
Journal of Computer Science 5 (4):302-310, 2009
ISSN 1549-3636
© 2009 Science Publications

Corresponding Author: Shireesh Verma, Conexant Systems Inc., Newport Beach, CA 92660
302

A Control-Oriented Coverage Metric and its Evaluation for

Hardware Designs

1Shireesh Verma, 2Kiran Ramineni and 3Ian G. Harris
1Conexant Systems Inc., Newport Beach, CA 92660

2Marvell Semiconductor Inc., Austin, TX 78746
3University of California, Irvine CA 92697, USA

Abstract: Problem statement: Dynamic verification, the use of simulation to determine design
correctness, is widely used due to its tractability for large hardware designs. A serious limitation of
dynamic techniques is the difficulty in determining whether or not a test sequence is sufficient to detect
all likely design errors. Coverage metrics are used to address this problem by providing a set of goals
to be achieved during the simulation process; if all coverage goals are satisfied then the test sequence is
assumed to be complete. Coverage metrics hence evaluate the ability of a test sequence to detect
design errors and are essential to the verification process. A key source of difficulty in determining
error detection is that the control-flow path traversed in the presence of an error cannot be determined.
This problem becomes particularly difficult in case of typical industrial designs involving interaction
of control flow paths between concurrent processes. Error detection can only be accurately determined
by exploring the set of all control-flow paths, which may be traversed as a result of an error. Also,
there is no technique to identify a correlation between coverage metrics and hardware design quality.
Approach: We present a coverage metric that determined the propagation of error effects along all
possible erroneous control-flow paths across processes. The complexity of exploring multiple control-
flow paths was greatly alleviated by heuristically pruning infeasible control-flow paths using the
algorithm that we present. We also presented a technique to evaluate coverage metric by examining its
ability to ensure the detection of real design errors. We injected errors in the design to correlate their
detection with the coverage computed by our metric. Results: Our coverage metric although analyzed
all control-flow paths it pruned the infeasible ones and eliminated them from coverage consideration,
hence reducing the complexity of generating tests meant to execute them. The metric also correlated
better with detection of design errors than some well-studied metrics do. Conclusion: The proposed
coverage metric provided high accuracy in measurement of coverage in designs that contain complex
control-flow with concurrent processes. It is superior at detecting design error when compared with the
metrics it was compared with.

Key words: Verification, simulation, coverage metrics, test sequence, controllability, oberservability

INTRODUCTION

 Verification is known to be an expensive and time-
consuming part of the design process. Verification
approaches can be broadly grouped into two categories,
formal verification and dynamic verification. Dynamic
verification, the subject of this study, involves the use
of simulation to verify design correctness. A design is
simulated with a test sequence and the design is
assumed to be correct if the test responses match the
correct responses. A general framework of the dynamic
verification process is shown in Fig. 1 where the
process starts on the left side with an executable design
description in a Hardware Description Language

(HDL). The three main steps of the process are test
generation, simulation and response evaluation.
Simulation is performed using a software tool but test
generation and response evaluation, are often heavily
dependent on manual interaction making them costly.
The most significant weakness of dynamic verification
techniques is the difficulty of determining the error
detection ability of a test sequence. We refer to a test
sequence as being complete if it detects all potential
design errors. The effectiveness of dynamic verification
depends on the ability to determine whether or not
a test sequence is complete. An incomplete test
sequence will lead to the possibility of design errors
in the final product and reduced system quality.

J. Computer Sci., 5 (4): 302-310, 2009

303

Fig. 1: Dynamic verification flow

The problem of determining the completeness of a test
sequence is addressed by using coverage metrics, which
abstractly define the coverage goals to be satisfied during
simulation. A coverage metric defines a set of criteria
that are used to determine which errors are detected by
a test sequence. A coverage metric provides an
empirical measure of the completeness of a test
sequence and the error detection criteria can be used to
direct the test generation process. For example,
statement coverage metric would define the verification
goal as the execution of all HDL statements during
simulation. A test sequence is evaluated by determining
the fraction of coverage goals, which are satisfied using
the test sequence.
 Some metrics targeted towards errors in Finite
State Machines (FSMs)[3,11] have been developed; state
coverage model, which requires that all states be
reached and transition coverage, which requires that all
transitions be traversed. Metrics based on the traversal
of paths through the Control Dataflow Graph (CDFG)
have been used; branch coverage[4], which requires that
the set of CDFG paths executed include all conditional
branches and path coverage[1], which requires that all
control-flow paths be executed. Researchers have
studied techniques to reduce the complexity of path
coverage metric[9].
 Many control-dataflow coverage metrics consider
the requirements for error activation without explicitly
considering error effect observability. Researchers have
developed observability-based behavioral error models
to alleviate this weakness. The OCCOM approach[5]
inserts errors, called tags, at each variable assignment to
represent a positive or negative offset from the correct
signal value. The propagation of these tags to
observable variables is determined using a set of
propagation rules for behavioral operations. In[10], the
software dataflow testing technique is enhanced to
identify chains of variable definitions and uses which
extend to observable variables. Both of these
observability-oriented metrics have difficulty
considering the multitude of possible control flow
paths, which may be executed in the presence of an
error. Either complex control flow has not been
considered or only a small subset of possible control
flow paths is considered.

 A significant difficulty in predicting error
propagation is the ambiguity in the control flow path
executed in the presence of an error. For example,
consider the evaluation of the conditional statement “if
(x>5) then...” in the presence of an unknown error
effect on variable x. If the correct value of x is 0 then
the correct value of the conditional predicate is FALSE,
but the incorrect predicate value is unknown. The
control flow choices at branch points have a major
impact on the sequence of instructions executed and the
propagation of error effects. In the simple conditional
predicate example above, if the predicate evaluates to
FALSE in the erroneous design, the error effect may
not propagate and the error may remain undetected as a
result. The problem of determining error propagation in
the presence of ambiguity in control flow quickly
becomes severe as control flow becomes more complex
particularly with interacting control flow paths across
processes.
 Our approach explores all control flow paths across
processes, which could be executed as a result of an
error. Error detection is estimated along each control
flow path and the detection probabilities along each
path are combined to compute total error detection
probability. To alleviate the computational complexity
of exploring multiple control flow paths, we use
knowledge of the sign of an error effect to prune
infeasible paths, which could never be executed as a
result of an error. Our approach provides an accurate
estimate of error detection probabilities by considering
the full range of erroneous behaviors. We call this
metric a Control-Oriented Coverage Metric
(COCM)[12]. In case of designs consisting of interacting
processes a set consisting of one path from each process
is considered.
 Very little work has been done on the evaluation of
existing metrics. In the hardware domain researchers
have performed a limited evaluation of the statement
and branch coverage metrics with two small
examples[6]. We present a technique to estimate the
correlation between coverage metrics and design error
detection. Test sequences are generated for a set of
benchmark examples and coverage is computed for
each test sequence using the coverage metric under
evaluation. We also compute the error coverage, the
fraction of design errors detected, for each test
sequence by injecting a large number of errors into each
benchmark. The coverage metric is evaluated by
examining the difference between the metric coverage
and the error coverage values for the same benchmarks.
We employed this technique on the statement, branch
and state coverage metrics to serve as a baseline for the
evaluation of our control-oriented coverage metric.

J. Computer Sci., 5 (4): 302-310, 2009

304

Fig. 2: System structure

Fig. 3: Single Pattern Coverage Evaluation

Overview: The inputs to our method are a behavioral
HDL description of the design and a set of test patterns
and the output is the set of errors that propagate to an
observable point for every input pattern. An observable
point in a simulation is a variable that may get an
incorrect value because of a design error.
 Figure 2 shows the way COCM coverage value is
computed for test patterns, which constitute a test
sequence. We automatically generate a list of potential
errors in the design. We then simulate the HDL
description with each test pattern one at a time until all
the generated patterns are exhausted. The coverage
value for each pattern is computed at the end of its
simulation.
 Figure 3 shows a sequence of steps we follow to
compute the COCM coverage for each test pattern. We
select an arbitrary error from the generated list and then
simulate the HDL description to determine the
propagation of the error. We evaluate its detection
probability at the end of the simulation. This sequence
of steps is repeated until all the errors in the list are
exhausted. The COCM coverage value for the given
test pattern is computed on the basis of the detection
probabilities of the individual errors.

Error list generation: We use the tag model[5] for
injecting and propagating design errors. We consider
every assignment statement and input variable in the
HDL description as potential error injection points.

Fig. 4: Determination of error detection

The tags are injected on to the Left Hand Side (LHS)
variable of each assignment statement and on each of
the input variables. We parse the HDL description to
obtain a list of all the assignment statements and input
variables. There are following three types of tags
defined:

• Positive tags: These cause the LHS variable to

have a greater value than the correct one
• Negative tags: These cause the LHS variable to

have a lesser value than the correct one
• Unknown tags: These cause the LHS variable to

have a greater or lesser value than the correct one

 Since there are three types of tags, our error list
may consist of a number of errors that is three times the
number of assignment statements and input variables in
the HDL description.

Evaluation of error tag propagation: The simulation
and evaluation of a single error is depicted in the Fig. 4.
We compute all the possible control flow paths and
maintain a list of these pre-determined paths. We select
an arbitrary path from the list and then the simulation is
guided through that path. During each simulation, an
error is injected by inducing a tag using the simulator's
directives. During the simulation, we monitor the
observable points where an injected tag could manifest
itself. This evaluation is repeated at every time step of
the simulation in order to propagate an error. The error
propagation is updated after each statement simulation.
Each injected error propagates in one of the following
two ways through the behavior.
 Data flow propagation an error can propagate from
one variable to another via a direct data dependency
between the two variables created by a variable
assignment. For example, in the code shown in Fig. 5 a

J. Computer Sci., 5 (4): 302-310, 2009

305

tag on variable a would propagate to variable x as a
result of the assignment on line number 6. We use a
calculus to perform tag propagation through each type
of behavioral operation[5]. The propagation table used
for an addition operation is shown in Table 1. The top
most row in the Table 1 represents the tags on b, while
the left most column represents the tags on a. “+”, “-“
and “?” signify a positive, a negative and an unknown
tag respectively and a “0” signifies absence of a tag.
Variables a or b followed by “0”, “+”, “-“ or “?” signify
the presence of tags on these variables.
 Control flow propagation it is possible for an error
to change the executed control flow path by changing
the result of a conditional. Changing the control flow
path can have drastic effects on error propagation by
introducing indirect variable dependencies and by
changing the sequence of dataflow operations. An
indirect data dependency can be seen in Fig. 6 between
variables cond and x. Although there is no dataflow
dependency between the two variables, it is clear that
the value of cond determines the value of x. If the
correct value of the cond variable is 1 and it has a
positive tag, then either branch 2 or 3 could be taken.
The sign of tag on x depends on the magnitude of the
error on cond. cond = 2 creates a negative tag on x and
cond = 3 creates a positive tag on x.

Fig. 5: A simple data flow example

Fig. 6: A simple control flow example

Table 1: Tag calculus for addition
a/b b b- b+ b?
a 0 - + ?
a- - - ? ?
a+ + ? + ?
a? ? ? ? ?

 When a tag changes the result of a conditional
predicate, it alters the sequence of dataflow operations
executed. This consequently changes all subsequent
dataflow propagation. Error propagation depends on
the sequence of dataflow operations, so any change to
that sequence will also alter the dataflow error
propagation.
 At the end of simulation of each feasible control
flow path the tag propagation data is recorded and the
tags on the variables are stored. The propagation data is
the set of variables that contain tags at the end of
simulation. The stored tag values at the end of each
simulated feasible control flow path are used to
determine the tags on the variables at the start of
simulation of next feasible control flow path. This
process is repeated until there are no feasible paths left to
simulate in the control flow path list. Once all the paths
in the list are simulated, the error detection probability
for the injected error is computed using the error
propagation data recorded for individual paths.

Pruning infeasible paths: The number of simulations
required to determine the impact of tags can become
intractable as the number of control flow paths may be
exponential in the number of conditionals. If a tag is
present on a variable involved in a conditional
predicate, then we determine whether or not the
outcome of the predicate depends on the magnitude of
the tag. If it does, the path is pruned thereby reducing
the time complexity of this approach. The following
steps are involved in pruning.

Generating decision tree: We generate a decision tree
from the HDL description at the parsing step. A path
through the decision tree from root to leaf corresponds
to a control flow path in the HDL description. The tree
consists of following two types of nodes.
 Condition node each condition node corresponds to
a control flow decision that is made during simulation.
A single conditional predicate in the HDL may map to
many decision nodes since each predicate may be
evaluated on many control flow paths. Each condition
node has a number of children corresponding to the
number of outcomes of the conditional predicate. A
condition node corresponding to an IF Else statement
will have two children, TRUE and FALSE. A condition
node corresponding to a case statement will have as
many children as the case has branches. These nodes
are represented as white nodes.
 A sequence of nodes starting with the top most
condition node and ending at a leaf node of the tree
constitutes a control flow path. This signifies, there is a
one-to-one mapping between the leaf nodes and the

J. Computer Sci., 5 (4): 302-310, 2009

306

control flow paths. In this case, we have six control
flow paths each corresponding to a leaf node. These
control flow paths are used to guide the simulation.

Pruning algorithm: It is possible to reduce the number
of control flow possibilities to be considered by using
dynamic tag information computed during simulation.
A child c of a conditional node n node can be pruned if
the predicate P (n) associated with node n can never
evaluate to the value required to lead to child c in the
presence of the error. For example, the root node in
Fig. 7 has two children, one associated with a TRUE
predicate value and one associated with a FALSE
predicate value. If during simulation the variable b has
the value 11 and b has a positive tag, then it is not
possible for the predicate to evaluate to FALSE in the
presence of the error. In this case, the child in the
FALSE direction can be pruned from consideration
without reducing the accuracy of the approach. When
simulation encounters a conditional predicate, the
following steps are performed:

• Determine the set of possible erroneous predicate

values, Vf-this step is performed by limiting the
range of the variables in accordance with the signs
of their tags and determining if the predicate is
satisfiable or not. This problem in the worst case is
a version of the SATISFIABILITY problem, but in
practice it is trivial given the monotonic nature of
the vast majority of predicates in real examples

• Prune children corresponding to impossible
predicate values-once the possible predicate values
are known, all children of the decision node that
can be reached only by impossible predicate values
can be safely pruned.

 The decision tree for an HDL description in Fig. 7
is shown in Fig. 8. We will use the example used in
Fig. 7 in order to illustrate the pruning of the decision
tree in Fig. 8. Let us consider the following cases of tag
injection on variable a.

Negative tag at line number 2: This results in a
negative tag for b at the assignment statement b = a + 5
at line number 3. The condition node b>10 evaluates to
FALSE, as there is a negative tag on b and its value is
10. This allows us to prune TRUE branch, which would
never be taken in presence of the error. On the FALSE
branch, assignment statement out = 1 -a at line number
12 is evaluated. Out gets a value -4 and a positive tag
since a, which has negative tag, is being subtracted. The
value of the next condition out < a can not be uniquely
determined because it depends on the relative

magnitudes of tags out and a. For example, out < a
would evaluate to TRUE when magnitudes of tags on
out and a are 1 and 1 respectively in which case the
resultant expression becomes ((-4 + 1)<(5 - 1)), which
evaluates to TRUE. However, when the magnitudes of
the tags are 5 and 6 respectively for out and a, the
resultant expression (-4 + 5)<(5 - 6)) evaluates to
FALSE. Pruning cannot occur at the decision node out
< an on account of ambiguity resulting from the
magnitudes of the tags. The pruned tree is depicted in
Fig. 9. The dashed lines represent the pruned part of the
tree. About 66.66% of the total number of control flow
paths is pruned in this case.

Fig. 7: An HDL example for illustration

Fig. 8: The decision tree for HDL example

Fig. 9: Pruning case with negative tag on a

J. Computer Sci., 5 (4): 302-310, 2009

307

Fig. 10: Pruning case with positive tag on a

Positive tag at line number 2: This results in a
positive tag for b at the next assignment statement b = a
+5 at line number 3. The condition node b>10 evaluates
to TRUE as there is a positive tag on b and its value is
10. This allows pruning FALSE branch that would
never be taken. The next condition node a <5 evaluates
to FALSE as a has positive tag and its value is 5. The
TRUE branch is pruned at the decision node a <5. The
assignment statement out = 1 at line number 9 is
evaluated. The next decision node out < a evaluates to
TRUE as there is positive tag on a and its value is
greater than that of out. So, the FALSE branch is
pruned. The final value of out is 0. The pruned tree is
shown in Fig. 10. The dashed lines represent the pruned
part of the tree. 83.33% of the total number of control
flow paths is pruned in this case.

Computing coverage: The COCM coverage is based
on the computation of Tag Detection Probability (TDP).
An error tag is considered detected if any of observable
points obtains a tag at the end of the simulation. TDP of
a variable v is the probability that v gets a tag at the end
of simulation. The number of simulations run for an
error e tag is represented by S (e). D (V, e) represents
number of simulations where the tag propagated to an
observable point and V is the set of observable points
where the error is detected. TDP (V, e) is the
probability of a single error tag e being detected at any
of the observable points in V. TC (t) is the tag coverage
value for a test sequence t:

TDP (V, e) = D(V, e)/S(e) (1)

TC (t) = 1 - ∏e

i = 1 (1 − TDP(V, i)) (2)

Metric evaluation: In our description of the evaluation
approach we will refer to the fraction of coverage
goals satisfied for a benchmark b when simulated
with test sequence t as the metric coverage, MCb,t.

Fig. 11: Metric evaluation algorithm

We will refer to the fraction of potential design errors
detected in a benchmark b when simulated with test
sequence t as the error coverage, ECb,t. The algorithm in
Fig. 11 computes ECb,t and MCb,t whose difference for a
set of benchmarks reveals how closely error detection is
modeled by the coverage metric for the test sequences
used. The lesser the difference, the better the metric
under evaluation will be at detecting design errors,
hence better its quality.

Test sequence generation: The difference between
error coverage and metric coverage depends on the test
generation technique. Hence sequences for evaluation
purpose should be generated as it would be in practice.
We identify some guidelines which any reasonable test
sequence should reflect

• Succinctness-a test sequence should be just long

enough to attain 100% coverage using the metric
• Randomness-inputs are randomized to maximize

coverage except where it would make coverage of
part of state space difficult

• “Special” control inputs-some input control signals
have a drastic impact on the behavior and they
should be assigned in a special way. For example,
assigning some reset randomly would
probabilistically keep the system in reset half the
time, making it hard to explore the entire state
space

Error coverage computation: Computation of the
ECb,t requires that each potential design error be
inserted into the design individually and that the
erroneous designs be simulated with the test sequence.
Inserting errors into a design description requires the
use of an error model, which describes the set of design
errors to be considered. The wide variety of potential
design errors makes it impossible to capture all of these
errors at this time. Instead, we restrict our investigation
to a subset of design errors, which has been found to be
most common in hardware design[2]. These errors
include simple typographical mistakes and accounted
for 12.7% of the design errors found in the Pentium 4[2].
In order to inject errors we use the mutation analysis
technique studied previously in software testing and

J. Computer Sci., 5 (4): 302-310, 2009

308

hardware validation[7,8]. Following mutation operators
describe expected design errors:

• Arithmetic Operator Replacement (AOR)-each

occurrence of one of the arithmetic operators (+, -,
* and /) is replaced by each of the other operators

• Relational Operator Replacement (ROR)-each
occurrence of one of the relational operators (<, >,
≤, ≤, = and ≠) is replaced by each of the other
operators

• Logical Operator Replacement (LOR)-each
occurrence of one of the logical operators (&,
&&, | and ||) is replaced by each of the other
operators

MATERIALS AND METHODS

 We used a set of nine ITC’99 benchmarks in order
to demonstrate the formulation of the proposed metric
and to evaluate its quality. We used Cadence Verilog-
XL simulator for our experiments. We developed a C
application that interacts with the simulator while
running a simulation. First, we parsed a Verilog design
descriptions and constructed its decision tree. Then we
assigned simulation callbacks for each of the
assignment statements so that we could interact with the
internal data structures of the Verilog simulator. A
callback associated with a statement forces the
simulator to acquiesce control to Verilog Procedural
Interface (VPI) when the statement is reached while
simulating. At that point, we applied our tag calculus
for each of the assignments and store subsequent
changes in the tag values for each of the variables
affected.
 All the test sequences were generated in a random
fashion. However, two different random test generation
setups were used. First setup aimed at achieving high
COCM coverage for each design in order to
demonstrate the efficiency of pruning obtained by our
algorithm. We generated test sequences consisting of 20
random patterns for each design. The second setup
generated test sequences with enough random patterns
to achieve 100% coverage by a given metric, which in
this case was chosen to be state coverage. State
coverage was chosen, as the benchmark examples were
mostly control-flow driven. The number of test patterns
in the test sequence is different for each benchmark as it
varied based on the difficulty of “hitting” the states in
each design. All the experiments were run in Unix
environment on a Sun SPARC 5 machine with 1.6 GHz
speed and 2 GB RAM.

RESULTS

 The results are divided into two parts. In the first
part, we demonstrate the performance of the proposed
control-oriented coverage metric with the benchmark
designs and the efficiency achieved by our pruning
algorithm. In the second part, we compare its quality
with that of state, statement and branch coverage
metrics. The same set of test sequences is used for
evaluating all the three coverage metrics. For the first
part, each row in Table 2 shows the results for
benchmark design whose name is listed in the first
column. The second column lists the total number of
tags injected for each design. The third column shows
percentage coverage values computed. The next two
columns list average number of simulations run and
pruned, respectively for each tag. The last column
shows the percentage of pruned simulations.
 We do not present direct performance results,
however the performance overhead of applying our
methodology can be approximated as the average
number of simulations per tag as shown in Table 2.
There is an additional overhead associated with pruning
but it is small compared to the cost of performing
multiple simulations required by this methodology.
 For the second part, each row in the Table 3 shows
the name of the benchmarks listed in the first column
and the corresponding results for that benchmark. The
second column lists the total error coverage achieved by
performing mutation analysis for every design. The
third column shows the percentage coverage computed
by COCM metric. Percentage state, statement and
branch coverage numbers are shown in the fourth, 5th
and 6th columns respectively. The total numbers of
patterns run on each benchmark and the numbers of
mutations used for error coverage are shown in seventh
and eighth columns respectively. Execution times
(CPU) for COCM, the numbers of tags induced for
obtaining coverage by COCM are depicted in the
subsequent columns.

Table 2: COCM results

 Avg. no per tag
Bench Cvg. ----------------------- Pruned
mark Tags (%) Sims Pruned (%)

b01 195 100.0 11.00 6.20 36.6
b02 66 100.0 9.00 8.00 47.1
b03 156 100.0 3.40 13.60 79.7
b06 168 100.0 7.66 6.33 37.3
b07 90 100.0 1.66 11.30 86.9
b08 60 100.0 5.00 4.00 44.8
b09 111 67.3 3.10 5.90 65.4
b10 279 50.1 10.00 15.00 60.0
b12 711 87.1 21.00 27.00 74.2

J. Computer Sci., 5 (4): 302-310, 2009

309

Table 3: Metric evaluation results
Bench Error Control State Statement Branch No. of No. of COCM CPU No. of
mark Cvg. (%) oriented Cvg. (%) Cvg. (%) Cvg. (%) Cvg. (%) patterns mutants time (sec) tags
b01 25 35 100 100 100 9 57 127 51
b02 44 98 100 100 100 9 8 176 72
b03 23 45 100 100 100 5 43 270 122
b06 57 61 100 100 100 10 28 304 144
b07 0 47 100 100 100 9 32 215 99
b08 0 15 100 100 100 5 26 154 66
b09 32 40 100 84 78 8 23 192 78
b10 26 38 100 89 63 12 123 327 189
b12 39 47 100 91 67 19 327 729 523

Fig. 12: Comparison of coverage metrics

 For example, error coverage for b06 is 57% while
COCM coverage is 61% when simulated for 10
patterns. The error coverage for b06 is obtained by
inducing 28 mutants. The COCM coverage is computed
by introducing 144 tags, simulating one tag at a time in
a total of 304 sec. No error coverage is observed in b07
and b08 because of low observability. These designs
have only one output variable, which gets updated only
after applying a test sequence with a certain number of
patterns (b07 needs 20 patterns). We use only enough
patterns to obtain 100% state coverage. The COCM
coverage is observed as the induced tags force a wrong
path.
 Figure 12 shows a graphical description of the
evaluation results. It shows four sets of points, (1)
COCM Coverage, (2) FSM (state) Coverage, (3)
Statement Coverage and (4) Branch coverage. Each
point in a set corresponds to a benchmark design. Error
coverage is depicted on X-axis while percentage
coverage numbers from various metrics are plotted on
Y-axis. The broken line joining coordinates (0, 0) and
(60, 60) represents the ideal case where all points would
lie on it for a coverage metric which perfectly tracks the
error coverage. So the closer a point is to the line better
is the correlation between corresponding coverage and
the detection of errors under consideration. It is clear at
a glance that the set of points corresponding to COCM
is closer to the perfect line than the other metrics. The
difference in the quality can be observed quantitatively
by computing the average coverage difference, the

difference between COCM/state/statement/branch
coverage and error coverage. A small difference
indicates a more accurate metric. The average coverage
difference for our COCM coverage is 21.5% as
compared to 74.13% for state coverage, 70.75% for
statement coverage and 66.75% for branch coverage.
We also compute the standard deviation for coverage
difference for all four coverage metrics. It is 18.75% for
COCM coverage as compared to 19.58% for state
coverage, 21.27% for statement coverage and 25.01%
for branch coverage.

DISCUSSION

 The proposed coverage metric manages ambiguity
in control-flow that arises in presence of an error. Our
algorithm identifies a subset of control-flow paths,
which may be executed due to an error and determines
error propagation for each path. Accuracy is gained in
error propagation by considering all possible control
flow paths. Our algorithm reduces the complexity
significantly (up to 86.9%) pruning infeasible control-
flow paths using error propagation information. Our
technique handles designs with concurrent processes
and its accuracy can be further improved by enhancing
design errors models.
 We can deduce from the results that COCM
coverage is closer to error coverage than the coverage
obtained by state, statement and branch coverage
metrics. The standard deviation between COCM and
error coverage is smaller as compared to deviation from
the other coverage metrics. This shows that COCM is a
better metric, as it is not over estimating detection of
errors for control flow oriented designs.

CONCLUSION

 We have presented a control-flow oriented
coverage metric to measure coverage in multi-process
designs with complex control-flow with high accuracy.
Our metric analyzes the meaningful control flow paths,
while ignoring the infeasible ones. We also presented a

J. Computer Sci., 5 (4): 302-310, 2009

310

methodology to evaluate the metric by analyzing its
ability to detect design errors. The research presented in
this study can be applied to any complex design with a
bounded number of concurrent processes.

REFERENCES

1. Beizer, B., 1990. Software Testing Techniques.

2nd Edn., Van Nostrand Reinhold, New York,
ISBN: 0-442-20672-0, pp: 550.

2. Bentley, B., 2001. Validating the Intel Pentium 4
microprocessor. Proceedings of the 38th
Conference on Design automation, (CDA’01), Las
Vegas, Nevada, United States, pp: 244-248.
http://portal.acm.org/citation.cfm?id=378473

3. Cheng, K.T. and J.Y. Jou, 1992. A functional fault
model for sequential machines. Trans. Comput.
Aided Des. Integ. Circ. Syst., 11: 1065-1073. DOI:
10.1109/43.159992

4. Corno, F., M.S. Reorda, G. Squillero, A. Manzone
and A. Pincetti, 2000. Automatic test bench
generation for validation of RT-level descriptions:
An industrial experience. Proceedings of the
Design, Automation and Test in Europe
Conference and Exhibition, Mar. 27-30, IEEE
Xplore Press, Paris, France, pp: 385-389. DOI:
10.1145/343647.343802

5. Fallah, F., S. Devadas and K. Keutzer, 1998.
Occom: Efficient computation of observability-
based code coverage metrics for functional
verification. Proceedings of the Design Automation
Conference, June 15-19, IEEE Xplore Press, USA.,
pp: 152-157.

 http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?tp=&a
rnumber=724457&isnumber=15604

6. Gaudette, E., M. Moussa and I. G. Harris, 2003. A
method for the evaluation of behavioral fault
models. Proceedings of the 8th IEEE International
Workshop on High-Level Design Validation and
Test, Nov. 12-14, IEEE Computer Society,
Washington, DC., USA., pp: 169-172.
http://portal.acm.org/citation.cfm?id=1114537

7. Hayek, G.A. and C. Robach, 1996. From
specification validation to hardware testing: A
unified method. Proceedings of the International
Test Conference, Oct. 20-25, IEEE Xplore Press,
Washington, DC., USA., pp: 885-893. DOI:
10.1109/TEST.1996.557150

8. King, K.N. and A.J. Offutt, 1991. A Fortran
language system for mutation-based software
testing. Software Pract. Eng., 21: 685-718. DOI:
10.1002/spe.4380210704

9. Laski, J. and B. Korel, 1983. A data flow oriented
program testing strategy. IEEE Trans. Software
Eng., SE-9: 33-43. DOI: 10.1145/947955.947963

10. Lv, T., J. Fan and X. Li, 2003. An efficient
observability evaluation algorithm based on
factored use-def chains. Proceedings of the 12th
Asian Test Symposium, Nov. 16-19, IEEE Xplore
Press, USA., pp: 161-166. DOI:
10.1109/ATS.2006.260998

11. Moundanos, D. et al., 1998. Abstraction techniques
for validation coverage analysis and test
generation. Trans. Comput., 47: 2-14. DOI:
10.1109/12.656068

12. Verma, S., K. Ramineni and I.G. Harris, 2005. An
efficient control-oriented coverage metric.
Proceedings of the Asia South Pacific Design
Automation Conference, Jan 18-21, IEEE Xplore
Press, USA., pp: 317-322. DOI:
10.1109/ASPDAC.2005.1466181

