Journal of Computer Science 5 (4):302-310, 2009
ISSN 1549-3636
© 2009 Science Publications

A Control-Oriented Coverage Metric and its Evaluation for
Hardwar e Designs

'Shireesh Verm&Kiran Ramineni andlan G. Harris

'Conexant Systems Inc., Newport Beach, CA 92660
2Marvell Semiconductor Inc., Austin, TX 78746
3University of California, Irvine CA 92697, USA

Abstract: Problem statement: Dynamic verification, the use of simulation to detme design
correctness, is widely used due to its tractabfiity large hardware designs. A serious limitatidn o
dynamic techniques is the difficulty in determiniwgether or not a test sequence is sufficient teale

all likely design errors. Coverage metrics are usedddress this problem by providing a set of goal
to be achieved during the simulation process] i€@erage goals are satisfied then the test sequsnc
assumed to be complete. Coverage metrics henceatwathe ability of a test sequence to detect
design errors and are essential to the verificapimtess. A key source of difficulty in determining
error detection is that the control-flow path traeet in the presence of an error cannot be detedmine
This problem becomes particularly difficult in casfetypical industrial designs involving interaatio

of control flow paths between concurrent procesBesr detection can only be accurately determined
by exploring the set of all control-flow paths, whimay be traversed as a result of an error. Also,
there is no technique to identify a correlationvi@dn coverage metrics and hardware design quality.
Approach: We present a coverage metric that determined tbpagation of error effects along all
possible erroneous control-flow paths across prese3he complexity of exploring multiple control-
flow paths was greatly alleviated by heuristicalijumpng infeasible control-flow paths using the
algorithm that we present. We also presented aligab to evaluate coverage metric by examining its
ability to ensure the detection of real design mrdVe injected errors in the design to correlatsrt
detection with the coverage computed by our meR@sults: Our coverage metric although analyzed
all control-flow paths it pruned the infeasible erand eliminated them from coverage consideration,
hence reducing the complexity of generating testanhto execute them. The metric also correlated
better with detection of design errors than som#é-stedied metrics doConclusion: The proposed
coverage metric provided high accuracy in measunemicoverage in designs that contain complex
control-flow with concurrent processes. It is supeat detecting design error when compared with the
metrics it was compared with.

Key words: Verification, simulation, coverage metrics, tesjigence, controllability, oberservability

INTRODUCTION (HDL). The three main steps of the process are test
generation, simulation and response evaluation.
Verification is known to be an expensive and time-Simulation is performed using a software tool lagtt
consuming part of the design process. Verificatiorgeneration and response evaluation, are often lyeavi
approaches can be broadly grouped into two caiegjori dependent on manual interaction making them costly.
formal verification and dynamic verification. Dynamic The most significant weakness of dynamic verifcati
verification, the subject of this study, involve® thse techniques is the difficulty of determining the arr
of simulation to verify design correctness. A desig detection ability of a test sequence. We refer tesa
simulated with a test sequence and the design isequence as being complete if it detects all piaient
assumed to be correct if the test responses mhth tdesign errors. The effectiveness of dynamic vexifon
correct responses. A general framework of the dymam depends on the ability to determine whethernot
verification process is shown in Fig. 1 where thea test sequence is complete. An incomplete test
process starts on the left side with an executdésign sequence will lead to the possibility of idaserrors
description in a Hardware Description Languagein the final product and reduced systequality.

Corresponding Author: Shireesh Verma, Conexant Systems Inc., NewportiBe2A 92660
302

J. Computer i, 5 (4): 302-310, 2009

[1 A significant difficulty in predicting error
oL comesien [| scammnee [SiRIatHOR P ll o propagation is the ambiguity in the control flowttpa
; ' ! executed in the presence of an error. For example,
e consider the evaluation of the conditional statetrfign
metics (x>5) then...” in the presence of an unknown error
effect on variable x. If the correct value of xGghen
Fig. 1: Dynamic verification flow the correct value of the conditional predicateAd SE,
but the incorrect predicate value is unknown. The
The problem of determining the completeness ofsa te control flow choices at branch points have a major
sequence is addressed by using coverage metri@sh wh jmpact on the sequence of instructions executedtand
abstractly define the coverage goals to be salisfiging ,ropagation of error effects. In the simple coruil
simulation. A coverage .metric_defines a set of gate predicate example above, if the predicate evalu@tes
that are used to determine which errors are detdiye x| g in the erroneous design, the error effect may

et ouence. A Coverage metrc Drovides (e4Jot propagte and the eror may remain undetest o
sequence and the error detection criteria can éé s esult. The problem of determining error propagatio

direct the test generation process. For exampleéhe presence of amb'?u'm In bcontrol flow qu|ckIy|
statement coverage metric would define the vetifica ecomes Severe as control flow becomes more complex

goal as the execution of all HDL statements duringoartlcularly with interacting control flow pathsrass

simulation. A test sequence is evaluated by deténmgi PrOCESSeS.
the fraction of coverage goals, which are satistisig Our approach explores all control flow paths asros
the test sequence. processes, which could be executed as a resulhof a

Some metrics targeted towards errors in FiniteBfTor- Error detection is estimated along each robnt
State Machines (FSM&fY have been developed: state flow path and 'Fhe detection probabilities along hea_c
coverage model, which requires that all states b@ath are comblned_ to. compute tOtal error dgtectlon
reached and transition coverage, which requiresatha p][obabllhty. To aIII$V|Fte thet C(I)rr;loutatlontal comptgx
transitions be traversed. Metrics based on theetsaV ck)no(\jv)l(g do;engof”,gﬁelp;gncoor} rgn ec;\;\(l)rpsffe?:,t \tlll)e plrJuSr?e
of paths through the Control Dataflow Graph (CDFG)

h b 4 b h Hoohich : h infeasible paths, which could never be executec as
ave been used, branch coveragehich requires that ot of an error. Our approach provides an ateura

the set of CDFG paths executed include all conuiio ggtimate of error detection probabilities by cosiitl
branches and path coverétyewhich requires that all the fyll range of erroneous behaviors. We call this
control-flow paths be executed. Researchers havgetric a Control-Oriented Coverage Metric

studied techniques to reduce the complexity of patfcoCM)*?. In case of designs consisting of interacting

coverage metrfd. processes a set consisting of one path from eactess
Many control-dataflow coverage metrics consideris considered.
the requirements for error activation without egiply Very little work has been done on the evaluatibn o

considering error effect observability. Researclerge existing metrics. In the hardware domain reseascher
developed observability-based behavioral error fsode have performed a limited evaluation of the statemen
to alleviate this weakness. The OCCOM apprBhch and branch coverage metrics with two small
inserts errors, called tags, at each variable as®gtto example§. We present a technique to estimate the
represent a positive or negative offset from theext correlation between coverage metrics and desigor err
signal value. The propagation of these tags taletection. Test sequences are generated for afset o
observable variables is determined using a set dbenchmark examples and coverage is computed for
propagation rules for behavioral operations'®inthe each test sequence using the coverage metric under
software dataflow testing technique is enhanced tavaluation. We also compute the error coverage, the
identify chains of variable definitions and usesickh fraction of design errors detected, for each test
extend to observable variables. Both of thesesequence by injecting a large number of errorséaich
observability-oriented metrics have difficulty benchmark. The coverage metric is evaluated by
considering the multitude of possible control flow examining the difference between the metric cowerag
paths, which may be executed in the presence of amnd the error coverage values for the same benélsmar
error. Either complex control flow has not beenWe employed this technique on the statement, branch
considered or only a small subset of possible obntr and state coverage metrics to serve as a baselirleef
flow paths is considered. evaluation of our control-oriented coverage metric.

303

J. Computer i, 5 (4): 302-310, 2009

Start

Simulate selected path
Prune infeasible
paths

All feasiblé
paths
imulated

numerate all
control flow
paths

Selecta
feasible path

Patterns

Yes exhausted

Single pattern
coverage
evaluation

Output
coverage
for all patterns

No

Apply a pattern
to the design

Record fault
propagation

End

Fig. 2: System structure

‘Compute fault
detection
probability

Start

g

P N
" Faultlist ™
\Exhﬂusled P

7

\/

Fig. 4: Determination of error detection

Yes
A

Compute total
fault coverage
k'-\—r

'

End

The tags are injected on to the Left Hand Side (LHS
variable of each assignment statement and on efach o
the input variables. We parse the HDL description t
obtain a list of all the assignment statements iapdt
variables. There are following three types of tags
defined:

Determination
of fault
detection

Select a fault

Fig. 3: Single Pattern Coverage Evaluation N)
- Positive tags: These cause the LHS variable to

Overview: The inputs to our method are a behavioral have a greater value than the correct one

HDL description of the design and a set of testgpas « Negative tags: These cause the LHS variable to
and the output is the set of errors that propatmaizn have a lesser value than the correct one
observable point for every input pattern. An obabte « Unknown tags: These cause the LHS variable to
point in a simulation is a variable that may get an have a greater or lesser value than the correct one
incorrect value because of a design error.

Figure 2 shows the way COCM coverage value is Since there are three types of tags, our error lis
computed for test patterns, which constitute a tesgnay consist of a number of errors that is thre@sinie
sequence. We automatically generate a list of pialen number of assignment statements and input variables
errors in the design. We then simulate the HDLthe HDL description.
description with each test pattern one at a tinté ath
the generated patterns are exhausted. The coveraggaluation of error tag propagation: The simulation
value for each pattern is computed at the end f itand evaluation of a single error is depicted infe 4.
simulation. We compute all the possible control flow paths and

Figure 3 shows a sequence of steps we follow t@naintain a list of these pre-determined paths. Wecs
compute the COCM coverage for each test pattern. Wen arbitrary path from the list and then the sirtiatais
select an arbitrary error from the generated st then guided through that path. During each simulatiom, a
simulate the HDL description to determine theerror is injected by inducing a tag using the shaor's
propagation of the error. We evaluate its detectiordirectives. During the simulation, we monitor the
probability at the end of the simulation. This segge observable points where an injected tag could reahif
of steps is repeated until all the errors in ttst 4ire itself. This evaluation is repeated at every tirtep of
exhausted. The COCM coverage value for the giverthe simulation in order to propagate an error. &her
test pattern is computed on the basis of the detect Propagation is updated after each statement sironlat

probabilities of the individual errors. Each injected error propagates in one of the fatigw
two ways through the behavior.
Error list generation: We use the tag mod®l for Data flow propagation an error can propagate from

injecting and propagating design errors. We comsideone variable to another via a direct data dependenc

every assignment statement and input variable én thbetween the two variables created by a variable

HDL description as potential error injectigpoints. assignment. For example, in the code shown in5-ay.
304

J. Computer i, 5 (4): 302-310, 2009

tag on variable a would propagate to variable xaas When a tag changes the result of a conditional
result of the assignment on line number 6. We use predicate, it alters the sequence of dataflow djpmrs
calculus to perform tag propagation through eagety executed. This consequently changes all subsequent
of behavioral operatidi. The propagation table used dataflow propagation. Error propagation depends on
for an addition operation is shown in Table 1. The the sequence of dataflow operations, so any chamge
most row in the Table 1 represents the tags onhilew that sequence will also alter the dataflow error
the left most column represents the tags on a. “+”, propagation.
and “?” signify a positive, a negative and an unkno At the end of simulation of each feasible control
tag respectively and a “0” signifies absence ofg t flow path the tag propagation data is recorded tard
Variables a or b followed by “0”, “+”, “-“ or “?” gnify ~ tags on the variables are stored. The propagatitanid
the presence of tags on these variables. the set of variables that contain tags at the ehd o
Control flow propagation it is possible for anagrr simulation. The stored tag values at the end oheac
to change the executed control flow path by chamginsimulated feasible control flow path are used to
the result of a conditional. Changing the contfolvf determine the tags on the variables at the start of
path can have drastic effects on error propaggﬂipn simulation of next feasible control flow path This
introducing indirect variable dependencies and byProcess is repeated until there are no feasibles peft to
changing the sequence of dataflow operations. Arfimulate in the control flow path list. Once alethaths
indirect data dependency can be seen in Fig. 6egetw N the list are simulated, the error detection piwlity
variables cond and x. Although there is no dataflowfo’ the injected error is computed using the error
dependency between the two variables, it is clear t propagation data recorded for individual paths.

the value of cond determines the value of x. If '[hepr ning infeasible paths The number of simulations
correct value of the cond variable is 1 and it has uning 1 P) 4 imufat

. : required to determine the impact of tags can become
p05|t|ye tag, then either branch 2 or 3 COUI(.]I esria intractable as the number of control flow paths rbay
The sign of tag on x depends on the magnitude ®f th

d d=2) exponential in the number of conditionals. If a fag
error on cond. cond = 2 creates a negative tag amdx present on a variable involved in a conditional

cond = 3 creates a positive tag on x. predicate, then we determine whether or not the
outcome of the predicate depends on the magnitfide o
1 Begin the tag. If it does, the path is pruned therebyicad
2 egx; the time complexity of this approach. The following
3 Integer a; steps are involved in pruning.
4 =5
5 a=7 Generating decision tree: We generate a decision tree
6 x=x'_a: from the HDL description at the parsing step. Ahpat
- end ' through the decision tree from root to leaf corozsfs
to a control flow path in the HDL description. Theet
consists of following two types of nodes.
Fig. 5: A simple data flow example Condition node each condition node corresponds to
a control flow decision that is made during simolati
1 Case (cond) A single conditional predicate in the HDL may map t
2 lix=3; many decision nodes since each predicate may be
3 Tx=1: evaluated on many control flow paths. Each condition
4 3% = 10 node has a number of children corresponding to the
5 End case number of outcomes of the conditional predicate. A

condition node corresponding to an IF Else statémen
will have two children, TRUE and FALSE. A condition
node corresponding to a case statement will have as
many children as the case has branches. These nodes

Fig. 6: A simple control flow example

Table 1: Tag calculus for addition

are represented as white nodes.

a/b b b- b+ b? . .

a 0 - " > A sequence of nodes starting with the top most
a- 2 2 condition node and ending at a leaf node of the tre
a+ + ? + ? constitutes a control flow path. This signifies, ¢hisra

a? ? ? ? ?

one-to-one mapping between the leaf nodes and the
305

J. Computer i, 5 (4): 302-310, 2009

control flow paths. In this case, we have six cdntromagnitudes of tags out and a. For example, out < a
flow paths each corresponding to a leaf node. Theseould evaluate to TRUE when magnitudes of tags on
control flow paths are used to guide the simulation. out and a are 1 and 1 respectively in which case th
resultant expression becomes ((-4 + 1)<(5 - 1))ckwh
Pruning algorithm: It is possible to reduce the number evaluates to TRUE. However, when the magnitudes of
of control flow possibilities to be considered byngs the tags are 5 and 6 respectively for out and @, th
dynamic tag information computed during simulation.resultant expression (-4 + 5)<(5 - 6)) evaluates to
A child ¢ of a conditional node n node can be pduiie FALSE. Pruning cannot occur at the decision node ou
the predicate P (n) associated with node n canrnev& an on account of ambiguity resulting from the
evaluate to the value required to lead to chileh ¢the magnitudes of the tags. The pruned tree is depicted
presence of the error. For example, the root nade Fig. 9. The dashed lines represent the prunedopéine
Fig. 7 has two children, one associated with a TRUHree. About 66.66% of the total number of conttoir
predicate value and one associated with a FALSBEpaths is pruned in this case.
predicate value. If during simulation the variabléas

the value 11 and b has a positive tag, then itos n iy
possible for the predicate to evaluate to FALSEh S
presence of the error. In this case, the childha t 3 b
FALSE direction can be pruned from consideration 7oL ot
without reducing the accuracy of the approach. When o ° ou=1:
simulation encounters a conditional predicate, the it
following steps are performed: aitouca

14 out=0;

15 else
» Determine the set of possible erroneous predicate 16 _ou=1;

values, V-this step is performed by limiting the

range of the variables in accordance with the sign

of their tags and determining if the predicate is

satisfiable or not. This problem in the worst case i SDMO Lefi banch = TRUE

a version of the SATISFIABILITY problem, but in g

practice it is trivial given the monotonic nature o CB \\\\\\\
a<5b

¥ig. 7: An HDL example for illustration

the vast majority of predicates in real examples
 Prune children corresponding to impossible

predicate values-once the possible predicate values e —

are known, all children of the decision node that N ‘5 6

can be reached only by impossible predicate values i< a i<

can be safely pruned.

— ’// \1
The decision tree for an HDL description in Fig. 7 ‘1 32 ‘3 @
is shown in Fig. 8. We will use the example used i

Fig. 7 in order to illustrate the pruning of thectdon Fig. 8: The decision tree for HDL example
tree in Fig. 8. Let us consider the following casétag
injection on variable a.

b>10 Left branch = TRUE
Right branch = FALSE

Negative tag at line number 2: This results in a
negative tag for b at the assignment statemena 35
at line number 3. The condition node b>10 evalutdes
FALSE, as there is a negative tag on b and itsevau T
10. This allows us to prune TRUE branch, which wloul

.
i
|
|
|
P =

never be taken in presence of the error. On theSEAL Nout<a Y out<a
branch, assignment statement out = 1 -a at linebeum /\j{; i

12 is evaluated. Out gets a value -4 and a positige [\‘1 O “:
since a, which has negative tag, is being subuladtee .1 .2 .3 .4

value of the next condition out < a can not be ueliyg
determined because it depends on the relativEig. 9: Pruning case with negative tag on a

306

J. Computer i, 5 (4): 302-310, 2009

Left branch = TRUE
Right branch = FALSE

b>10

Fig. 10: Pruning case with positive tag on a

Positive tag at line number 2: This results in a
positive tag for b at the next assignment staterbent
+5 at line number 3. The condition node b>10 evalia
to TRUE as there is a positive tag on b and itsievad

Foreach b € Benchmark set
Generate testsequencet for benchmark b;
Compute error coverage, ECy i
Compute metric coverage, MCyp
Record |ECyh- MCyp, |

Fig. 11: Metric evaluation algorithm

We will refer to the fraction of potential desigrras
detected in a benchmark b when simulated with test
sequence t as the error coverage, £The algorithm in
Fig. 11 computes E&and MG, whose difference for a
set of benchmarks reveals how closely error deteds
modeled by the coverage metric for the test seqgenc
used. The lesser the difference, the better theianet
under evaluation will be at detecting design etrors
hence better its quality.

Test sequence generation: The difference between

10. This allows pruning FALSE branch that would error coverage and metric coverage depends oresie t
never be taken. The next condition node a <5 etedua generation technique. Hence sequences for evatuatio
to FALSE as a has positive tag and its value & purpose should be generated as it would be inipeact
TRUE branch is pruned at the decision node a <&. ThWe identify some guidelines which any reasonabdé te
assignment statement out = 1 at line number 9 isequence should reflect

evaluated. The next decision node out < a evaluates

TRUE as there is positive tag on a and its value is
greater than that of out. So, the FALSE branch is
pruned. The final value of out is 0. The pruned isce .
shown in Fig. 10. The dashed lines represent thegat
part of the tree. 83.33% of the total number oftomn
flow paths is pruned in this case.

Computing coverage: The COCM coverage is based
on the computation of Tag Detection Probability @)D
An error tag is considered detected if any of obelale
points obtains a tag at the end of the simulafil@P of
a variable v is the probability that v gets a tatha end
of simulation. The number of simulations run for an
error e tag is represented by S (e). D (V, e) i=rts

number of simulations where the tag propagatednto a

observable point and V is the set of observablatpoi

where the error is detected. TDP (V, e) is the

probability of a single error tag e being detecédny
of the observable points in V. TC (t) is the tagerage
value for a test sequence t:

TDP (V, €) = D(V, e)/S(e) Q)
(2)

Metric evaluation: In our description of the evaluation

TC () =1-[[%=1(1 - TDP(V, i)

Succinctness-a test sequence should be just long
enough to attain 100% coverage using the metric
Randomness-inputs are randomized to maximize

coverage except where it would make coverage of
part of state space difficult

“Special” control inputs-some input control signals

have a drastic impact on the behavior and they
should be assigned in a special way. For example,
assigning some reset randomly would

probabilistically keep the system in reset half the
time, making it hard to explore the entire state

space

Error coverage computation: Computation of the
EG,: requires that each potential design error be
inserted into the design individually and that the
erroneous designs be simulated with the test seguen
Inserting errors into a design description requittes
use of an error model, which describes the setsigh
errors to be considered. The wide variety of paaént
design errors makes it impossible to capture athese
errors at this time. Instead, we restrict our itigagion

to a subset of design errors, which has been fowe
most common in hardware desf§n These errors
include simple typographical mistakes and accounted

approach we will refer to the fraction of coveragefor 12.7% of the design errors found in the Pentitfin
goals satisfied for a benchmark b when simulatedn order to inject errors we use the mutation asialy

with test sequence t as the metric coverisi§®,:.

technique studied previously in software testingl an

307

J. Computer i, 5 (4): 302-310, 2009

hardware validatidh®. Following mutation operators RESULTS
describe expected design errors:

The results are divided into two parts. In thetfir

+ Arithmetic Operator Replacement (AOR)-eachpart, we demonstrate the performance of the prapose
occurrence of one of the arithmetic operators (+, -control-oriented coverage metric with the benchmark
*and /) is replaced by each of the other operators designs and the efficiency achieved by our pruning

* Relational Operator Replacement (ROR)-eachalgorithm. In the second part, we compare its d¢yali
occurrence of one of the relational operators (<, >with that of state, statement and branch coverage
<, <, = and#) is replaced by each of the other metrics. The same set of test sequences is used for
operators evaluating all the three coverage metrics. Forfitst

* Logical Operator Replacement (LOR)-eachpart, each row in Table 2 shows the results for
occurrence of one of the logical operators (& benchmark design whose name is listed in the first
&&, | and ||) is replaced by each of the othercolumn. The second column lists the total number of

operators tags injected for each design. The third colummsho
percentage coverage values computed. The next two
MATERIALSAND METHODS columns list average number of simulations run and

pruned, respectively for each tag. The last column
We used a set of nine ITC'99 benchmarks in ordeshows the percentage of pruned simulations.

to demonstrate the formulation of the proposed imetr We do not present direct performance results,
and to evaluate its quality. We used Cadence Mprilo however the performance overhead of applying our
XL simulator for our experiments. We developed a Cmethodology can be approximated as the average
application that interacts with the simulator while Number of simulations per tag as shown in Table 2.
running a simulation. First, we parsed a Verilogige Ther_e i_s an additional overhead associated Withipgjl
descriptions and constructed its decision treenTie Put it is small compared to the cost of performing
assigned simulation callbacks for each of theMultiple simulations required by this methodology.

assignment statements so that we could interabithét For the fsegongj pa;]t, ealt(:h lrlowcljn.thehTafble 3 slhows
internal data structures of the Verilog simulatgr. € name of the benchmarks listed in the first calum

callback associated with a statement forces th(@lnd the corresppndlng results for that benchmahle T
.) : Second column lists the total error coverage actuidoy
simulator to acquiesce control to Verilog Procetlura

. . performing mutation analysis for every design. The
Interface (VPI) when the statement is reached whil hird column shows the percentage coverage computed

simulating. At that poilnt, we applied our tag calsu by COCM metric. Percentage state, statement and
for each of the assignments and store SUbS?queBi/anch coverage numbers are shown in the fourth, 5t
changes in the tag values for each of the variableg,g gth columns respectively. The total numbers of
affected. . patterns run on each benchmark and the numbers of
All the test sequences were generated in a randofyytations used for error coverage are shown inrghve
fashion. However, two different random test geniemat and eighth columns respectively. Execution times
setups were used. First setup aimed at achieviglg hi (CPU) for COCM, the numbers of tags induced for
COCM coverage for each design in order toobtaining coverage by COCM are depicted in the
demonstrate the efficiency of pruning obtained by o subsequent columns.
algorithm. We generated test sequences consistipg o
random patterns for each design. The second setupble 2: COCM results

generated test sequences with enough random pattern Avg. no per tag

to achieve 100% coverage by a given metric, which i Bench COVQ- B — F’fl;nefi
this case was chosen to be state coverage. StdlE' Iggs iggo Schs)o Péuznoed ég’)G
coverage was chosen, as the benchmark examples wi 66 100.0 9.00 8.00 471
mostly control-flow driven. The number of test pattee o3 156 100.0 3.40 13.60 79.7
in the test sequence is different for each benckagit b06 168 100.0 7.66 6.33 37.3
varied based on the difficulty of “hitting” the & in 97 90 100.0 166 11.30 86.9

. d . . 60 100.0 5.00 4.00 44.8

eac_h design. All the experiments were run in UniXpog 111 67.3 3.10 5.90 65.4
environment on a Sun SPARC 5 machine with 1.6 GH»10 279 50.1 10.00 15.00 60.0
speed and 2 GB RAM. b12 711 87.1 21.00 27.00 74.2

308

J. Computer i, 5 (4): 302-310, 2009

Table 3: Metric evaluation results

Bench Error Control State Statement Branch No. of 0. df COCM CPU No. of
mark Cvg. (%) oriented Cvg. (%) Cvg. (%) Cvg. (%) Cvg. (%) patterns mutants time (sec) tags
b0l 25 35 100 100 100 9 57 127 51
b02 44 98 100 100 100 9 8 176 72
b03 23 45 100 100 100 5 43 270 122
b06 57 61 100 100 100 10 28 304 144
bo7 0 47 100 100 100 9 32 215 99
b08 0 15 100 100 100 5 26 154 66
b09 32 40 100 84 78 8 23 192 78
b10 26 38 100 89 63 12 123 327 189
b12 39 47 100 91 67 19 327 729 523
120 1 difference between COCM/state/statement/branch
100 —s coverage and error coverage. A small difference
+CocH 80 : indicates a more accurate metric. The average ageer
S . - difference for our COCM coverage is 21.5% as
- Branch <0 J s - compared to 74.13% for state coverage, 70.75% for
20 statement coverage and 66.75% for branch coverage.
0 We also compute the standard deviation for coverage
1] 10 20 30 40 S0 &80

difference for all four coverage metrics. It is %% for
COCM coverage as compared to 19.58% for state
coverage, 21.27% for statement coverage and 25.01%
for branch coverage.

Error coverage
Fig. 12: Comparison of coverage metrics

For example, error coverage for b06 is 57% while DISCUSSION
COCM coverage is 61% when simulated for 10
patterns. The error coverage for b06 is obtained by The proposed coverage metric manages ambiguity
inducing 28 mutants. The COCM coverage is computeéh control-flow that arises in presence of an ertur
by introducing 144 tags, simulating one tag ah#tin algorithm identifies a subset of control-flow paths,
a total of 304 sec. No error coverage is obsermdmD7 which may be executed due to an error and detesmine
and b08 because of low observability. These designgrror propagation for each path. Accuracy is gaimed
have only one output variable, which gets updatégl 0 error propagation by considering all possible caintr
after applying a test sequence with a certain nurobe flow paths. Our algorithm reduces the complexity
patterns (b07 needs 20 patterns). We use only @nougignificantly (up to 86.9%) pruning infeasible crarkt
patterns to obtain 100% state coverage. The COCMow paths using error propagation information. Our
coverage is observed as the induced tags force@agwr technique handles designs with concurrent processes

path. and its accuracy can be further improved by entmanci
Figure 12 shows a graphical description of thedesign errors models.
evaluation results. It shows four sets of pointk) (We can deduce from the results that COCM

COCM Coverage, (2) FSM (state) Coverage, (3)coverage is closer to error coverage than the egeer
Statement Coverage and (4) Branch coverage. Eadbtained by state, statement and branch coverage
point in a set corresponds to a benchmark desigor E metrics. The standard deviation between COCM and
coverage is depicted on X-axis while percentageerror coverage is smaller as compared to deviditam
coverage numbers from various metrics are plotted othe other coverage metrics. This shows that COCM is
Y-axis. The broken line joining coordinates (0,&0)d better metric, as it is not over estimating detectof

(60, 60) represents the ideal case where all puiatdd errors for control flow oriented designs.

lie on it for a coverage metric which perfectlydka the

error coverage. So the closer a point is to the ltietter CONCLUSION
is the correlation between corresponding coveragke a
the detection of errors under consideration. tiésr at We have presented a control-flow oriented

a glance that the set of points corresponding t€RO coverage metric to measure coverage in multi-pces
is closer to the perfect line than the other mstrithe designs with complex control-flow with high accuyac
difference in the quality can be observed quantét Our metric analyzes the meaningful control flowhsat
by computing the average coverage difference, thevhile ignoring the infeasible ones. We also preserat

309

J. Computer i, 5 (4): 302-310, 2009

methodology to evaluate the metric by analyzing its6.
ability to detect design errors. The research piteskein

this study can be applied to any complex desigh wit
bounded number of concurrent processes.

REFERENCES

1. Beizer, B., 1990. Software Testing Techniques?'

2nd Edn., Van Nostrand Reinhold, New York,
ISBN: 0-442-20672-0, pp: 550.

2. Bentley, B., 2001. Validating the Intel Pentiym
microprocessor. Proceedings of the 38th
Conference on Design automation, (CDA'OLL§s
Vegas, Nevada, United States, pp: 244-248.°
http://portal.acm.org/citation.cfm?id=378473

3. Cheng, K.T. and J.Y. Jou, 1992. A functionalltfau
model for sequential machines. Trans. Comput
Aided Des. Integ. Circ. Syst., 11: 1065-1073. DOI:
10.1109/43.159992

4. Corno, F., M.S. Reorda, G. Squillero, A. Marzon
and A. Pincetti, 2000. Automatic test bench
generation for validation of RT-level descriptions:
An industrial experience. Proceedings of the
Design, Automation and Test in Europe
Conference and Exhibition, Mar. 27-30, |IEEE
Xplore Press,Paris, France, pp: 385-389. DOI: 14
10.1145/343647.343802

5. Fallah, F., S. Devadas and K. Keutzer, 1998.
Occom: Efficient computation of observability-
based code coverage metrics for functional{o.
verification. Proceedings of the Design Automation
Conference, June 15-19, IEEE Xplore Press, USA.,
pp: 152-157.
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp&ta=
rnumber=724457&isnumber=15604

310

Gaudette, E., M. Moussa and |. G. Harris, 2003.
method for the evaluation of behavioral fault
models. Proceedings of the 8th IEEE International
Workshop on High-Level Design Validation and
Test, Nov. 12-14, IEEE Computer Society,
Washington, DC., USA., pp: 169-172.
http://portal.acm.org/citation.cfm?id=1114537
Hayek, G.A. and C. Robach, 1996. From
specification validation to hardware testing: A
unified method. Proceedings of the International
Test Conference, Oct. 20-25, IEEE Xplore Press,
Washington, DC., USA.,pp: 885-893. DOI:
10.1109/TEST.1996.557150

King, K.N. and A.J. Offutt, 1991. A Fortran
language system for mutation-based software
testing. Software Pract. Eng., 21: 685-718. DOI:
10.1002/spe.4380210704

Laski, J. and B. Korel, 1983. A data flow oriehte
program testing strategy. IEEE Trans. Software
Eng., SE-9: 33-43. DOI: 10.1145/947955.947963

10. Lv, T., J. Fan and X. Li, 2003. An efficient

observability evaluation algorithm based on
factored use-def chains. Proceedings of the 12th
Asian Test Symposium, Nov. 16-19, IEEE Xplore
Press, USA,, pp: 161-166. DOl:
10.1109/ATS.2006.260998

Moundanos, Det al., 1998. Abstraction techniques
for validation coverage analysis and test
generation. Trans. Comput.,, 47: 2-14. DOI:
10.1109/12.656068

Verma, S., K. Ramineni and |.G. Harris, 2008. A
efficient control-oriented coverage metric.
Proceedings of the Asia South Pacific Design
Automation Conference, Jan 18-21, IEEE Xplore
Press, USA,, pp: 317-322. DOI:
10.1109/ASPDAC.2005.1466181

