
Journal of Computer Science 4 (9): 752-761, 2008
ISSN 1549-3636
© 2008 Science Publications

Corresponding Author: Khairulmizam Samsudin, Department of Computer and Communication Systems Engineering,
University Putra Malaysia, 43400 Serdang, Selangor, Malaysia, Tel: +60 (3) 89464320

752

Architectural Review of Load Balancing Single System Image

Bestoun S. Ahmed, Khairulmizam Samsudin and Abdul Rahman Ramli

Department of Computer and Communication Systems Engineering,
University Putra Malaysia, 43400 Serdang, Selangor, Malaysia

Abstract: Problem statement: With the growing popularity of clustering application combined with
apparent usability, the single system image is in the limelight and actively studied as an alternative
solution for computational intensive applications as well as the platform for next evolutionary grid
computing era. Approach: Existing researches in this field concentrated on various features of Single
System Images like file system and memory management. However, an important design consideration
for this environment is load allocation and balancing that is usually handled by an automatic process
migration daemon. Literature shows that the design concepts and factors that affect the load balancing
feature in an SSI system are not clear. Result: This study will review some of the most popular
architecture and algorithms used in load balancing single system image. Various implementations from
the past to present will be presented while focusing on the factors that affect the performance of such
system. Conclusion: The study showed that although there are some successful open source systems,
the wide range of implemented systems investigated that research activity should concentrate on the
systems that have already been proposed and proved effectiveness to achieve a high quality load
balancing system.

Key words: Single system image, NOWs (network of workstations), load balancing algorithm,

distributed systems, openMosix, MOSIX

INTRODUCTION

 Cluster of computers has become an efficient
platform for computational intensive applications.
Nowadays, the usage of clusters is mainly based on
batch scheduler and Single System Image (SSI). In the
former case, the scheduling of the applications is
managed by a supervisor “batch” regarding the
available resources in the cluster. Whereas in SSI, the
application scheduling is handled transparently by the
operating system, to give the appearance of SMP.
 Since few years, batch scheduling is preferred
because of its simplicity of usage, configuration and
implementation. Latest contributions in SSI systems
showed the abilities of the system in deferent fields and
directions. Among these contributions, the load
allocation and balancing which is usually handled by an
automatic process migration daemon, performed better
especially for reducing the application execution
capability.
 The single system image architecture was
developed to provide a unified system view and
globalize processor, file system and network. The
characteristics of SSI allow user to access system

resources transparently irrespective of where they are
available[1].The load balancing single system image
clusters dominate research work in this environment.
 In this study, we will elaborate briefly the types of
SSI clusters and concentrate on load balancing type as
the main aim. Such concentration leads to illustrate the
load balancing strategies and the architectures of
implemented systems. We then stress on two important
and successful types of implemented systems from the
architecture, design, behaviour and work mechanism as
a main points of view. From that view, we will provide
new ideas especially how to develop and investigate the
weakness of the systems.
 We have structured the study in the following way.
First we clarify the SSI organizations and structures to
justify the types of SSI and how it structured. Then, the
load balancing and scheduling mechanism has been
declared to know the main components of load
balancing in SSI. According to these components, we
will declare the developments of varies systems to
know the evolution of SSI load balancing systems in
addition to the current developments and researches.
Finally we will clarify the problems in the implemented
systems that have to be solved and stressed on in the

J. Computer Sci., 4 (9): 752-761, 2008

753

future researches as well as we declared the future
directions of SSI systems.

The SSI organizations and structures: In classical
cluster systems like Beowulf, a programmer has to
write an explicit program by Message Passing Interface
(MPI) or by Parallel Virtual Machine (PVM). However,
in contrast to high performance Beowulf cluster, Single
System Image (SSI) clusters free the end user from
such task. According to[2], Single System Image (SSI) is
a property of a cluster system to hide the distributed and
heterogeneous nature of the resource around the cluster
and to present them to applications and users as a single
resource. Single system image can be classified in
different ways depending on its abstraction layer[3]. The
available layers of SSI cluster are:

• Hardware layer
• Middle ware layer
• Application layer
• Operating system layer

 In spite of the other types, in the operating system
layer, most of the mechanisms are transparent to the
user; in other words, the user does not interact with the
system and the complexity of its implementation.
Therefore, the real benefit of this system is its ease of
use; by means, program can use the system resources
and availability without modification to the source
code. A full SSI can achieve more using OS layer[4]
through cooperation among nodes operating system to
present same view of the system. However, in practice,
it is difficult to combine all characteristics of OS layer
together although there is some preliminary work
towards such initiative[5]. These characteristics are
cluster wide system management, cluster wide device
management, cluster file system, cluster wide process
management and cluster wide load balancing [4]. To
achieve the main purpose of SSI, the load balancing
feature becomes most important to reduce execution
time and to gain high performance case. Since the main
feature of OS layer SSI is the ease of use and
transparency, the dynamic load balancing become the
main part of implementation.
 With dynamic load balancing, the distribution of
the workload among the workstation can change at the
run time by using current or recent information of the
nodes when making the decision [6]. There are two
predominant organizations by which dynamic load
balancing algorithms are implemented: centralized and
decentralized [7]. In centralized structure, a central node
plays the major part in the process placement decision
of the cluster. Whereas in a decentralized structure, the

process placement decision can be made by any of the
nodes around the cluster. From the system point of
view, each node in the cluster manages the algorithm
independently. As a result, any node around the cluster
can make decisions.
 Though dynamic load balancing policies offer a
high degree of adjustment to the fluctuated load, they
still suffer from imbalances. That is because when the
task is assigned to the execution site by the load
balancing algorithm, it will not change through its life.
 Pre-emptive load balancing is an improvement of
the dynamic policy. The difference is that the decision
of the load placing and scheduling is made during run-
time continuously. As a result, there is repeated
decision of the system scheduling. In this way, a task
may begin its execution at its original site and, due to
load fluctuation, be reassigned to another site. Such
assignment is accomplished by process migration
mechanism. It appears from [8] that the benefits of pre-
emptive load balancing may cause it to be used
extensively in distributed systems.

Scheduling and load balancing mechanisms in SSI:
In a cluster of workstations, the main component of the
load balancing SSI implementation is the scheduler
mechanism. When a given workload is applied on any
cluster’s node, this given load can be efficiently
executed if the available resources are efficiently used.
So that, there must be a mechanism for choosing the
nodes that have these resources. Scheduling is a
component or a mechanism, which is responsible for
the selection of a cluster node, to which a particular
process will be placed. This mechanism will investigate
the load balancing state[9,10]. Hence, scheduling needs
algorithms to solve such problems.
In real world, load balancing affected by 3 factors
mainly [11]:

• The environment in which one wishes to balance

the load.
• The nature of the load itself.
• The load balancing tools available.

 The environment defined to include the
architecture of the processors that belong to the system,
the type of resources that are to be shared among the
processors and the form and type of connections
between the processors. These factors can be
distinguished practically by identifying the nature of the
system itself in heterogeneity, resource allocation, or
data transfer facilities. In the work load case, tasks in
general, tend to be classified as either I/O-bound, CPU-
bound, or as mixed tasks. The load balancing policy

J. Computer Sci., 4 (9): 752-761, 2008

754

decides which site is eligible for the execution of a task
and invokes the proper process tool to execute the task
at that site.
 Load balancing tools represent the main and
important part of load balancing systems. It can be
represented as the procedures and programs that is
responsible for balancing the load. For such reason, two
main tools needed: information and process tools.
Information tools determine the placement of the
process whereas process tools transfer processes
between processors in a distributed environment and
provide access to the various resources of the
distributed system. For the purpose of this study, we
will stress more on the load balancing tools or systems.
 Any load balancing system must address at least
three stages of algorithms in some form[12,13]. These
stages described as follows:

Load calculation: Load calculation deals with
computer load and it is responsible for calculation of
this load. To address a better load calculation, it is
required to calculate the load of each single node
individually. As a result each node around the cluster
must handle this algorithm independently.
 Load can be described in different ways, but this
algorithm calculates the number of process, which are
ready to run but waiting for the CPU and the number of
load currently running on CPU. The problem arises
when this load is fluctuated rapidly each small period of
time. Although there are some trends towards overcome
this problem, the most important, successful and
popular method until now is by taking the average
every period of time. In such case, the load values are
accumulated and the averaged every period of time T,
where T is a unit of time for load balancing.
 For better understanding of how the load
calculated, consider a processor with the number of
processes ready for execution (Wi) during a time
interval (ti-1, ti), i = 1,2…,µ. Assume that T is an integer
product of t. As a result, T t= µ× . Then, the
approximation of the load each time interval T is given
by:

T i
i 1

L W
µ

−

= ∑

 This method has been implemented and used
successfully in MOSIX[14].

Load information dissemination: When the local load
calculated, information collection and dissemination
algorithm manages how the load information

communicates to global task schedule. In some
implementation [15], single node is responsible for this
decision as in Fig. 1, while in other implementations [5],
each node in the cluster exchange these information
with each other.

Fig. 1: Example of a load balancing cluster with

information collection and dissemination
algorithm management

 In the cluster of workstations, the load balancing
becomes efficient when there is an accurate knowledge
about the state of individual node around the cluster. In
other words, it is been used to make an optimal
balancing and distribution decision of the load. The
information collection and dissemination algorithm
manages how this load information is distributed to
global task scheduler. The purpose of this data
collection and information dissemination is to aid the
real time decision making by collecting data and
reviewing as quickly as possible. Furthermore, to
facilitate an efficient and effective decision making and
to keep activities on track[16]. For this purpose,
broadcast, multicast or probabilistic mechanism is been
used for information exchange within decentralized
systems.
 In broadcast mechanism, each node periodically
broadcasts its load information to each node in the
cluster. In this way, each node receives and processes a
number of messages that is equal to the number of
nodes in the cluster. Whereas in multicast mechanism,
load information messages are sent to members of
certain multicast group to limit the drawback of the
traffic in the former one[17]. The probabilistic
mechanism tries to minimize the information messages
among nodes in the decentralized algorithm by sending
messages to a specific number of nodes randomly in the
cluster instead of sending messages to all.

Migration consideration: Migration consideration
algorithm is responsible for the decision about which

J. Computer Sci., 4 (9): 752-761, 2008

755

process needs to migrate and where to migrate. It is an
important mechanism for load balancing due to its
ability to distribute the load.
 In a cluster, the process migration represents an
important mechanism for balancing the load on the
nodes [18]. The mechanism will select candidate a
processor for a given process to be executed. Ideally,
the chosen processor should have a minimal cost of
execution to ensure that the candidate processor will
result in an improvement in the load balancing
system[19].
 To perform such decision, different factors should
take into consideration such as response time, process
table capacity, amount of free memory, type of
processes and migration time[14].
 As previously mentioned, the aim of load
balancing process migration is to improve the response
time of the migrated process. As a result, the migration
mechanism should migrate the process to the processor
that has fewer loads. This migration happened when the
process table inside the operating system is nearly full.
In such a case, a process wishes to create a new process
named “child” that is almost migrate. In addition to the
process table capacity, if there is no enough free
memory in the source node for creating new processes,
then the algorithm attempt to crate these processes on
another processor. However the type of process itself
plays a major role. In most implementations, the fork()
system call create the child processes that can migrate
to any other node while there is some tend to migrate
thread processes too. However the time and size play a
major role for any processes to migrate. That is, if the
size or the time of the child processes is small there is
no justification for their migration. When these factors
considered, the migration time must conceder also.
Such time has a direct effect on the migration and its
usefulness.
 In most of the load balancing single system image
implementations, this algorithm is distributed
completely. While in some implementations a central
node is responsible for this mechanism.

Development of SSI clusters: Researchers has
developed and designed many prototypes that each of
them differ from each other in the feature and
performance and also in use and design. The migration
of active entity (process) from one node to another is
the main focus of any load balancing system especially
in the implementation stage. In most cases, dynamic
load balancing mechanism will be implemented and the
aim is to gain increased performance from a group of
processors or connected nodes.
 The implementation and evolution of load
balancing SSI starting by developing different systems

with different feature before going to the development
of SSI itself. From the literature, two different
implementation of the dynamic load balancing and
process migration has been proposed: process migration
without any modification to the OS itself and process
migration by modifying the OS or writing the system
from scratch.
 One of the earlier research by Freedman described
a simple process migration by migrating a process’
memory image only. The system runs over UNIX
without any modification to the kernel and the program
code needs to be modified in order to use the service[20].
 Condor is another successful system that provides a
process scheduling and migration[21]. The system
implemented entirely in the user space to run on top of
an operating system without modification on the kernel.
The primary aim is to identify the idle nodes in the
environment and schedule jobs on them for load
balancing. The program code needs to be modified and
linked to condor migration library routines during
compilation in order to use the service. It was
developed in University of Wisconsin-Madison and
ported to numerous machines like IBM and Sun[21].
 With the development of the systems in user space
over the OS, there was a much research concentrating
in modifying the OS or writing the system from scratch
early. This is to achieve SSI for a unified operating
system with high performance feature and for the need
to provide ease of use for the normal user. To this end,
Accent has developed with a new kernel without
compatibility with UNIX with a capability of process
migration. In 1990, Amoeba has been developed at
Vrije University from scratch with a microkernel later
on with UNIX compatibilities but with incomplete
compatibility and with the ability of process migration.
It was reported to run on Motorola, Intel 80386 and
MicroVAX II processors[22,23]. In 1991, Angel was
developed in University of London and it is based on
microkernel without any compatibility with UNIX.
Around 1994, GLUnix started in University of
California and it was implemented on top of Solari.
 The problem with the systems that started from
scratch is that the system does not take any standard
form and it is designed for a specific task. The
developments of these kinds of systems continued
rapidly by designing and developing many other
systems like ChorusOS, Guide, Hurricane and Spring.
These developments separated the direction of research
and development of these systems depending on global
resource management. These directions are global
memory management and global processor
management mainly[5].

J. Computer Sci., 4 (9): 752-761, 2008

756

 In global memory management model, the system
consists of several clients and one or more dedicated
machines with a communicating channel connecting
them. The client machines share the memory resources
that are located in a server or dedicated machine. When
the local memory of the client machines is exhausted,
they move portions of their address space to the
dedicated server and regain pieces as needed. This
general model was proposed earlier by[24].The work
described in[25].goes a step further by designing and
implementing a global memory management in a
cluster of workstations at the lowest level of the
operating system. In addition to the mechanisms that
depend on remote memory paging, the Distributed
Shared Memory System (DSM) is another way for
memory management. In this mechanism, a global
shared memory is provided on the top of distributed
memory. In this case, the nodes’ local memory is used
as a local catch of a shared data space [26].
 Global processor management allows processor
resources of the cluster to be managed in a way that is
supervised by load distributing algorithm to allow the
process to move from a node to another [5] as in pre-
emptive process migration algorithm[14].Several systems
were implemented in this direction; one of the first
systems was Sprite[27].The Sprite network operating
system was developed in University of California in
form of a kernel written from scratch. It was designed
to run on Sun-2 and Sun-3 workstation. The kernel call
interface was very similar to BSD UNIX[29].
 Interestingly, some of the earlier load balancing
systems used initial placement for supporting the
application. It was investigated in the experiments of
Concert[29] and other researches that systems, which
make intelligent initial process placement, are
performed efficiently. This showed that the key to
perform better load balancing is to utilize prior
information about cluster nodes and processes. This is
the feature that the general purpose operating system
does not have. MOSIX was one of the systems that
provide such a mechanism.
 MOSIX[30] is one of the successful systems for SSI
used commodity off the shelf computers to gain high
performance environment. It consists of a set of
additions and modifications to UNIX/Linux kernel. The
primary features are the automatic load balancing and
the transparent process migration. The pre-emptive
process migration represents the main component of the
load balancing. Load balancing is achieved
continuously during the run time. If the process
requirement exceeds the threshold, the process will

migrate to another less loaded node. A load vector is
kept in each node that contains the information about
other random nodes load. This process is done in
decentralized organization. The process with the history
of forking other processes is better for migration [11].
 Although there are many systems have been
proposed like UnixWare Non-Stop Cluster [4],
Nomad[31] and Plurix[32], none of these systems gives
the assurance of every resources global management.
Furthermore, the processor global management and
load balancing appear to be the classical techniques in
this area [33]. On the other hand, the wide range of
implemented systems investigated that research activity
should concentrate on the systems that have already
been proposed and proved effectiveness to achieve a
high quality load balancing system.
 Nowadays the direction of the implementation and
development goes to the systems that implement Linux.
There are more than one reason behind this choice. The
most important reasons are the Linux feature of free
and open source that make the development of such a
system more flexible since the source code is available.
In contrast, the commercial solutions do not provide the
source code. Nowadays OpenSSI[34] Kerrighed[35] and
openMosix[36] provide a better load balancing strategy
for SSI based on Linux kernel. In addition, these
systems are mature enough for use[37].

OpenMosix: OpenMosix is an open source project
forked from MOSIX. Most of its designs are similar to
that of MOSIX. In 2001, it was decided that future
releases of MOSIX would be proprietary for
commercial use. OpenMosix becomes a real alternate
for such projects for research usage. OpenMosix like
MOSIX has a hard limitation of not allowing the
migration of shared memory processes. Consequently,
applications that use shared memory do not gain
benefits from its use. This fact constitutes a significant
obstacle to the objectives of research largely based on
user applications. In fact, openMosix was designed for
HPC, where shared memory process is not necessarily
relevant. On July 15, 2007, Bar (openMosix cofounder)
announced that the openMosix project will reach its end
of life on March 1, 2008. The LinuxPMI [38] project is
continuing development of the former openMosix code.
Since LinuxPMI is still a prototype and the 2.6 kernel is
still under development, we concentrate on openMosix
main design components. In the following sections, a
brief review is introduced in two directions openMosix
architecture and the load balancing mechanism in
openMosix.

J. Computer Sci., 4 (9): 752-761, 2008

757

OpenMosix Architecture: OpenMosix was
implemented on a Vanilla Linux kernel. The load
balancing mechanism tends to balance the processes on
processors around the nodes by migrating extra
processes [19]. In this case, a deputation was introduced
inside the kernel as a similar case with kernel thread.
This deputation keeps a record of migrated processes.
As a result, when a process is running, it appears to run
on the node on which it was spawned that is known as
Unique Home Node (UHN) even it migrated elsewhere
by keeping a representative named deputy
[20].Whenever possible a process uses local resources,
but often it has to make system calls on its UHN.

The migrated user context that is called the remote,
contains all data about the processes such as code,
stack, data, memory maps, and even registers. As long
as the remote needs system call, openMosix intercepts
all site dependent system calls and forwards them to its
deputy from remote node as shown in Fig. 3.

The main tool for the resource management
algorithm is the Pre-emptive Process Migration (PPM).
As long as the requirements for resources such as CPU
are below a certain threshold point, all user processes
are restricted to their home node. When these
requirements exceed the CPU threshold levels, some
processes will be migrated transparently to other nodes
[20].

Memory management is provided in openMosix
through a memory ushering algorithm, similar to
MOSIX [20].This algorithm will be active when the
memory of the node falls below a threshold value.
OpenMosix attempts to transfer processes to other
nodes, which have sufficient free memory. Thus,
process migration is decided not only based on
processor load criterion but also by taking into account
memory usage [40]. A better understanding of this
architecture and mechanism is shown in Fig. 2.

Load Balancing in OpenMosix: As in any SSI system,
the major component of openMosix system is the load
balancing. The main load balancing components of
openMosix are the information dissemination and
process migration.

The information dissemination daemon disseminates
load balancing information to other nodes in the cluster.
The daemon runs on each node and it is responsible for
sending and receiving load information to/from other
nodes. The sending part of this daemon will
periodically send load information each second to two
randomly selected nodes.

Fig. 2: OpenMosix architecture and migration

 mechanism

Fig. 3: Load information dissemination and collection
management

 The first node is selected from all nodes that have
contacted the node “recently” with their load
information. The second node is chosen from other
nodes in the cluster [11].The receiving portion of the
information dissemination daemon receives the load

J. Computer Sci., 4 (9): 752-761, 2008

758

information and attempts to replace information in the
local load vector[40]. The standard implementation
simply utilizes a First-In-First-Out (FIFO) queue of
eight entries. Thus, the oldest information is
overwritten by newly received information[40]. The
following flow chart demonstrates the load balancing
and information dissemination algorithms briefly.

Kerrighed: Kerrighed is a result of the Gobelins
project [41]. It is an SSI system that provides high-level
services to high performance applications on clusters of
computer in an operating system layer. It is made up
from a set of modules that merge with a standard Linux
kernel to enable the cluster feature in such a kernel by
applying a patch file. In Kerrighed, all nods’ resources
(processors, memories and disks) are dynamically and
globally managed. As mentioned before, the global
resources management feature enables resources to be
distributed transparently and dynamically throughout
the cluster’s nods. As a result, better usage of whole
cluster resources was carried out[35]. In Kerrighed, the
checkpointing is also implemented to avoid the
restarting of the application when any node fails. This is
where a snapshot of an executing program’s state is
saved and can be used to restart the running program
from the same point at a later time.
 When threads and processes are started on any
node in Kerrighed system, they can migrate during its
execution to any other node or staying in the current
node. This migration is based on the scheduling
mechanism that is used to migrate the jobs dynamically.
For supporting global memory management, Container
is used as a new idea to provide a high-level service of
a standard operating system to provide shared virtual
memory and remote paging[35]. In the global process
management perspective, pre-emptive process
migration scheme acts as a default scheduler that is
responsible for dynamic balancing of CPU load[42]. This
scheduler detects the unbalanced and overloads nodes,
then migrate the load from higher loaded node to lower
loaded nodes [5]. Kerrighed seems very promising
research prototype nowadays and for the future.

Open problem in SSI: The information dissemination
must take the significance of research and study. The
key to the effectiveness of the MOSIX information
dissemination algorithm is keeping the number of load
messages on the network to a minimum. The
information dissemination has to be made efficiently to
enable efficient decision making by the scheduler.
 There are different aspects of the load balancing
algorithms that provide the best opportunity for study

by looking at the three general types of load balancing
algorithms discussed (load calculation, information
dissemination, and migration consideration). A special
method can be used and proposed to improve the
information dissemination and to address better
performance. In openMosix implementation UDP
messages are used to disseminate load information and
TCP for all other communications such as migrating
processes and communicating with the UHN.
Therefore, it would be possible to attach node load
information to any TCP message and incorporate the
extra load information into the load vector. This could
potentially increase the accuracy of the load vector
information held by each node. As a result, migration
decisions could be improved.
 Another direction of research appears nowadays
with the increase of Multi-core technology. There is an
urgent need for a new load balancing and scheduling
strategy for such technology in case of using it in SSI
clusters. This load balancing strategy should be
combined with new and efficient information
dissemination that must give good information about
the cores and the nodes in the network. However, such
information dissemination should represent the Multi-
core node load as a one unified representative to
disseminate to other nodes. This can be achieved by
providing a good scheduling mechanism design.

Future of SSI: Currently, MOSIX and Kerrighed
became the base of bigger projects for grid management
systems to providing a virtual organization. MOSIX
announced MOSIX2 release for 2.6 Linux kernel as a
single system image system for clustering and grid
management system [43]. Whereas, Kerrighed research
group announced XtreemOS [44] as open source Grid
operating system. MOSIX2 was extended with a
comprehensive set of new features that can manage a
cluster and a multi-cluster Grid. The features of
MOSIX2 allow better utilization of Grid resources by
users who need to run demanding applications but
cannot obtain such a large cluster. A production
organizational Grid with 15 MOSIX clusters is
operational at Hebrew university. XtreemOS is a Grid
operating system that will provide native support for
Virtual Organizations. Based on Linux, XtreemOS will
have 3 different versions capable of running on single
PCs, clusters and mobile devices. The cluster flavour of
XtreemOS-F relies on the Kerrighed single system
image.

CONCLUSION

 In this study, we have presented an overview of
single system image types, structure and mechanism of
work including load balancing and scheduling. Then the

J. Computer Sci., 4 (9): 752-761, 2008

759

implementations evolution and steps illustrated from
past to present. In addition, the new directions of
implementation have been declared. We attempted to
provide a brief review of implemented technologies as
well as the features in each implementation. Depending
on the review and from load balancing view point,
openMosix and kerrighed represents important and
successful opensource implementations till now.

REFERENCES

1. Buyya, R., 1997. A study on HPC systems

supporting single system image. Processing in
Parallel and Distributed Processing Techniques and
Application International Conference, July 3-3, Las
Vegas, Nevada, USA., pp: 1106.
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=
10.1.1.27.8156.

2. Buyya, R., 1997. Single system image: Need,
approaches and supporting HPC systems.
Proceedings of the 4th International Conference on
Parallel and Distributed Processing, Technique and
Applications, June 1997, CSREA Publishers, USA.

3. Buyya, R. T. Cortes, H. Jin, 2001. Single system
image. Int. J. High Performance Comput. Appli.,
15: 124-135.
http://portal.acm.org/citation.cfm?id=1080643.108
0652.

4. Walker, B. and D. Steel, 1999. Implementing a full
single system image unixware cluster: Middle ware
vs under ware. International Conference on Parallel
and Distributed Processing Techniques and
Applications (PDPTA’99), June 1999, Monte Carlo
Resort, Las Vegas, Nevada, USA., pp: 1-7.
http://66.102.1.104/scholar?hl=en&lr=&q=cache:u
V9CP3gOsh0J:www.buyya.com/pdpta99/douglass.
ps.gz+related:uV9CP3gOsh0J:scholar.google.com/

5. Morin, C., P. Gallard, R. Lottiaux and G. Vall´ee,
2004. Towards an efficient single system image
cluster operating system. Future Generation
Comput. Sys. J., 20: 505-521. DOI:
10.1016/S0167-739x(03)00170-5.

6. Piotrowski, A. and S. Dandamudi, June 1997. A
comparative study of load sharing on networks of
workstations. Proceedings of the International
Conference on Parallel and Distributed Computing
Systems, Oct. 1997, New Orleans, pp: 1-8.
http://66.102.1.104/scholar?hl=en&lr=&q=cache:A
mfnXnjiM5EJ:www.cs.carleton.ca/research/tech_r
eports/1997/TR-97-14.ps+.

7. Zaki, M.J., W. Li and S. Parthasarathy, 1997.
Customized dynamic load balancing for a network
of workstations. J. Parallel Distributed Comput.,
43: 156-162.
http://www.ingentaconnect.com/content/ap/pc/199
7/00000043/00000002/art01339.

8. Harchol-Balter, M. and A.B. Downey, 1997.
Exploiting process lifetime distributions for
dynamic load balancing. ACM Transact. Comput.
Sys. (TOCS)., 15: 253-285.
 http://DOI.acm.org/10.1145/263326.263344

9. Rao, C.S., M. Naidu, K. Subbaiah and N.R. Reddy,
2007. Process migration in network of linux
systems. Int. J. Comput. Sci. Network Security, 7:
213-219. http://
paper.ijcsns.org/07_book/html/200705/200705032.
html.

10. Du, C., X.-H. Sun and M. Wu, May 2007.
Dynamic scheduling with process migration.
Proceedings of the 7th IEEE International
Symposium on Cluster Computing and the Grid.
May 14-17, IEEE Computer Society, Washington,
DC, USA., pp: 92-99. DOI:
10.1109/CCGRID.2007.46

11. Barak, S.G.A. and R. Wheeler, 1993. The MOSIX
Distributed Operating System: Load Balancing for
UNIX. 1st Edn., Springer-Verlag, Inc., New York,
pp: 221. ISBN-10: 0387566635

12. Barak, A. and O. La’adan, 1998. The MOSIX
multicomputer operating system for high
performance cluster computing. Future Generation
Comput. Sys., 13: 361-372.
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=
10.1.1.36.6599.

13. Chen, J.C., G.X. Liao, J.S. Hsie and C.H. Liao,
2008. A study of the contribution made by
evolutionary learning on dynamic load-balancing
problems in distributed computing systems. Int. J.
Expert Sys. Appli., 34: 357-365. DOI:
10.1016/j.eswa.2006.09.036

14. Keren, A. and Barak, A., Jan 2003. Opportunity
cost algorithms for reduction of I/O and
interprocess communication overhead in a
computing cluster. IEEE Trans. Parallel Distribut.
Syst., 14: 39-50. DOI:
10.1109/TPDS.2003.1167369

15. Zhu, W. and C.F. Steketee, 1995. An experimental
study of load balancing on amoeba. Proceedings of
the First Aizu International Symposium on Parallel
Algorithms/Architecture Synthesis, Mar. 15-17,
IEEE Computer Society, Washington, DC, USA.,
pp:220-226.
http://portal.acm.org/citation.cfm?id=527214.8260
50.

J. Computer Sci., 4 (9): 752-761, 2008

760

16. Van Albada, G.D., J. Clinckmaillie,
A.H.L. Emmen, J. Gehring, O. Heinz, F. van der
Linden, B. J. Overeinder, A. Reinefeld and
P.M.A. Sloot, 1999. Dynamite - blasting obstacles
to parallel cluster computing. Proceedings of the
7th International Conference on High-Performance
Computing and Networking, Apr. 12-14, Springer-
Verlag, London, UK., pp: 300-310.
http://portal.acm.org/citation.cfm?id=645563.6603
42&coll=GUIDE&dl=GUIDE

17. Wills, C. and D. Finkel, 1995. Scalable approaches
to load sharing in the presence of multicasting. J.
Comput. Communicat., 18: 620-630. DOI:
10.1016/0140-3664(95)99805-M

18. Ho, R.S., C.L. Wang and F.C. Lau, 2008.
Lightweight process migration and memory
prefetching in openMosix. Proceeding of IEEE
International Symposium on Parallel and
Distributed Processing, Apr. 14-18, IEEE
Computer Society, Rome, Italy, pp: 1-12. DOI:
10.1109/IPDPS.2008.4536329.

19. Malik, K., O. Khan, T. Mobashir and M. Sarwar,
2005. Migratable sockets in cluster computing. J.
Sys. Software, 75: 171-177. DOI:
10.1016/J.Jss.2004.03.023

20. Nuttall, M., 1994. A brief survey of systems
providing process or object migration facilities.
ACM SIGOPS Operat. Sys. Rev., 28: 64-80.
http://DOI.acm.org/10.1145/191525.191541.

21. Litzkow, M., M. Livny and M. Mutka, 1988.
Condor-a hunter of idle workstations. Proceeding
of 8th International Conference on Distributed
Computing Systems. June 13-17, IEEE Computer
Society, San Jose, CA., USA., pp: 104-111. DOI:
10.1109/DCS.1988.12507.

22. Mullender, S.J., G. van Rossum, A.S. Tanenbaum,
R. van Renesse and H. van Staveren, 1990.
Amoeba: A distributed operating system for the
1990s. J. Comput., 23: 44-53. DOI:
10.1109/2.53354.

23. Tanenbaum, A.S., R. van Renesse, H. van
Staveren, G.J. Sharp and S.J. Mullender, 1990.
Experiences with the amoeba distributed operating
system. Commun. ACM., 33: 46-63.
http://DOI.acm.org/10.1145/96267.96281.

24. Comer, D. and J. Griffioen, June 1990. A new
design for distributed systems: The remote memory
model. In USENIX Summer Technical Conference.
(Citation).

25. Feeley, M.J., W.E. Morgan, E.P. Pighin,
A.R. Karlin, H.M. Levy and C.A. Thekkath, 1995.
Implementing global memory management in a
workstation cluster. Proceedings of the 15th ACM
Symposium on Operating Systems Principles, Dec.
03-06, ACM, New York, USA., pp: 201-212.
http://doi.acm.org/10.1145/224056.224072

26. Li, K. and P. Hudak, 1989. Memory coherence in
shared virtual memory systems. ACM Trans.
Comput. Sys., 7: 321-359.
http://portal.acm.org/citation.cfm?id=75105

27. Ousterhout, J., A. Cherenson, F. Douglis,
M. Nelson and B. Welch, 1988. The sprite network
operating system. IEEE J. Comput., 21: 23-36.
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=
10.1.1.54.7773.

28. Douglis, F. and J. Ousterhout, 1991. Transparent
process migration: Design alternatives and the
sprite implementation. J. Software Practice
Experience, 21: 757-785. DOI:
10.1002/spe.4380210802

29. Anane, R. and R.J. Anthony, 2003. Implementation
of a proactive load sharing scheme. Proceedings of
the 2003 ACM symposium on Applied Computing,
Mar. 09-12, Melbourne, Florida, pp: 1038-1045.
http://doi.acm.org/10.1145/952532.952735.

30. Barak, A. and O. La’adan, 1998. The MOSIX
multicomputer operating system for high
performance cluster computing. Future Generat.
Comput. Syst., 13: 361-372. DOI: 10.1016/S0167-
739X(97)00037-X

31. Pinheiro, E. and R. Bianchini, December 1999.
Nomad: A scalable operating system for clusters of
uni and multiprocessors. Proceedings of the 1st
IEEE Computer Society International Workshop on
Cluster Computing, Dec. 02-03, IEEE Computer
Society, Washington, DC, USA., pp: 247-254.
DOI: 10.1109/IWCC.1999.810831

32. Goeckelmann, R., M. Schoet tner , S. Frenz and
P. Schulthess, 2003. A kernel running in dsm-
design aspects of a distributed operating system.
Proceedings of IEEE International Conference on
Cluster Computing, IEEE Computer Society, Dec.
1-4, Los Alamitos, CA, USA., pp: 478-482.
http://ieeexplore.ieee.org/Xplore/login.jsp?url=/iel5
/8878/28041/01253353.pdf?arnumber=1253353

33. Hajmahmoud, Y., P. Sens and B. Folliot,
December 1999. Performance evaluation of a load
sharing system on a cluster of workstations.
Proceedings of the 6th International Conference on
High Performance Computing, Dece. 17-20,
Springer-Verlag, London, UK., pp: 71-76.
http://portal.acm.org/citation.cfm?id=645445.6531
70.

34. Bestoun, S. Ahmad, Khairulmizam Samsudin and
Abdul Rehman Ramli, 2008. Benchmark framwork
for a load balacing singla system image. Int. J.
Compt. Sci. Network Swcurity, 8: 320-333.
http://search.ijcsns.org/02_search/02_search_03.ph
p?number=200805048.

J. Computer Sci., 4 (9): 752-761, 2008

761

35. Morin, C., R. Lottiaux, G. Val lee, P. Gal lard ,
D. Margery, J.Y. Berthou and I.D. Scherson, 2004.
Kerrighed and data parallelism: Cluster computing
on single system image operating systems.
Proceedings of the 2004 IEEE International
Conference on Cluster Computing, Sept. 20-23,
IEEE Computer Society, Washington, DC, USA.,
pp: 277-286. DOI:
10.1109/CLUSTR.2004.1392625.

36. Esposito, G.T.R., P. Mastroserio and F. Taurino,
2003. Openmosix approach to build scalable HPC
farms with an easy management infrastructure.
Proceeding of International Conference of
Computing in High Energy and Nuclear Physics,
Mar. 24-28, La Jolla, California, pp: 1-2.
http://arxiv.org/ftp/hep-
ex/papers/0305/0305077.pdf

37. Lottiaux, G.V.R., P. Gallard and C. Morin, 2005.
OpenMosix, openssi and kerrighed: A comparative
study. Proceeding of IEEE International
Symposium on Cluster Computing and the Grid,
May 9-12, IEEE Computer Society, Washington,
DC, USA., pp: 1016-1023. DOI:
10.1109/CCGRID.2005.1558672

38. LinuxPMI, 2008. http://linuxpmi.org/trac/.
39. Barak, A. and A. Braverman, 1997. Memory

ushering in a scalable computing cluster.
Proceeding of 3rd International Conference on
Algorithms and Architectures for Parallel
Processing, Dec. 10-12, IEEE Computer Society,
Melbourne, Vic., Australia, pp: 211-224. DOI:
10.1109/ICAPP.1997.651492.

40. Meehan, M. and A. Ritter, 2006. Load balancing
experiments in openMosix. Proceeding of
International Conference on Computers and Their
Applications, March Seattle, Washington, USA,
pp: 314-319.

41. Vall´ee, G., C. Morin, R. Lottiaux, J.Y. Berthou
and I.D. Malen, 2002. Process migration based on
gobelins distributed shared memory. Proceedings
of the 2nd IEEE/ACM International Symposium on
Cluster Computing and the Grid, May 21-24, IEEE
Computer Society, Washington, DC, USA., pp:
325. http://portal.acm.org/citation.cfm?id=873266.

42. Vall´ee, G., C. Morin, J.Y. Berthou and L. Rilling,
2003. A new approach to configurable dynamic
scheduling in clusters based on single system
image technologies. Proceedings of the 17th
International Symposium on Parallel and
Distributed Processing, Apr. 22-26, IEEE
Computer Society, Washington, DC, USA., pp: 91.
http://portal.acm.org/citation.cfm?id=838553.

43. MOSIX H, 2008. http://www.mosix.org.
44. XtreemOS, 2008. http://www.xtreemos.eu/.

