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Abstract: Problem statement: Dynamic verification, the use of simulation to determine design 
correctness, is widely used due to its tractability for large hardware designs. A serious limitation of 
dynamic techniques is the difficulty in determining whether or not a test sequence is sufficient to detect 
all likely design errors. Coverage metrics are used to address this problem by providing a set of goals 
to be achieved during the simulation process; if all coverage goals are satisfied then the test sequence is 
assumed to be complete. Coverage metrics hence evaluate the ability of a test sequence to detect 
design errors and are essential to the verification process. A key source of difficulty in determining 
error detection is that the control-flow path traversed in the presence of an error cannot be determined. 
This problem becomes particularly difficult in case of typical industrial designs involving interaction 
of control flow paths between concurrent processes. Error detection can only be accurately determined 
by exploring the set of all control-flow paths, which may be traversed as a result of an error. Also, 
there is no technique to identify a correlation between coverage metrics and hardware design quality. 
Approach: We present a coverage metric that determined the propagation of error effects along all 
possible erroneous control-flow paths across processes. The complexity of exploring multiple control-
flow paths was greatly alleviated by heuristically pruning infeasible control-flow paths using the 
algorithm that we present. We also presented a technique to evaluate coverage metric by examining its 
ability to ensure the detection of real design errors. We injected errors in the design to correlate their 
detection with the coverage computed by our metric. Results: Our coverage metric although analyzed 
all control-flow paths it pruned the infeasible ones and eliminated them from coverage consideration, 
hence reducing the complexity of generating tests meant to execute them. The metric also correlated 
better with detection of design errors than some well-studied metrics do. Conclusion: The proposed 
coverage metric provided high accuracy in measurement of coverage in designs that contain complex 
control-flow with concurrent processes. It is superior at detecting design error when compared with the 
metrics it was compared with. 
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INTRODUCTION 

 
 Verification is known to be an expensive and time-
consuming part of the design process. Verification 
approaches can be broadly grouped into two categories, 
formal verification and dynamic verification. Dynamic 
verification, the subject of this study, involves the use 
of simulation to verify design correctness. A design is 
simulated with a test sequence and the design is 
assumed to be correct if the test responses match the 
correct responses. A general framework of the dynamic 
verification process is shown in Fig. 1 where the 
process starts on the left side with an executable design 
description in a Hardware Description Language 

(HDL). The three main steps of the process are test 
generation, simulation and response evaluation. 
Simulation is performed using a software tool but test 
generation and response evaluation, are often heavily 
dependent on manual interaction making them costly. 
The most significant weakness of dynamic verification 
techniques is the difficulty of determining the error 
detection ability of a test sequence. We refer to a test 
sequence as being complete if it detects all potential 
design errors. The effectiveness of dynamic verification 
depends   on the  ability  to determine  whether  or  not 
a test sequence is  complete. An incomplete test 
sequence will lead   to  the  possibility  of   design  errors  
in   the    final   product   and    reduced  system    quality.  
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Fig. 1: Dynamic verification flow 
 
The problem of determining the completeness of a test 
sequence is addressed by using coverage metrics, which 
abstractly define the coverage goals to be satisfied during 
simulation. A coverage metric defines a set of criteria 
that are used to determine which errors are detected by 
a test sequence. A coverage metric provides an 
empirical measure of the completeness of a test 
sequence and the error detection criteria can be used to 
direct the test generation process. For example, 
statement coverage metric would define the verification 
goal as the execution of all HDL statements during 
simulation. A test sequence is evaluated by determining 
the fraction of coverage goals, which are satisfied using 
the test sequence.  
 Some metrics targeted towards errors in Finite 
State Machines (FSMs)[3,11] have been developed; state 
coverage model, which requires that all states be 
reached and transition coverage, which requires that all 
transitions be traversed. Metrics based on the traversal 
of paths through the Control Dataflow Graph (CDFG) 
have been used; branch coverage[4], which requires that 
the set of CDFG paths executed include all conditional 
branches and path coverage[1], which requires that all 
control-flow paths be executed. Researchers have 
studied techniques to reduce the complexity of path 
coverage metric[9].  
 Many control-dataflow coverage metrics consider 
the requirements for error activation without explicitly 
considering error effect observability. Researchers have 
developed observability-based behavioral error models 
to alleviate this weakness. The OCCOM approach[5] 
inserts errors, called tags, at each variable assignment to 
represent a positive or negative offset from the correct 
signal value. The propagation of these tags to 
observable variables is determined using a set of 
propagation rules for behavioral operations. In[10], the 
software dataflow testing technique is enhanced to 
identify chains of variable definitions and uses which 
extend to observable variables. Both of these 
observability-oriented metrics have difficulty 
considering the multitude of possible control flow 
paths, which may be executed in the presence of an 
error. Either complex control flow has not been 
considered or only a small subset of possible control 
flow paths is considered.  

 A significant difficulty in predicting error 
propagation is the ambiguity in the control flow path 
executed in the presence of an error.  For example, 
consider the evaluation of the conditional statement “if 
(x>5) then...” in the presence of an unknown error 
effect on variable x. If the correct value of x is 0 then 
the correct value of the conditional predicate is FALSE, 
but the incorrect predicate value is unknown. The 
control flow choices at branch points have a major 
impact on the sequence of instructions executed and the 
propagation of error effects. In the simple conditional 
predicate example above, if the predicate evaluates to 
FALSE in the erroneous design, the error effect may 
not propagate and the error may remain undetected as a 
result. The problem of determining error propagation in 
the presence of ambiguity in control flow quickly 
becomes severe as control flow becomes more complex 
particularly with interacting control flow paths across 
processes.  
 Our approach explores all control flow paths across 
processes, which could be executed as a result of an 
error. Error detection is estimated along each control 
flow path and the detection probabilities along each 
path are combined to compute total error detection 
probability. To alleviate the computational complexity 
of exploring multiple control flow paths, we use 
knowledge of the sign of an error effect to prune 
infeasible paths, which could never be executed as a 
result of an error. Our approach provides an accurate 
estimate of error detection probabilities by considering 
the full range of erroneous behaviors. We call this 
metric a Control-Oriented Coverage Metric 
(COCM)[12]. In case of designs consisting of interacting 
processes a set consisting of one path from each process 
is considered.  
 Very little work has been done on the evaluation of 
existing metrics. In the hardware domain researchers 
have performed a limited evaluation of the statement 
and branch coverage metrics with two small 
examples[6]. We present a technique to estimate the 
correlation between coverage metrics and design error 
detection. Test sequences are generated for a set of 
benchmark examples and coverage is computed for 
each test sequence using the coverage metric under 
evaluation. We also compute the error coverage, the 
fraction of design errors detected, for each test 
sequence by injecting a large number of errors into each 
benchmark. The coverage metric is evaluated by 
examining the difference between the metric coverage 
and the error coverage values for the same benchmarks. 
We employed this technique on the statement, branch 
and state coverage metrics to serve as a baseline for the 
evaluation of our control-oriented coverage metric.  
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Fig. 2: System structure 
 

 
 
Fig. 3: Single Pattern Coverage Evaluation 
 
Overview: The inputs to our method are a behavioral 
HDL description of the design and a set of test patterns 
and the output is the set of errors that propagate to an 
observable point for every input pattern. An observable 
point in a simulation is a variable that may get an 
incorrect value because of a design error.  
 Figure 2 shows the way COCM coverage value is 
computed for test patterns, which constitute a test 
sequence. We automatically generate a list of potential 
errors in the design. We then simulate the HDL 
description with each test pattern one at a time until all 
the generated patterns are exhausted. The coverage 
value for each pattern is computed at the end of its 
simulation.  
 Figure 3 shows a sequence of steps we follow to 
compute the COCM coverage for each test pattern. We 
select an arbitrary error from the generated list and then 
simulate the HDL description to determine the 
propagation of the error. We evaluate its detection 
probability at the end of the simulation. This sequence 
of steps is repeated until all the errors in the list are 
exhausted. The COCM coverage value for the given 
test pattern is computed on the basis of the detection 
probabilities of the individual errors.  
 
Error list generation: We use the tag model[5] for 
injecting and propagating design errors. We consider 
every assignment statement and input variable in the 
HDL  description   as  potential  error  injection   points. 

 
 
Fig. 4: Determination of error detection 
 
The tags are injected on to the Left Hand Side (LHS) 
variable of each assignment statement and on each of 
the input variables. We parse the HDL description to 
obtain a list of all the assignment statements and input 
variables. There are following three types of tags 
defined: 
 
• Positive tags: These cause the LHS variable to 

have a greater value than the correct one 
• Negative tags: These cause the LHS variable to 

have a lesser value than the correct one 
• Unknown tags: These cause the LHS variable to 

have a greater or lesser value than the correct one 
 
 Since there are three types of tags, our error list 
may consist of a number of errors that is three times the 
number of assignment statements and input variables in 
the HDL description.  
 
Evaluation of error tag propagation: The simulation 
and evaluation of a single error is depicted in the Fig. 4. 
We compute all the possible control flow paths and 
maintain a list of these pre-determined paths. We select 
an arbitrary path from the list and then the simulation is 
guided through that path. During each simulation, an 
error is injected by inducing a tag using the simulator's 
directives. During the simulation, we monitor the 
observable points where an injected tag could manifest 
itself. This evaluation is repeated at every time step of 
the simulation in order to propagate an error. The error 
propagation is updated after each statement simulation. 
Each injected error propagates in one of the following 
two ways through the behavior. 
 Data flow propagation an error can propagate from 
one variable to another via a direct data dependency 
between the two variables created by a variable 
assignment. For example, in the code shown in Fig. 5 a 
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tag on variable a would propagate to variable x as a 
result of the assignment on line number 6. We use a 
calculus to perform tag propagation through each type 
of behavioral operation[5]. The propagation table used 
for an addition operation is shown in Table 1. The top 
most row in the Table 1 represents the tags on b, while 
the left most column represents the tags on a. “+”, “-“ 
and “?” signify a positive, a negative and an unknown 
tag respectively and a “0” signifies absence of a tag. 
Variables a or b followed by “0”, “+”, “-“ or “?” signify 
the presence of tags on these variables.  
 Control flow propagation it is possible for an error 
to change the executed control flow path by changing 
the result of a conditional. Changing the control flow 
path can have drastic effects on error propagation by 
introducing indirect variable dependencies and by 
changing the sequence of dataflow operations. An 
indirect data dependency can be seen in Fig. 6 between 
variables cond and x. Although there is no dataflow 
dependency between the two variables, it is clear that 
the value of cond determines the value of x. If the 
correct value of the cond variable is 1 and it has a 
positive tag, then either branch 2 or 3 could be taken. 
The sign of tag on x depends on the magnitude of the 
error on cond. cond = 2 creates a negative tag on x and 
cond = 3 creates a positive tag on x. 
 

 
 
Fig. 5: A simple data flow example 
 

 
 
Fig. 6: A simple control flow example 
 
Table 1: Tag calculus for addition 
a/b b b- b+ b? 
a 0 - + ? 
a- - - ? ? 
a+ + ? + ? 
a? ? ? ? ? 

 When a tag changes the result of a conditional 
predicate, it alters the sequence of dataflow operations 
executed. This consequently changes all subsequent 
dataflow propagation. Error propagation depends on 
the sequence of dataflow operations, so any change to 
that sequence will also alter the dataflow error 
propagation.  
 At the end of simulation of each feasible control 
flow path the tag propagation data is recorded and the 
tags on the variables are stored. The propagation data is 
the set of variables that contain tags at the end of 
simulation. The stored tag values at the end of each 
simulated feasible control flow path are used to 
determine the tags on the variables at the start of 
simulation of next feasible control flow path. This 
process is repeated until there are no feasible paths left to 
simulate in the control flow path list. Once all the paths 
in the list are simulated, the error detection probability 
for the injected error is computed using the error 
propagation data recorded for individual paths.  
 
Pruning infeasible paths: The number of simulations 
required to determine the impact of tags can become 
intractable as the number of control flow paths may be 
exponential in the number of conditionals. If a tag is 
present on a variable involved in a conditional 
predicate, then we determine whether or not the 
outcome of the predicate depends on the magnitude of 
the tag. If it does, the path is pruned thereby reducing 
the time complexity of this approach. The following 
steps are involved in pruning.  
 
Generating decision tree: We generate a decision tree 
from the HDL description at the parsing step. A path 
through the decision tree from root to leaf corresponds 
to a control flow path in the HDL description. The tree 
consists of following two types of nodes.  
 Condition node each condition node corresponds to 
a control flow decision that is made during simulation. 
A single conditional predicate in the HDL may map to 
many decision nodes since each predicate may be 
evaluated on many control flow paths. Each condition 
node has a number of children corresponding to the 
number of outcomes of the conditional predicate. A 
condition node corresponding to an IF Else statement 
will have two children, TRUE and FALSE. A condition 
node corresponding to a case statement will have as 
many children as the case has branches. These nodes 
are represented as white nodes.  
 A sequence of nodes starting with the top most 
condition node and ending at a leaf node of the tree 
constitutes a control flow path. This signifies, there is a 
one-to-one mapping between the leaf nodes and the 
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control flow paths. In this case, we have six control 
flow paths each corresponding to a leaf node. These 
control flow paths are used to guide the simulation.  
 
Pruning algorithm: It is possible to reduce the number 
of control flow possibilities to be considered by using 
dynamic tag information computed during simulation. 
A child c of a conditional node n node can be pruned if 
the predicate P (n) associated with node n can never 
evaluate to the value required to lead to child c in the 
presence of the error. For example, the root node  in 
Fig. 7 has two children, one associated with a TRUE 
predicate value and one associated with a FALSE 
predicate value. If during simulation the variable b has 
the value 11 and b has a positive tag, then it is not 
possible for the predicate to evaluate to FALSE in the 
presence of the error. In this case, the child in the 
FALSE direction can be pruned from consideration 
without reducing the accuracy of the approach. When 
simulation encounters a conditional predicate, the 
following steps are performed: 
 
• Determine the set of possible erroneous predicate 

values, Vf-this step is performed by limiting the 
range of the variables in accordance with the signs 
of their tags and determining if the predicate is 
satisfiable or not. This problem in the worst case is 
a version of the SATISFIABILITY problem, but in 
practice it is trivial given the monotonic nature of 
the vast majority of predicates in real examples 

• Prune children corresponding to impossible 
predicate values-once the possible predicate values 
are known, all children of the decision node that 
can be reached only by impossible predicate values 
can be safely pruned.  
 

 The decision tree for an HDL description in Fig. 7 
is shown in Fig. 8. We will use the example  used in 
Fig. 7 in order to illustrate the pruning of the decision 
tree in Fig. 8. Let us consider the following cases of tag 
injection on variable a.  
 
Negative tag at line number 2: This results in a 
negative tag for b at the assignment statement b = a + 5 
at line number 3. The condition node b>10 evaluates to 
FALSE, as there is a negative tag on b and its value is 
10. This allows us to prune TRUE branch, which would 
never be taken in presence of the error. On the FALSE 
branch, assignment statement out = 1 -a at line number 
12 is evaluated. Out gets a value -4 and a positive tag 
since a, which has negative tag, is being subtracted. The 
value of the next condition out < a can not be uniquely 
determined because it depends on the relative 

magnitudes of tags out and a. For example, out < a 
would evaluate to TRUE when magnitudes of tags on 
out and a are 1 and 1 respectively in which case the 
resultant expression becomes ((-4 + 1)<(5 - 1)), which 
evaluates to TRUE. However, when the magnitudes of 
the tags are 5 and 6 respectively for out and a, the 
resultant expression (-4 + 5)<(5 - 6)) evaluates to 
FALSE. Pruning cannot occur at the decision node out 
< an on account of ambiguity resulting from the 
magnitudes of the tags. The pruned tree is depicted in 
Fig. 9. The dashed lines represent the pruned part of the 
tree. About 66.66% of the total number of control flow 
paths is pruned in this case. 
 

 
 
Fig. 7: An HDL example for illustration 
 

 
 
Fig. 8: The decision tree for HDL example 
 

 
 
Fig. 9: Pruning case with negative tag on a 
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Fig. 10: Pruning case with positive tag on a 
 
Positive tag at line number 2: This results in a 
positive tag for b at the next assignment statement b = a 
+5 at line number 3. The condition node b>10 evaluates 
to TRUE as there is a positive tag on b and its value is 
10. This allows pruning FALSE branch that would 
never be taken. The next condition node a <5 evaluates 
to FALSE as a has positive tag and its value is 5. The 
TRUE branch is pruned at the decision node a <5. The 
assignment statement out = 1 at line number 9 is 
evaluated. The next decision node out < a evaluates to 
TRUE as there is positive tag on a and its value is 
greater than that of out. So, the FALSE branch is 
pruned. The final value of out is 0. The pruned tree is 
shown in Fig. 10. The dashed lines represent the pruned 
part of the tree. 83.33% of the total number of control 
flow paths is pruned in this case.  
 
Computing coverage: The COCM coverage is based 
on the computation of Tag Detection Probability (TDP). 
An error tag is considered detected if any of observable 
points obtains a tag at the end of the simulation. TDP of 
a variable v is the probability that v gets a tag at the end 
of simulation. The number of simulations run for an 
error e tag is represented by S (e). D (V, e) represents 
number of simulations where the tag propagated to an 
observable point and V is the set of observable points 
where the error is detected. TDP (V, e) is the 
probability of a single error tag e being detected at any 
of the observable points in V. TC (t) is the tag coverage 
value for a test sequence t:  
 
TDP (V, e) = D(V, e)/S(e)  (1) 
 
TC (t) = 1 - ∏e

i = 1 (1 − TDP(V, i))  (2) 
 
Metric evaluation: In our description of the evaluation 
approach we will refer to the fraction of coverage 
goals  satisfied for a benchmark b when simulated 
with  test  sequence  t  as  the  metric  coverage, MCb,t. 

 
 
Fig. 11: Metric evaluation algorithm 
 
We will refer to the fraction of potential design errors 
detected in a benchmark b when simulated with test 
sequence t as the error coverage, ECb,t. The algorithm in 
Fig. 11 computes ECb,t and MCb,t whose difference for a 
set of benchmarks reveals how closely error detection is 
modeled by the coverage metric for the test sequences 
used. The lesser the difference, the better the metric 
under evaluation will be at detecting design errors, 
hence better its quality.  
 
Test sequence generation: The difference between 
error coverage and metric coverage depends on the test 
generation technique. Hence sequences for evaluation 
purpose should be generated as it would be in practice. 
We identify some guidelines which any reasonable test 
sequence should reflect 
 
• Succinctness-a test sequence should be just long 

enough to attain 100% coverage using the metric 
• Randomness-inputs are randomized to maximize 

coverage except where it would make coverage of 
part of state space difficult 

• “Special” control inputs-some input control signals 
have a drastic impact on the behavior and they 
should be assigned in a special way. For example, 
assigning some reset randomly would 
probabilistically keep the system in reset half the 
time, making it hard to explore the entire state 
space 

 
Error coverage computation: Computation of the 
ECb,t requires that each potential design error be 
inserted into the design individually and that the 
erroneous designs be simulated with the test sequence. 
Inserting errors into a design description requires the 
use of an error model, which describes the set of design 
errors to be considered. The wide variety of potential 
design errors makes it impossible to capture all of these 
errors at this time. Instead, we restrict our investigation 
to a subset of design errors, which has been found to be 
most common in hardware design[2]. These errors 
include simple typographical mistakes and accounted 
for 12.7% of the design errors found in the Pentium 4[2]. 
In order to inject errors we use the mutation analysis 
technique studied previously in software testing and 
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hardware validation[7,8]. Following mutation operators 
describe expected design errors: 
 
• Arithmetic Operator Replacement (AOR)-each 

occurrence of one of the arithmetic operators (+, -, 
* and /) is replaced by each of the other operators 

• Relational Operator Replacement (ROR)-each 
occurrence of one of the relational operators (<, >, 
≤, ≤, = and ≠) is replaced by each of the other 
operators 

• Logical Operator Replacement (LOR)-each 
occurrence of one of the logical operators (&, 
&&, | and ||) is replaced by each of the other 
operators  

 
MATERIALS AND METHODS 

 
 We used a set of nine ITC’99 benchmarks in order 
to demonstrate the formulation of the proposed metric 
and to evaluate its quality. We used Cadence Verilog-
XL simulator for our experiments. We developed a C 
application that interacts with the simulator while 
running a simulation. First, we parsed a Verilog design 
descriptions and constructed its decision tree. Then we 
assigned simulation callbacks for each of the 
assignment statements so that we could interact with the 
internal data structures of the Verilog simulator. A 
callback associated with a statement forces the 
simulator to acquiesce control to Verilog Procedural 
Interface (VPI) when the statement is reached while 
simulating. At that point, we applied our tag calculus 
for each of the assignments and store subsequent 
changes in the tag values for each of the variables 
affected.  
 All the test sequences were generated in a random 
fashion. However, two different random test generation 
setups were used. First setup aimed at achieving high 
COCM coverage for each design in order to 
demonstrate the efficiency of pruning obtained by our 
algorithm. We generated test sequences consisting of 20 
random patterns for each design. The second setup 
generated test sequences with enough random patterns 
to achieve 100% coverage by a given metric, which in 
this case was chosen to be state coverage. State 
coverage was chosen, as the benchmark examples were 
mostly control-flow driven. The number of test patterns 
in the test sequence is different for each benchmark as it 
varied based on the difficulty of “hitting” the states in 
each design. All the experiments were run in Unix 
environment on a Sun SPARC 5 machine with 1.6 GHz 
speed and 2 GB RAM.  

RESULTS 
 
 The results are divided into two parts. In the first 
part, we demonstrate the performance of the proposed 
control-oriented coverage metric with the benchmark 
designs and the efficiency achieved by our pruning 
algorithm. In the second part, we compare its quality 
with that of state, statement and branch coverage 
metrics. The same set of test sequences is used for 
evaluating all the three coverage metrics. For the first 
part, each row in Table 2 shows the results for 
benchmark design whose name is listed in the first 
column. The second column lists the total number of 
tags injected for each design. The third column shows 
percentage coverage values computed. The next two 
columns list average number of simulations run and 
pruned, respectively for each tag. The last column 
shows the percentage of pruned simulations. 
 We do not present direct performance results, 
however the performance overhead of applying our 
methodology can be approximated as the average 
number of simulations per tag as shown in Table 2. 
There is an additional overhead associated with pruning 
but it is small compared to the cost of performing 
multiple simulations required by this methodology. 
 For the second part, each row in the Table 3 shows 
the name of the benchmarks listed in the first column 
and the corresponding results for that benchmark. The 
second column lists the total error coverage achieved by 
performing mutation analysis for every design. The 
third column shows the percentage coverage computed 
by COCM metric. Percentage state, statement and 
branch coverage numbers are shown in the fourth, 5th 
and 6th columns respectively. The total numbers of 
patterns run on each benchmark and the numbers of 
mutations used for error coverage are shown in seventh 
and eighth columns respectively. Execution times 
(CPU) for COCM, the numbers of tags induced for 
obtaining coverage by COCM are depicted in the 
subsequent columns.   
 
Table 2: COCM results 

   Avg. no per tag 
Bench  Cvg. ----------------------- Pruned 
mark Tags (%) Sims      Pruned (%) 

b01 195 100.0 11.00 6.20 36.6 
b02 66 100.0 9.00 8.00 47.1 
b03 156 100.0 3.40 13.60 79.7 
b06 168 100.0 7.66 6.33 37.3 
b07 90 100.0 1.66 11.30 86.9 
b08 60 100.0 5.00 4.00 44.8 
b09 111 67.3 3.10 5.90 65.4 
b10 279 50.1 10.00 15.00 60.0 
b12 711 87.1 21.00 27.00 74.2 
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Table 3: Metric evaluation results 
Bench Error Control State Statement Branch No. of No. of COCM CPU No. of 
mark Cvg. ( %) oriented Cvg. (%) Cvg. (%) Cvg. (%) Cvg. (%) patterns mutants time (sec) tags 
b01 25 35 100 100 100 9 57 127 51 
b02 44 98 100 100 100 9 8 176 72 
b03 23 45 100 100 100 5 43 270 122 
b06 57 61 100 100 100 10 28 304 144 
b07 0 47 100 100 100 9 32 215 99 
b08 0 15 100 100 100 5 26 154 66 
b09 32 40 100 84 78 8 23 192 78 
b10 26 38 100 89 63 12 123 327 189 
b12 39 47 100 91 67 19 327 729 523 

 

 
 
Fig. 12: Comparison of coverage metrics 
 
 For example, error coverage for b06 is 57% while 
COCM coverage is 61% when simulated for 10 
patterns. The error coverage for b06 is obtained by 
inducing 28 mutants. The COCM coverage is computed 
by introducing 144 tags, simulating one tag at a time in 
a total of 304 sec. No error coverage is observed in b07 
and b08 because of low observability. These designs 
have only one output variable, which gets updated only 
after applying a test sequence with a certain number of 
patterns (b07 needs 20 patterns). We use only enough 
patterns to obtain 100% state coverage. The COCM 
coverage is observed as the induced tags force a wrong 
path. 
 Figure 12 shows a graphical description of the 
evaluation results. It shows four sets of points, (1) 
COCM Coverage, (2) FSM (state) Coverage, (3) 
Statement Coverage and (4) Branch coverage. Each 
point in a set corresponds to a benchmark design. Error 
coverage is depicted on X-axis while percentage 
coverage numbers from various metrics are plotted on 
Y-axis. The broken line joining coordinates (0, 0) and 
(60, 60) represents the ideal case where all points would 
lie on it for a coverage metric which perfectly tracks the 
error coverage. So the closer a point is to the line better 
is the correlation between corresponding coverage and 
the detection of errors under consideration. It is clear at 
a glance that the set of points corresponding to COCM 
is closer to the perfect line than the other metrics. The 
difference in the quality can be observed quantitatively 
by computing the average coverage difference, the 

difference between COCM/state/statement/branch 
coverage and error coverage. A small difference 
indicates a more accurate metric. The average coverage 
difference for our COCM coverage is 21.5% as 
compared to 74.13% for state coverage, 70.75% for 
statement coverage and 66.75% for branch coverage. 
We also compute the standard deviation for coverage 
difference for all four coverage metrics. It is 18.75% for 
COCM coverage as compared to 19.58% for state 
coverage, 21.27% for statement coverage and 25.01% 
for branch coverage.  
 

DISCUSSION 
 
 The proposed coverage metric manages ambiguity 
in control-flow that arises in presence of an error. Our 
algorithm identifies a subset of control-flow paths, 
which may be executed due to an error and determines 
error propagation for each path. Accuracy is gained in 
error propagation by considering all possible control 
flow paths. Our algorithm reduces the complexity 
significantly (up to 86.9%) pruning infeasible control-
flow paths using error propagation information. Our 
technique handles designs with concurrent processes 
and its accuracy can be further improved by enhancing 
design errors models.  
 We can deduce from the results that COCM 
coverage is closer to error coverage than the coverage 
obtained by state, statement and branch coverage 
metrics. The standard deviation between COCM and 
error coverage is smaller as compared to deviation from 
the other coverage metrics. This shows that COCM is a 
better metric, as it is not over estimating detection of 
errors for control flow oriented designs. 
 

CONCLUSION 
 
 We have presented a control-flow oriented 
coverage metric to measure coverage in multi-process 
designs with complex control-flow with high accuracy. 
Our metric analyzes the meaningful control flow paths, 
while ignoring the infeasible ones. We also presented a 
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methodology to evaluate the metric by analyzing its 
ability to detect design errors. The research presented in 
this study can be applied to any complex design with a 
bounded number of concurrent processes.  
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