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Abstract: Problem statement: The importance of input representation has beersgrézed already in
machine learning. Feature construction is one efrtiethods used to generate relevant features for
learning data. This study addressed the questia@theh or not the descriptive accuracy of the DARA
algorithm benefits from the feature constructiomgasss. In other words, this paper discusses the
application of genetic algorithm to optimize thatigre construction process to generate input data f
the data summarization method called Dynamic Aggfieg of Relational Attributes (DARA).
Approach: The DARA algorithm was designed to summarize dédaed in the non-target tables by
clustering them into groups, where multiple recosttged in non-target tables correspond to a single
record stored in a target table. Here, featuretcaction methods are applied in order to improve th
descriptive accuracy of the DARA algorithm. Sint®e study addressed the question whether or not
the descriptive accuracy of the DARA algorithm fgsefrom the feature construction process, the
involved task includes solving the problem of comsting a relevant set of features for the DARA
algorithm by using a genetic-based algoritfitesults: It is shown in the experimental results that the
quality of summarized data is directly influencedtbe methods used to create patterns that refresen
records in the (nxp) TF-IDF weighted frequency maffhe results of the evaluation of the genetic-
based feature construction algorithm showed thatdita summarization results can be improved by
constructing features by using the Cluster Entr(iplf) genetic-based feature construction algorithm.
Conclusion: This study showed that the data summarizationlteesan be improved by constructing
features by using the cluster entropy genetic-b&sadire construction algorithm.

Key words: Feature construction, feature transformation, datenmarization, genetic algorithm,
clustering

INTRODUCTION also has been used in descriptive induction alymst
particularly those algorithms that are based ondtigle
Learning is an important aspect of research iogic programming (e.g., Warfir and Relational
Artificial Intelligence (Al). Many of the existing Subgroup Discovery (RSBY), in order to discover
learning approaches consider the learning algoriism patterns described in the form of individual rules.
a passive process that makes use of the information The DARA algorithm is designed to summarize
presented to it. This paper studies the applicatibn data stored in the non-target tables by clustettiregn
feature construction to improve the descriptiveuaacy  into groups, where multiple records exist in norgéh
of a data summarization algorithm, which is calledtables that correspond to a single record storetthen
Dynamic Aggregation of Relational Attributes target table. In this case, the performance oXARA
(DARA)Y. The DARA algorithm summarizes data algorithm is evaluated based on the descriptive
stored in non-target tables that have many-to-onaccuracy of the algorithm. Here, feature constoucti
relationships with data stored in the target taBkeone can also be applied in order to improve the deseep
of the feature transformation methods, featureaccuracy of the DARA algorithm. This paper addresse
construction methods are mostly related tothe question whether or not the descriptive acgucdc
classification problems where the data are stored ithe DARA algorithm benefits from the feature
target table. In this case, the predictive accureay construction process. This involves solving thebpem
often be significantly improved by constructing new of constructing a relevant set of features for BeRA
features which are more relevant for predictingdlass  algorithm. These features are then used to generate
of an object. On the other hand, feature constiacti patterns that represent objects, stored in thetamet
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table, in the TF-IDE! weighted frequency matrix in
order to cluster these objects.
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Dynamic Aggregation of Relational Attributes

(DARA): The DARA algorithm is designed to
summarize relational data stored in the non-target

tables. The data summarization method employs the
TF-IDF weighted frequency matrix (vector space

model) to represent the relational data model, where
the representation of data stored in multiple bl
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be analyzed and it will be transformed into data
representation in a vector space model. The terta da
summarization is commonly used to summarize data
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. . surunansed - Fa i
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summarization in the context of summarizing data
stored in non-target tables that correspond todtia
stored in the target table. We first define themer

target and non-target tables. Fig. 1: Data summarization for data stored in rplgti

tables with one-to-many relations

Definition 1: Target table, T, is a table that consists of ) )
rows of object where each row represents a single 1he ~ summarised_NT1,  summarised_NTZ,

unique object and this is the table in which pageare Summarised_NT3 and  summarised_NT4 fields
extracted. characterize the values ofyRlinked to T, and these

fields are appended to the list of existing attidsuin

Definition 2: A non-target table, NT, is a table that fargettable T. _ _

consists of rows of objects where a subset of thews In order to classify records stored in the tatgbte
can be linked to a single object stored in the erg that have one-to-many relations with records staned
table. non-target tables, the DARA algorithm transforme th

Based on the definitions defined in 1 and 2, thd€Presentation of data stored in the non-targeesab

term data summarization can be defined as follows: N0 @n (nxp) matrix in order to cluster these relso
(Fig. 2), where n is the number of records to be

clustered and p is the number of patterns congidere
clustering. As a result, the records stored in ribe-
target tables are summarized by clustering them int
groups that share similar characteristics. Clusteis
considered as one of the descriptive tasks thdisstee
identify natural groupings in the data based on the
patterns given. Developing techniques to automiftica
discover such groupings is an important part of
knowledge discovery and data mining research.

In Fig. 2, the target relation has a one-to-many

Where, one or more\R can be linked to a single relationship with the non-target relation. The non-
Ry, a data summarization for aljRin NT is defined as  target table is then converted into bags of pastern
a process of appending to T at least one fieldassociated with records stored in the target talole.
characterizing the values ofRlinked to each Rin T. order to generate these patterns to representtshjec

Figure 1 shows the process of data summarizatiothe TF-IDF weighted frequency matrix, one can @mric
for a target table T that has one-to-many relatippss  the objects representation by constructing new
with all non-target tables (NT1, NT2, NT3, NT4, features from the original features given in theno
NT41). Since NT4 has a one-to-many relationshigwit target relation. The new features are constructed b
NT41, NT4 becomes the target table in order tocombining attributes obtained fromthe
summarize the non-target table NT41. given attributes in the non-target taldedomly.
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Definition 3: Data summarization for data stored in
multiple tables with one-to-many relations can be
defined as follows:

 Atargettable T

* Records in the target tablg R
* Anon-target table NT
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Fig. 2: Feature transformation process for dateegtcn multiple tables with one-to-many relationtia vector
space data representation

For instance, given a non-target table with attebu ¢ The improvement of the descriptive accuracy of the
(Fa R, F), all possible constructed features ageHg, data summarization by generating relevant patterns
Fe, FFn, RoFe, FaFcand BERgF.. These newly constructed describing each object stored in the non-targdétab
features will be used to produce patterns or icgtato ¢  Facilitating the predictive modelling task for the

represent records stored in the non-target tabl¢he data stored in the target table, when the

(nxp) TF-IDF weighted frequency matrix. After the summarized data are appended to the target table

records stored in the non-target relation are ehest, a (e.g., the newly constructed featurge,;is added

new column, k., is added to the set of original to the set of original features given in the target

features in the target table. This new column dosta table as shown in Fig. 2)

the cluster identification number for all recordered ¢ Optimizing the feature space to describe objects

in the non-target table. In this way, we aim to ndapa stored in the non-target table

stored in the non-target table to the records dtor¢he ) ) ) ]

target table. The input representation for any learning alganith
can be transformed to improve accuracy for a paetic

MATERIALSAND METHODS task. Feature transformation can be defined asvistl

Definition 4: Given a set of features Fs and the training
set T, generate a representatigrdérived from Fs that
aximizes some criterion and is at least as gooésas
th respect to that criterion.

The approaches that follow this scheme can be
categorized into three categories:

Here, we explain the process of feature
transformation, particularly feature constructionda
discuss some of the feature scoring methods used &}i
evaluate the quality of the newly constructed fesgu

Feature transformation in machine learning: In

order to generate patterns for the purpose Ofeatyre selection: The problem of feature selection
summarizing data stored in the non-target tableret  can pe defined as the task of selection of a subfset
are several benefits of applying feature transfdioma  features that describes the hypothesis at leasefiss
to generate new features that include: the original set.
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Feature weighting: The problem of feature weighting Training Space of feature

can be defined as the task of assigning weighthdo sets B

features that describe the hypothesis at leastefisas . | ) _
the original set without any weights. The weight Feature subset “:
reflects the relative importance of a feature amy ive Evaluation R A S
utilized in the process of inductive learning. This Function Rigonmm ‘ !
feature weighting method is mostly beneficial foet Selectedsubset !
distance-based classifier | b——— T feamwres J
Feature construction: The problem of feature Erettese subset
construction can be defined as the task of cortatigic T PEr———

new features, based on some functional exprestians (ML) Algorithm 1

use the values of original features that descrie t ooureey —_r
hypothesis at least as well as the original set. Learn Model featses

In this study, we apply the feature construction

methods to improve the descriptive accuracy of the . i
DARA algorithm. Fig. 3: lllustration of the Filter approach to feu

subset selection

Feature construction: Feature construction consists of
constructing new features by applying some opearatio Spaceof feaira

or functions to the original features, so that tieav T”""}‘g e Bhack

features make the learning task easier for a datagn . | T

algorlthMS'g]. This is achieved by constructing new | | Evaluaton function quality ‘
features from the given feature set to abstract the! ‘.(i;%'{n—el'm@" ~{ Optimization J
interaction among several attributes into a new &oe Cl ML) algerithim g, algerithm :
instance, a simple example of this is when giveataof \ features J
features {k, F, F3, F4, Fs}, one could have (FA F,), D ) N Best feature subset
(FsA Fy), (Fs A Fy) as the possible constructed features. ' '

In this work, we focus on this most general and Machine leaming

promising approach in constructing features to el e | ML)algorihm )
summarize data in a multi-relational setting. accuracy Learn model Test sets

With respect to the construction strategy, feature
construction methods can be roughly divided into tw ]
groups: Hypothesis-driven methods and data-drivedrig- 4: lllustration of the Wrapper approach totéee

method&?. Hypothesis-driven methods construct new subset selection
features based on the previously-generated hypethes
(discovered rules). They start by constructing & ne There are essentially two approaches to

hypothesis and this new hypothesis is examined tgaonstructing features in relation to data minindneT

construct new features. These new features are thdinst method is as a separate, independent pre-
added to the set of original features to constancther  processing stage, in which the new attributes are
new hypothesis again. This process is repeatetitbati constructed before the classification algorithm is
stopping condition is satisfied. This type of featu applied to build the modéf. In other words, the

construction is highly dependent on the qualityttd  quality of a candidate new feature is evaluated by
previou_sly generated hypotheses. Pn the otheg] han irectly accessing the data, without running any
data-driven methods, such as GAtAand GPCH, g ctive learning algorithm. In this approach, the

construct new features by directly detectingfeaiyres constructed can be fed to different kinéls
relationships in the dat.a. GALA constructs.newdesatp. jnductive learning methods. This method is alsovkmo
based on the combination of booleanised origina s a Filter approach, which is showed in Fig. 3

features using the two logical operators, AND ariRl. O The second method is an integration of

GPCI s inspired by GALA, in which GPCI used an construction and induction (Fig. 4), in which new

evolutionary algorithm to construct features. Ohéhe feat tructed within the inducti
disadvantages of GALA and GPCIl is that the eatures are constructed within tne induction psece

booleanization of features can lead to a signifidass This method is also referred fo as interlea[\}frf@ or
of relevant informatiof®. the Wrappempproach. The quality of a candidate new
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feature is evaluated by executing the inductiveniey ~ Where:

algorithm used to extract knowledge from the data,

that in principle the constructed features’ usefah Ent(,:)z_zm: Pr(F ).log Pr(F (5)
tends to be limited to that inductive learning aithon. =

In this study, the filtering approach that uses daéa- and Pr(F) is the estimated probability of observing the

drlver_l strategy 1 apphed to construct featurasthe ith value of the feature F and m is the numberadties
descriptive task, since the wrapper approaches ar

: . NeS Akt the feature F.
computationally more expensive than the filtering : . . .
Another feature scoring used in machine learréng i
approaches.

cross entrop¥?’. Koller and Saharfif! define the task
of feature selection as the task of finding a featu

Feature scoring: The scoring of the constructed feature .
§Hbset Esuch thatPr(C||§ )is close tPr(C|F ), where

can be performed using some of the measures used
machine learning, such as information gain (Egarid C is a set of cIassesPr(C||§ )are the estimated

cross entropy (Eg. 6), to assign a score fo th%robabilities of observing the ith value of thettea Fs

constructed feature. For instance, the ID3 decision .
treé*”! induction algorithm applies information gain to that belongs to class C aer(C||§ ) are the estimated

evaluate features. The information gain of a neatuiee ~ probabilities of observing the ith value of thettea K

F, denoted InfoGain(F), represents the differencthef that belongs to class C. The extent of error if one

class entropy in data set before the usage ofrfediu  distribution is substituted by the other is callled cross

denoted Ent(C), and after the usage of featurerF foentropy between two distributions. Let be the

splitting the data set into subsets, denoted ER}(@s distribution of the original feature set afidbe the

shown in Eq. 1: approximated distribution due the reduced featete s
Then the cross entropy can be expressed as:

infoGain (F) = Ent(C)-Ent(CF) Q) a(x)
CrossEnt§ B ¥ > a (x)IogB—X (6)
Where: xea (x)
] in which a feature set;Fhat minimizes:
Ent(C) = =Y Pr(G ).log Pr(¢ 2)
= k
= 3 Pr(F ).CrossEnt(Pr(C | F ),Pr(G| F @)
i=1
and

is the optimal subset, where k is the number dfufes
Ent(c“:):_z": Pr(F )-i - Pr(E |F )log Pr,C|§ ©) in the dataset. Next, we will describes the proafss
=1 =1 feature construction for data summarization and
introduces a genetic-based (i.e., evolutionary}ufea
where, Pr(Q is the estimated probability of observing construction algorithm that uses a non-algebraimftm
the jth class, n is the number of classes, PigFthe  represent an individual solution to construct feasu
estimated probability of observing the ith value of This genetic-based feature construction algorithm
feature F, m is the number of values of the featyre constructs features to produce patterns that cteaize
and Pr(¢ |F) is the probability of observing the jth each unique object stored in the non-target table.
class conditional on having observed the ith valtie
the feature F. Information Gain Ratio (IGR) is Feature construction for data summarization: In the
sometimes used when considering attributes with ARA algorithnt!, the patterns produced to represent
large number of distinct values. The InformationirGa objects in the TF-IDF weighted frequency matrix are
Ratio of a feature, denoted by IGR(F), is compligd based on simple algorithms. These patterns are
dividing the Information Gain, InfoGain(F) shown in produced based on the number of attributes combined
Equation 1, by the amount of information of thetfea  that can be categorized into three categories. €rhes

F, denoted Ent(F): categories include:
IGR (F)=_nfoGain (F) (4) + a set of patterns produced from an individual
Ent(F) attribute using the g4 algorithm
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Construct TF-IDF matrix that produces the highest measure of quality is
i’gi‘;gﬂ;ﬂg S maintained to produce the final clustering result.
[T B ] Descriptive task i .
wow (Clustering) Genetic-based approach to feature construction for
S data summarization: Feature construction methods
By . Wy . Wy ecords are categorised
N pestsetoffeampes  Dasedonthe bestsetof that are based on greedy search usually suffer fhem
Sk L e local optima problem. When the constructed featsire
/Spaceof | Construct TE-IDF matrix basedon the ™, complex due to the interaction among attributes, th
- iﬁém " selected set of features constructed i search space for constructing new features has more
s Wi ) . . . . .
Optimisation e Deseriptive | variation. An exhaustive search may be feasibléhef
—salgorithm ¥ . W Wtk number of attributes is not too large. In genetiag
| |Selected set) (Clustering) ! i éjr%j
——offeatures |m .. #y .. ¥ Compute i problem is known to be NP-h and the search
canstreted fii;‘;: | becomes quickly computationally intractable. As a
Quality setof . — 4 result, the feature construction method requires a
£, o ecords are clustere I . . . .
Iammrsxcanchuciad bl s Siiceniag | heuristic search strategy such as Genetu_: Algostton
_...iscomputed ./ be able to avoid the local optima and find the glob

optima solutioné®?'. Genetic Algorithms (GA) are a
Fig. 5: llustration of the Filtering approach teature ~ Kind of multidirectional parallel search, and viabl
construction alternative to the intractable exhaustive searcd an
complicated search sp&e® For this reason, we also
o use a GA-based algorithm to construct featuregHer
* aset of patterns produced from the combination ofjata summarization task. We will describe a GA-Hase
all attributes by using the,Palgorithm feature construction algorithm that generates patte
« a set of patterns produced from variable lengttfor the purpose of summarizing data stored in tie-n
attributes that are selected and combined randomlmrget tables. With the summarized data obtainech fr
from the given attributes the related data stored in the non-target tables, t
DARA algorithm may facilitate the classificationsta

For example, given a set of attributes, {F, Fs, performed on the data stored in the target table.
Fs, K}, one could have (F F, F;, Fi, F5) as the o _ _
constructed features by using the.& algorithm. In  Individual representation: There are two alternative
contrast, with the same example, one will only have representations of features: algebraic and non-
single feature (FF,FsF4Fs) produced by using theaP algebrai®®. In algebraic form, the features are shown
algorithm. As a result, data stored across multiphées Py means of some algebraic operators such as
with high cardinality attributes can be represenasd arithmetic or Boolean operators. Most genetic-based
bags of patterns produced using these constructd@ature construction methods like ¢€j GPCI'? and
features. An object can also be represented bgmatt Gabref*! apply the algebraic form of representation
produced on the basis of randomly constructed featu Using a parse tré&. GPCI uses a fix set of operators,
(e.g., (RFs, FFs F3)), where features are combined AND and NOT, applicable to all Boolean domains. The
based on some pre-computed feature scoring measuredse of operators makes the method applicable to a

This work studies a filtering approach to featurewider range of problems. In contrast, Gl and
construction for the purpose of data summarizatiorGabref* apply domain-specific operators to reduce
using the DARA algorithm (Fig. 5). A set of complexity. In addition to the issue of defining
constructed features is used to produce patterreafch ~ Operators, an algebraic form of representation can
unique record stored in the non-target table. Assalt, ~Produce an unlimited search space since any feature
these patterns can be used to represent objectsisto  appear in infinitely many forrfs!. Therefore, a feature
the non-target table in the form of a vector spade  construction method based on an algebraic forms)aed
vectors of patterns are then used to constructThe restriction to limit the grovvth of constructed fiions.
IDF weighted frequency matrix. Then, the clustering  Features can also be represented in a non-algebrai
technique can be applied to categories these abjectform, in which the representation uses no operataws
Next, the quality of each set of the constructeatuies ~ €xample, in this work, given a set of attributes
is measured. This process is repeated for the stter {X1,X2,X3,X4,Xs}, a feature in an algebraic form like
of constructed features. The set of constructetlifea (X1 A X2) A (X3 A X4 A Xs)) can be represented in a
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non-algebraic form as <X,X3X4Xs, 2>, where the « B represents the point of reordering the sequence
digit, “2”, refers to the number of attributes candd of attribute’s indices
to generate the first constructed feature.

The non-algebraic representation of features has Thus, given a chromosome <1234567, 3, 4>, where
several advantages over the algebraic represemtdtio the list 1234567 represents the sequence of seven
These include the simplicity of the non-algebraicnf  attributes, the digit “3” represents the number of
to represent each individual in the process ofattributes combined and the digit “4” represents th
constructing features, since there are no operatofsoint of reordering the sequence of attribute’sidesd,
required. Next, when using a genetic-based algorit the possible constructed features arg={F,), (FsF-Fs)
to find the best set of features constructed, tsaleof  and (F), with the assumption that the attributes are
the search space of a non-algebraic is much e&sier. selected randomly from attribute farough attribute F
example, given a set of features, a parameter ssin@  to form the new features. The reordering procasglgi
the number of attributes to be combined and thatpoi copies the sequence (string of attributes), (1234156
of reordering, one may have the following set ofand rearranges it so that its tail, (567), is moiethe
features in a non-algebraic form, s%6XsX4Xs, 3, 2>.  front to form the new sequence (5671234). The
The first digit, “3”, refers to the number of abiites mutation process simply changes the number of
combined to construct the first feature, where theattributes combined, A, and the point of reordeiimg
attributes are unordered, and the second digit, “2"the string, B. The rest of the feature represemtatcan
refers to the index of the column where the ordéhe  be obtained by mutating A, and B, and these values
features in the set is reordered during the rearger should be less than or equal to the number obates
process. The second feature is constructed bygonsidered in the problem. As a result, this form o
combining the attributes remaining in the set. Fomepresentation results in more variation afterqrenfng
instance, if the first constructed feature is;XXXs)  genetic operators and can provide more useful festu
from a given set of attributes (X,X3X,;Xs), the second
constructed feature is (Xs). After the reordering Table 1: The algorithm to generate a series oftcocted features
process, a new set of features in a non-algebaain f mgﬂth:ths Ste(;egﬁgﬁu%r?eta%?ggsggf(g fFiatuE)Sn umber of
can be represented as $04XsX1 Xz, 3, 2>. attributes

Table 1 shows the algorithm to generate a sefies @utput: A set of constructed features F
constructed features. Given F as a set of | atg®and 83 giiéflrzzgttcr?buur;teesr :aznclioml and construct a feature, FIN
the number of gttnbutes to be combined, n, _wher%3) Add FN o R FCDFNi’a?]’d increment i T
1<n<l, the algorithm starts by randomly selecting nos)r=-n.
number of attributes. The n selected attributestlzga  05) IF'>n THEN
combined to form a new feature, Fahd added into the 98 =!

) 07) GOTO 02
set of constructed features;. Fhese selected attributes og) gL sg
are then removed from the original set of attribute.  09) Construct a new feature based on the remaatinigutes, FIN
The process of constructing new features is regeatel0) AddFNto R, Fc U FN, STOP
until the numbers of attributes left in F is lebar the
total number of attributes combined, n. The renmajni
attributes left in E are then combined to form thst Table 2: Features in the non-algebraic and algebrfarms:

. . Population Initialization, Features constructioepRiering
feature and then this new constructed feature decd and Mutation processes

to Fc. Table 2 shows the sequence of constructinGiages Non-algebraic Algebraic
features using the genetic-based algorithm staftog  Tnitialization <1234567, 3, 4> -
the population initialization and also illustratése  Features (FFsFa), (FsF7Fs), () (RRARAFR)V

representation of the constructed features in the . .= o0 o, FAFRARVE)

algebraic and non-algebraic forms. During theyytation <5671234, 4, 1> -
population initialization, each chromosome is alided  Features (FFoFFs), (FsFoFs) (FLAF A Fs ARy

with the following format, <X, A, B>, where: ) V(BARAR)
Reordering  <6712345, 4, 1> -

i . o Mutation <6712345, 5, 2> -
» Xrepresents a list of the attribute’s indices Features (FFiFoFs), (FiFe) ((FsAF AFL A Fo AFs)

» Arepresents the number of attributes combined V(RAF)
870
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Fitness functions. Information Gain (Eq. 1) is often function for a given set of constructed features is
used as a fitness function to evaluate the quefithe defined as the total clusters entropy, H(K), of all
constructed features in order to improve the ptagic clusters produced (Eq. 8). This is also known a&s th
accuracy of a supervised leatfiel’. In contrast, if the  Shannon-Weiner diversff?%:

objective of the feature construction is to imprahe
descriptive accuracy of an unsupervised -clustering N
technique, one may use the Davies-Bouldin |ndeXH(K):ZK:1nk'Hk
(DBN® as the fitness function. However, if the N
objective of the feature construction is to imprdke

descriptive accuracy of a semi-supervised cIusg;erinWhere.

tec?rr]llq?te:, the ftota![.clu?ter enltrotpy rgEq' 8) l(I:a;rr]ubled ne, = The number of objects in kth cluster
as the fitness function to evaluate how well thedge The total number of objects

constructed feature clusters the o_bj_ects. . . The entropy of the kth cluster, which is defined
In our approach to summarizing data in a multi- in Eq. 9
relational database, in order to improve the ptadic '
accuracy of a classification task, the fitness fiamcfor )
the GA-based feature construction algorithm can bWhere.
defined in several ways. In these e?< eriments, wi = The number of classes
examine the case ofy éemi-su erviseg Iearnin, t(;TDSk = The probability that an
. e P _earning object randomly chosen from the kth cluster
improve the predictive accuracy of a classificatiask.
X . belongs to the sth class
As a result, we will perform experiments that eadtu
four types of feature-scoring measures (fithess

(8)

Hy

functions) outlined below: H, =—ZS: Py log, (By) 9
s=1
* Information Gain (Eq. 1) i . .
. Total Cluster Entropy (Eq. 8) The smaller the value of the fithess function gsin
* Information Gain coupled with Cluster Entropy the total Cluster Entropy (CE), the better is thaldy
(Eq. 11) of clusters produced. Another metric that can kexlue
.« Davies-Bouldin Inde%” evaluate the goodness of the clustering resultlied

the purity of the cluster or this metric is betteown as
the measure of dominance, MDshown in Eq. 10,

The information gain (Egq. 1) of a feature thich is developed by Berger and PafRer

represents the difference of the class entropyata det
before the usage of feature F and after the usége o

feature F for splitting the data set into subs@&tsis _MAX (nsk)
information gain measure is generally used for k_n—k
classification tasks. On the other hand, if theeotiye

of the data modeling task is to separate objecm fr Where:
different classes (like different protein familiégpes of MAX(n. )
wood, or species of dogs), the cluster’s diversiythe °
kth cluster, refers to the number of classes withim

kth cluster. If this value is large for any clustdrere

are many classes within this cluster and therelésge Next, we will also study the effect of combining

diversity.. In this genetic approach to fe_aturethe Information Gain (Eq. 1) and Total Cluster Bptr
construction for the proposed data summarlzauortEq 8) measures, denoted as CE_IG(F,K), as thest

technique, the fitness function can also be defiasd function in our genetic algorithm, as shown in diprm
the d.|verS|ty of the cI_us'gers produced. In therrdrso 11, where K is the number of clusters and F is the
the fitness of each individual non-algebraic form 0 .Jo<ted feature:

constructed features depends on the diversity oh ea
cluster produced. N

In these experiments, in order to cluster a gisein CE_IG (F,K) = InfoGain(F) + ke M He (11)
of categorized records into K clusters, the fithness — ’ N

(10)

= Just the number of objects in the most
abundant class, s, in cluster k
The number of objects in cluster k
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Finally, these experiments also evaluate thel48 classifier (for all values of k), using a 10dfoross-
effectiveness of the feature construction methasedd  validation procedure. The predictive accuracy tesof
on the quality of the cluster's structure. Thethe J48 classifier are higher when the geneticebase
effectiveness is measured using the Davies-Bouldifleature construction algorithms are used compareidet
Index (DBIf*”, to improve the predictive accuracy of a predictive accuracy results for the data with feegu

classification task. constructed using thesRyeand Ry methods.
Table 4 shows the results of paired t-test (p05).
RESULTSAND DISCUSSION for mutagenesis and hepatitis datasets. In thie,tée

symbol '@’ indicates significant improvement in

In these experiments we observe the influence operformance by method in row over method in column
the constructed features for the DARA algorithntlees  and the symbol @’ indicates no significant
final result of the classification task. ReferritogFig. 2,  improvement in performance by method in row over
the constructed features are used to generaterqmtte method in column, on the three datasets. For the
representing the characteristics of records stordle  Mutagenesis datasets, there is a significant imgrant
non-target tables. These characteristics are theim predictive accuracy for the CE genetic-basedufea
summarised and the results appended as a nevwsdtrib construction method over the other genetic-basalife
into the target table. The classification task hent construction methods including IG, CE_IG and DBI
carried out as before. The Mutagenesis databasks (Bmethods, and the feature construction methods uking
B2, B3J*" and Hepatitis databases (H1, H2, H3) fromPg,g.and R, algorithms. In addition to that, significant
PKDD 2005 are chosen for these experiments. improvements in predictive accuracy for the J48

The genetic-based feature construction algorithntlassifier are recorded for the genetic-based featu
used in these experiments applies different types oconstruction methods with fithess functions DBI,, GI
fitness functions to construct the set of new feedu CE_IG and CE over the feature construction methods
These fitness functions include the Information rGai using the Bnge and R, algorithms, for the hepatitis
(IG) (Eq. 1), Total Cluster Entropy (CE) (Eq. 8het datasets.
combined measures of Information Gain and Total . o
Cluster Entropy (CE-IG) (Eq. 11) and, finally, the '®01° ¥ Predeve scctracy rsute baseo oo 10-aoss
Dawes-Bou_Idln_ Index (DBH". Eor ea_\ch experiment, Porge P CE CEIG IG DB
the evaluation is repeated ten times independevitty B g0.a14 8020 81.81.3 81307 81307 78.62.9
ten different numbers of clusters, k, 10 rangirayfr3- B2 81.%*1.4 79.23.0 82.41.5 80.32.1 80.22.3 78.81.3
21. The J48 classifier (as implemented in WERpis B3 78.833 79.25.7 85339 84.43.9 75.34.7 78.94.6
used 10 evaluate the qualiy of the constructetifea 1 19310 12317 Tokes 1oaze rasts ra0z0
based on the predictive accuracy of the classifioat n3 72330 74.81.3 77.%33 76.438 76.33.9 76.32.6
task. Hence, in these experiments we compare the
predictive accuracy of the decision trees produogd Table 4: Resu_lt_s of paired t-test (p = 0.05) fortagenesis and

: hepatitis PKDD 2005 datasets

the J48 for the data when using,f.and R, methods. " is (B1, B2, B3)
The performance accuracy is computed using the g™ agenesis (B1, B2,

fold cross-validation procedure. Method  Rige  Pai DBl IG CE CE_IG
In addition to the goal of evaluating the quabify p,, - o6 o@o oe06 606 ©06
the constructed features produced by the genesieeba P ©,0,0 - @5 ©00 006 ©980
algorithm, our experiments also have the goal oDBI ©,9,0 °00 - ©90 980 609
determining how robust the genetic-based featurds ©,9,9 ©00 998 - ©,0,0 699

construction approach is to variations in the sgtof ~ CE ©9°  e88  eee eee - ©:9:°

the number of clusters, k, where k = 3, 5,7,9,11CE1C

© 0.0 © 0 [CHCNC [SHCNCY © 0.0
1y 7y 1y (gl 1y

13,15,17,19,21. Other parameters include reorderingePaiis (HL, H2, H3)

probability, p = 0.80, mutation probability,;p= 0.50,  Method  Ringe P DBl IG CE CE_IG
population size is set to 500 and the number of . - oce oee6 oee6 oeo0 o066
generations is set to 100. In these experimentsnade p,, ®,0,0 - oo o008 o008 ©00
no attempt to optimize the parameters mentionatin  DBI ©,0,0 00,0 - 00, 900 990
study. The results for the mutagenesis (B1, B2, 88) IG 9,8 ©9,0 ©96 - ©96 6998
hepatitis (H1, H2, H3) datasets are reported inlef&  CE ©00 000 0606 0600 - 9,0,

Table 3 shows the average performance accuradyeof tCEZIC  ©©°  @°© ©9° ©96° ©0°
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Among the different types of genetic-based featurelatasets, with different values of k. In the Mutagss
construction algorithms studied in this work, th& C B1 and B2 datasets, the size of the cluster has no
genetic-based feature construction algorithm preduc implications on the predictive accuracy when udimg
the highest average predictive accuracy. Théeatures constructed from the CE, CE_IG, IG and DBI
improvement of using the CE genetic-based featurgenetic-based feature construction algorithms. e t
construction algorithm is due to the fact that @&  number of clusters increases, the predictive acgura
genetic-based feature construction algorithm canr  tengs to stay steady or to decrease as shown iBFig
features that develop a better organization obthjects For the Hepatitis (H1, H2, H3) and Mutagenesis
in the clusters, which contributes to the improveti®  (B3) gatasets, the predictive accuracy resulthefius
the predictive accuracy of the classification tasksat  c|assifier are higher when the number of clustiasr k
is, objects which are truly related remain closethe relatively big (1Zk<19) when using the constructed
same cluster. o _ - features from the CE genetic-based feature coritruc

In our results, it is shown that the final preniet 5 gorithm. In contrast, the predictive accuracyuhissof
accuracy for the data with constructed featuresgusi ihe 348 classifier for the datasets (Hepatitis HZL, H3
the IG genetic-based feature construction algorittm 4nq Mutagenesis B3) are higher when the number of
not as good as the final predictive accuracy oB@ior  ¢jysters k is relatively small {&<11) and the features

the data with constructed features using the CEB@®N sed are constructed by thgRand B, methods.
based feature construction algorithm. The IG geneti

based feature construction algorithm constructsifea
based on the class information and this methodnassu
that each row in the non-target table represesiagie S
instance. However, data stored in the non-tardeesa
in relational databases have a set of rows reptiages

Average performance accuracy (%) forall
methods of feature construction used

it J

[

240

]
ot
[

220 1

single instance. As a result, this has effects ke t & 7] ——B1
descriptive accuracy of the proposed data £ 7ag ] 8
780 - ——B3

summarization technique, DARA, when using the 1G
genetic-based feature construction algorithm to
construct features. When we have unbalanced
distribution of individual records stored in thenro
target table, the IG measurement will be affected.
Fig. 5, the data summarization process is perfortoed
summarize data stored in the non-target table befor
actual classification task is performed. As a rgeghke
final predictive accuracy obtained is directly affs
by the quality of the summarized data.

Figure 6 and 7 shows the average performance
accuracy of the J48 classifier for all feature ¢ardion -
methods studied using the Mutagenesis (B1, B2, B3) T .
and Hepatitis (H1, H2, H3) databases with k = 3%,7 7 780

770 A
TEO A
750

Performance accuracy |

2 85 7 @9 11 1 1\ 7 1w
Mo, of clusters

Fig. 6: The average performance accuracy of J48
classifier for all feature construction methods
tested on Mutagenesis datasets B1, B2 and B3

Average performance accuracy (%) forall
methods of feature construction used

11,13,15,17,19,21. Generally, the number of clsster §T‘3-'3" ettt

has no implications on the average performance §?4-'3' ——Hz

accuracy of the classification tasks, for dataBdtsand E 201 s
0

B2. In contrast, the results show that for dataB&s 5 e
H1, H2 _and H3, the average performance accuracy E '3 5 ? 9 1'1 1'3 1'5 M 1'9 o
tends to increase when the number of clustersasese - No. of clusters

Figure 8 and 9 show the performance accuracies of
the J48 classifier for different methods of feasure Fig. 7:The average performance accuracy of J48
construction used to generate patterns for the classifier for all feature construction methods
Mutagenesis (B1, B2, B3) and Hepatitis (H1, H2, H3) tested on Hepatitis datasets H1, H2 and H3
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Fig. 8: Performance accuracy of J48 classifieMotagenesis datasets B1, B2 and B3

The arrangement of the objects within the clustens

accuracy is also improved. In other words, when the

be considered as a possible cause of these refhtis. choice of newly constructed features minimizes the

feature space for the;Ry. method is too large and thus cluster entropy,
this feature space does not provide clear differemicat
discriminates instancé$®, On the other hand, the

feature space is restricted to a small number efifip

patterns only when we apply thesPmethod to

the predictive accuracy of the
classification task also improves as a results.

Features constructed: Since the patterns produced to
describe objects in the nxp weighted frequency imatr

construct the patterns. WithyP method, the task of (where n is the number of objects and p is the rimb

inducing similarities for instances is difficult duthus it

is difficult to arrange related objects close erifoug

each othd®*l As a result, when the number of
clusters is too small or too large, each clustey have
a mixture of unrelated objects and this leads teelo

predictive accuracy results. On the other hand nvthe

patterns are produced by using the CE or IG geneti
based feature construction algorithms, the featpexe
is constructed in such a way that related objeatshe

arranged closely to each other. As a result,

performance accuracy of the J48 tends to increasmw

C

of different patterns that exist in the object) elegh on

the constructed features, feature construction lzan
used as a means to characterize the summarized data
Since the mutagenesis datasets (B1, B2, B3) ark wel
structured databases, some of the constructedrésatu
are presented to identify the type of features
constructed. The following indices for the attrigsitof
dataset Mutagenesis B1, B2 and B3 are shown in

theTable 5, the constructed features for Mutagenesis

datasets (B1, B2, B3) (Table 6) that are used teigte

the number of clusters increases. It is shown & ththe patterns needed to represent objects storgbein

experimental results that when the descriptive agu

non-target table that correspond to the objectedtm

of the summarized data is improved, the predictivdhe target table.
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Fig. 9: Performance accuracy of J48 classifieHepatitis datasets H1, H2 and H3

Table 5: Indices of Attributes in Mutagenesis detsa¢B1, B2, B3)

Indices B1 B2 B3

1 Element Element Element
2 Element Element Elemeng
3 Typa Type Typa

4 Type Type Type

5 Bond Bond Bond

6 - Charge Charge
7 - Charge Charge
8 - - log

9 - - €LUMO

Table 6: Features constructed for Mutagenesis eiatéB1, B2, B3)

Datasets CE CE_IG

B1 [2, 4],[1, 3, 5] [3,4],[1, 2, 5]

B2 2,4,5][1, 3,6, 7] [3,4],[1, 2,5,6, 7]

B3 [1,3,9][2, 6, 8],[4,5, 7] [1, 71,5, 6],[3],[2, 4, 8]
IG DBI

B1 [3,4],[1, 2, 5] [4,5],[1, 2, 3]

B2 [3,4],[1,2,5,6,7] [1, 3].[4, 5],[2, 6, 7]

B3 [1, 71,[5, 6].[3, 9].[2, 4, 8] [5, 6],[3, 91.[B].[1, 2, 4]

875

For instance, by using the CE fitness functioe, th
values for Elementand Typeg are coupled together (in
B1 and B2) to form a single pattern that is usethi&
clustering process. These values can be used to
represent the characteristics of the clusters fdrram
the other hand, by using the IG alternative, thieies
for Type and Type are coupled together (in B1 and
B2) to form a single pattern that will be used fre t
clustering process. Based on Table 6, it can be
determined that when CE is used, attributes areledu
more appropriately compared to the other alterpativ
For instance, by using DBI, the values for Typad
Bond are coupled together to form a single pattarh
these attributes are not appropriately coupled.

In these experiments, we have proposed a genetic-
based feature construction algorithm that consdract
set of features to generate patterns that can & tas
represent records stored in the non-target taflbs.
genetic-based feature construction method makesfuse
four predefined fithess functions studied in these
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experiments. We evaluated the quality of the newlybest set of constructed features that can imprbee t
constructed features by comparing the predictivepredictive accuracy of a classification task. Tétisdy
accuracy of the J48 classifier obtained from th&ada has described how feature construction can be imsed
with patterns generated using these newly congtduct the data summarization process to get better gheiseri
features with the predictive accuracy of the J48accuracy, and indirectly improve the predictive
classifier obtained from the data with patternsegated accuracy of a classification task. In particulag kave
using the original attributes. investigated the use of Information Gain (I1G), @us
Entropy (CE), Davies-Bouldin Index (DBI) and a

In summary, based on the results shown in Table 3;ombination of Information Gain and Cluster Entropy

the following conclusions can be made: (CE-IG) as the fitness functions used in the geneti
based feature construction algorithm to construt n

» Setting the total Cluster Entropy (CE) as thefeatures.

feature scoring function to determine the besbéet It is shown in the experimental results that the

constructed features can improve the overallquality of summarized data is directly influencedthe

predictive accuracy of a classification task methods used to create patterns that represemtseito
« Better performance accuracy can be obtained whethe (nxp) TF-IDF weighted frequency matrix. The

using an optimal number of clusters to summarizgesults of the evaluation of the genetic-basedufeat

the data stored in the non-target tables construction  algorithm show that the data
« The best performance accuracy is obtained whefummarization results can be improved by constrgcti

the number of clusters is in the higher end of thefeatures by using the Cluster Entropy (CE) genetic-

range (19). Therefore, it can be assumed thapased feature construction algorithm.

performing data summarization with a relatively
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