costa, M., A. Braga and B. Menezes, 2002.
Constructive and pruning methods for neural
network design. Proceeding of the 7th Brazilian
Symposium on Neural Networks, Nov. 11-14,
IEEE Computer Society, USA., pp: 49-54.
http://doi.ieeecomputersociety.org/10.1109/SBRN.
2002.1181434.

15. Grippo, L., 2000. Convergent on-line algorithms
for supervised learning in neural networks. IEEE
Trans. Neural Network, 11: 1284-1299. DOI:
10.1109/72.883426.

16. Burgess, N., 1994. A constructive algorithm that
converges for realvalued input patterns. Int. J.
Neural Syst., 5: 59-66. DOI: 10.1109/72.839013.

17. Reed, R., 1993. Pruning algorithms: A survey.
IEEE Trans. Neural Network, 4: 740-747. DOI:
10.1109/72.248452.

18. Hancock, P.J.B., 1992. Pruning neural nets by
genetic algorithm. Proceedings of the International
Conference on Artificial Neural Networks, 1992,
Elsevier Science, Amsterdam, Netherlands,
pp: 991-994. http://citeseerx.ist.psu.edu/viewdoc/
summary?doi=10.1.1.55.3661.

19. Lim, T.J., W.Y. Loh and Y.S. Shih, 2000. A
comparison of prediction accuracy, complexity and
training time of thirty-three old and new
classification algorithms. Mach. Learn.,
40: 203-228. http://citeseerx.ist.psu.edu/viewdoc/
summary?doi=10.1.1.48.5864.

20. Setiono, R. and A. Gaweda, 2000. Neural network
pruning for function approximation. Proceeding of
the International Joint Conference on Neural
Networks, July 24-27, IEEE Computer Society,
Los Alamitos CA., pp: 443-448. http://cat.inist.fr/?
aModele=afficheN&cpsidt=14172954.

21. de Kruif, B.J. and T.J.A. de Vries, 2003. Pruning
error minimization in least squares support vector
machines. IEEE Trans. Neural Networks,
14: 696-702. DOI: 10.1109/TNN.2003.810597.

