
Journal of Computer Science 5 (11): 890-897, 2009
ISSN 1549-3636
© 2009 Science Publications

Corresponding Author: A.W. Naji, Department of Electrical and Computer Engineering, Faculty of Engineering,
 International Islamic University Malaysia, Post Code: 53100, 53100 Gombak, Kuala Lumpur, Malaysia

890

Challenges of Hidden Data in the Unused Area Two within Executable Files

A.W. Naji, A.A. Zaidan and B.B. Zaidan

Department of Electrical and Computer Engineering, Faculty of Engineering,
International Islamic University Malaysia, 53100 Gombak, Kuala Lumpur, Malaysia

Abstract: Problem statement: The executable files are one of the most important files in operating
systems and in most systems designed by developers (programmers/software engineers), and then
hiding information in these file is the basic goal for this study, because most users of any system
cannot alter or modify the content of these files. There are many challenges of hidden data in the
unused area two within executable files, which is dependencies of the size of the cover file with the
size of hidden information, differences of the size of file before and after the hiding process,
availability of the cover file after the hiding process to perform normally and detection by antivirus
software as a result of changes made to the file. Approach: The system designed to accommodate the
release mechanism that consists of two functions; first is the hiding of the information in the unused
area 2 of PE-file (exe.file), through the execution of four process (specify the cover file, specify the
information file, encryption of the information, and hiding the information) and the second function is
the extraction of the hiding information through three process (specify the steno file, extract the
information, and decryption of the information). Results: The programs were coded in Java computer
language and implemented on Pentium PC. The designed algorithms were intended to help in proposed
system aim to hide and retract information (data file) with in unused area 2 of any execution file
(exe.file). Conclusion: Features of the short-term responses were simulated that the size of the hidden
data does depend on the size of the unused area2 within cover file which is equal 20% from the size of
exe.file before hiding process, most antivirus systems do not allow direct write in executable file, so
the approach of the proposed system is to prevent the hidden information to observation of these
systems and the exe.file still function as usual after the hiding process

Key words: Cryptography Vs steganography, hidden data within executable file

INTRODUCTION

 The hurried development of multimedia and
internet allows wide distribution of digital media data.
It becomes much easier to edit, modify and duplicate
digital information. In additional, digital document is
also easy to copy and distribute, therefore it may face
many threats. It became necessary to find an
appropriate protection due to the significance, accuracy
and sensitivity of the information. Nowadays,
protection system can be classified into more specific as
hiding information (Steganography) or encryption
information (Cryptography) or a combination between
them[1]. Cryptography is the practice of ‘scrambling’
messages so that even if detected, they are very difficult
to decipher. The purpose of Steganography is to
conceal the message such that the very existence of the
hidden is ‘camouflaged’[1].
 However, the two techniques are not mutually
exclusive. Steganography and cryptography are in fact

complementary techniques. No matter how strong
algorithm, if an encrypted message is discovered, it will
be subject to cryptanalysis[1,4]. Likewise, no matter how
well concealed a message is, it is always possible that it
will be discovered. By combining Steganography with
Cryptography we can conceal the existence of an
encrypted message, in doing this; we make it far less
likely that an encrypted message will be found[1,5].
 Also, if a message concealed through
Steganography is discovered, the discoverer is still
faced with the formidable task of deciphering it. Also
the strength of the combination between hiding and
encryption science is due to the non-existence of
standard algorithms to be used in (hiding and
encryption) secret messages. Also there is randomness
in hiding methods such as combining several media
(covers) with different methods to pass a secret
message. Furthermore, there is no formal method to be
followed to discover a hidden data[1].

J. Computer Sci., 5 (11): 890-897, 2009

891

 It is general in hiding information to embed a
limited amount of information in media such as image
and music files, so the embedding methods could be
under surveillance from system managers in an
organization that requires the high level of security.
This fact requires researches on new hiding techniques
and cover objects which hidden information is
embedded in? It is the result from the researches to
embed information in executable files. It can be
considered that Stilo and Hydan represent common
techniques for the embedding information in executable
files[2,3]. These techniques make original files modified,
so code signing techniques that guarantee the integrity
of the code can be used for the detecting hidden
information[2,3]. But, it becomes general phenomenon
making executable files as the level of using computer
and computing environment has been raised. In
addition, it has not been general to use code signing
techniques[2,3]. Silo and Hydan modify program binaries
that have been in optimization, so the performance of
the program binaries may fall. In addition, the amount
of information to be embedded in executable files by
using Silo and Hydan is limited under than 15% from
the total cover size because these tools determine the
number of bytes to be hidden on the foundation of the
size of the program binaries[2,3]. Aws and bilal modify
program, they implement a system computation
between cryptography and steganography which
embeds information within unused area 1 of exe.file[4].
Flowing that Ahmed and aws modify a new technique
of hidden data in the (Unused Area 2 within exe.file)
using computation Between Cryptography and
Steganography that files[5].
 These research aims are find a secure solution of
cover file without change the size of cover file[4,5]. But
these research never mentions about the detection by
anti-virus, the functionality of the exe.file is still
functioning or not and the size of the information
hiding still limited and not known percentage. These
points consider main challenges for hidden data in the
executable files. Therefore, it needs to carry out
researches on new hiding techniques that consider the
efficiency of program using computation between
cryptography and steganography. To process all the
challenges of the executable file when be used for
cover. In this study, we examine the new methods that
consider the efficiency, the amount of information to be
hidden and make sure changes made to the exe.file will
not be detected by anti-virus and the functionality of the
exe.file is still functioning. Furthermore we discuss the
analysis techniques which can be applied to detect and
recover data hidden using each of these methods.

MATERIALS AND METHODS

System concept: Concept of this system can be
summarized as hiding the password or any information
beyond the end of an executable file so there is no
function or routine (open-file, read, write and close-file)
in the operating system to extract it. This operation can
be performed in two alternative methods.
 Building the file handling procedure independently
of the operating system file handling routines. In this
case we need canceling the existing file handling
routines and developing a new function which can
perform our need, with the same names. This way
needs the customer to install the system application
manually as shown in Fig. 2.
 Development the file handling functions depending
on the existing file handling routines. This way can be
performed remotely as shown in Fig. 3. The advantage
of the first method is it doesn't need any additional
functions, which can be identified by the analysts.
 The disadvantage of this method is it needs to be
installed (can not be operated remotely). The advantage
of the second method is it can be executed remotely and
suitable for networks and the internet applications. So
we choose this concept to implementation in this study.

System features: This system has the following
features:

• The hiding operation of (unused area 2 within exe.

File) increases the degree of security of hiding
technique which is used in the proposed system
because within unused area 2 of exe.file, it have
different size from one fie to another, So the
attacker cannot be attack the information hidden

• The cover file can be executed normally after
hiding operation. Because the hidden information
already hide in the unused area 2 within exe.file
and thus cannot be manipulated as the exe.file,
therefore, the cover file still natural, working
normally and not effected, such as if the cover is
exe.file (WINDOWES XP SETUP) after hiding
operation it'll continued working, In other words,
the exe.file can be installed of windows

• It's very difficult to extract the hidden information
it's difficult to find out the information hiding, that
is because of three reasons:
• The information hiding will be encrypted

before hiding of the information by AES
method; this method very strong, 128-bit key
would be in theory being in range of a military
budget within 30-40 years. An illustration of

J. Computer Sci., 5 (11): 890-897, 2009

892

the current status for AES is given by the
following example, where we assume an
attacker with the capability to build or
purchase a system that tries keys at the rate of
one billion keys per second. This is at least 1
000 times faster than the fastest personal
computer in 2004. Under this assumption, the
attacker will need about 10 000 000 000 000
000 000 000 years to try all possible keys for
the weakest version

• The information hiding should be decrypted
after retract of the information

• Virus detection programmers’ can't detect such as
files, the principle of antivirus check are checking
from beginning to end. When checking the
exe.files by antivirus, will checked it from
beginning to end of it, since the principle of
information hiding for that system within unused
area 2 of exe.file. The information hiding will be
encrypt after that it will be hidden, the antivirus
discontinue checking in the unused area 2 of
exe.file after hiding process because the unused
area 2 still empty so didn't mention to anything
inside the exe.file while doing scanning.

The proposed system structure: To protect the hidden
information from retraction the system encrypts the
information by the built-in encryption algorithm
provided by the Java. The algorithm for hiding
operation procedure is shown in Fig. 1. The algorithm
for retract operation procedure is shown in Fig. 2.

Testing of the system: There are two fundamental
approaches to identifying test cases, these are known
as functional and structure testing, each of these
approaches has several distinct test case identification
methods, more commonly called testing methods,
functional testing is based on the view that any
program can be considered to be a function that maps
values from its input domain to values in its output
range. (Function, domain and range) this notion is
commonly used in engineering[6]. There are two
distinct advantages to functional test cases, they are
independent of how the software is implemented, so if
the implementation changes, the test cases are still
useful and test case development can occur in parallel
with the implementation, thereby reducing overall
research development interval, on other side,
functional test cases frequently suffer from two
problems: there can be significant redundancies
among test cases and this is compounded by the
possibility of gaps of untested software (Fig. 3)[6].

Fig. 1: Algorithm for hiding operation

Fig. 2: Algorithm for retract operation

Fig. 3: Approaches to identifying test cases

Fig. 4: Black box

J. Computer Sci., 5 (11): 890-897, 2009

893

 When systems are considered to be "black boxes"
test cases are generated and executed from the
specification of the required functionality at defined
interfaces, this leads to the function of the black box is
understood completely in terms of its inputs and
outputs, as shown in Fig. 4. Black-box testing has some
important advantages[6]:

• It does not require that the code is seen, it is

testing. Sometimes code will not be available in
source code form, yet it can still construct useful
test cases without it. The person writing the test
cases does not need to understand the
implementation

• The test cases do not depend on the
implementation. They can be written in parallel
with or before the implementation. Further, good
black-box test cases do not need to be changed.
Even if the implementation is completely rewritten

• Constructing black-box test cases causes the
programmer to think carefully about the
specification and its implications. Many
specification errors are caught this way

 The disadvantage of black box testing is that its
coverage may not be as high as like, because it has to
work without the implementation. But it is a good place
to start when writing test cases, with the functional
approach to test case identification; the only
information that is used is the specification of the
software[6].

Process of the test:
Test case one: In this phase making comparison
between the cover files size after and before hiding
operation.

Test case two: In this case making test for the usage of
exe.files after the hiding operation to be done.
 Four pictures approve the cover (exe.files) usage
after the hiding operation and these pictures divides to:

• First picture of text
• Second picture of image
• Third picture of video
• Fourth picture of audio

Test case three: Testing for Scanning Result
(undetectable by antivirus software).
 Four pictures approve the cover (exe files)
undetectable from antivirus software after the hiding
operation and this picture divides to:

• First picture of text
• Second picture of image
• Third picture of video
• Fourth picture of audio

Test cases details: are known preconditions, inputs and
expected results, which is worked out before the test is
executed (Table 1). The definition of software
installation needed for test an (Preconditions) and the
definition inputs should needed for test an (inputs) and
the definition predictable results for outputs an (except
results).

Preconditions:

• Installation (Microsoft windows XP for any

version or vista)
• Installation (Jcreators and JDK or net beans editor)
• Installation (Microsoft office word document 2003

or 2007)
• Installation (Software antivirus)
• Installation (Real player programmed)
• Installation (Jet audio programmed)
• Installation (ACDSEE programmed)
• System application for this research

Inputs: The system has two types of inputs:

• Inputs for cover (exe.files)
• Inputs for information hidden

Table 1: Inputs for test cases
Name of input Type of input Size of inputs/bytes
Cover 1 VMware player setup 4,027,802
Cover 2 SSH 532,480
Cover 3 JCreator editor setup 22,806,060
Cover 4 1 JDK setup 68,830,616
 2 JDK setup 76,445,080
 3 JDK setup 81,208,728
Text 1 Word document 805560,4
Text 2 Word document 106496
Text 3 Word document 4561212
Text 4 Word document 13766123,2
Video 1 Real player 805560,4
Video 2 Real player 106496
Video 3 Real player 4561212
Video 4 Real player 15289016
Audio 1 Jet audio 805560,4
Audio 2 Jet audio 106496
Audio 3 Jet audio 456122
Audio 4 Jet audio 16241745,6
Image 1 JPEG 805560,4
Image 2 JPEG 106496
Image 3 JPEG 4561212
Image 4 JPEG 16241745,6

J. Computer Sci., 5 (11): 890-897, 2009

894

RESULTS

Expected results:

• Secure cover (exe.files)
• The hidden information can be of any type of

multimedia files dependent of the size of unused
area 2 within cover file which is equal 20% from
the size of exe.file

• These covers (exe.files) usage after the hiding
operation

• These covers (exe.files) undetectable from
antivirus software after the hiding operation

Test case one: In this test case can be shown Table 2
for cover files and information hidden before and after
hiding operation of all types of multimedia files (text,
image, audio and video),which related with this system,
approve these covers (exe.files) are secure and there are
no limitations on the hidden files size.
 In Table 2 in test case one can be concluding:

• In the hidden files size inside the cover files can be

hide different size inside the exe.files dependent of
size of unused area 2 within exe.file which is equal
20% from the size of exe.file before hiding process

• The attacker can not attack the information hiding,
because can not guess the exe.files size. The
exe.files size does not have constant size, where it
can be different size of the same type of exe.files
like cover file number 4 they have three sizes in
same type of the cover file

Test case two: In this test case shows picture of the
cover files after hiding operation of all types of
multimedia files in Fig. 5-8 (text, image, audio and
video), which related with this system, approve these
cover (exe.files) usage after the hiding operation.

Test case three: In this test case shows picture of cover
files after hiding operation of all types of multimedia

Files in Fig. 9-12 (text, image, audio and video), which
related with this system, approve these covers
(exe.files) undetectable from antivirus software after
the hiding operation.

Fig. 5: Text: After hiding operation inside the (hiding

folder), executable file (cover 1) still working

Fig. 6: Image: After hiding operation inside the (hiding

folder), executable file (cover 2) still working

Table 2: Different size of the cover with different type of the exe.files and different size for the information of each type of multimedia files
Before hide operation After hide operation ((Size of cover after hide operation-size
-- ------------------------ of cover befor hide operation)/size of
Information hidden No. of cover Size of IH/bytes Size of cover/bytes Size of cover/bytes cover before hide operation)*/100%
Text 1 1 805560,4 4,024,802 7,027,807 0,00012
Text 2 2 106496 532,480 532,486 0,00112
Text 3 3 4561212 22,806,060 22,806,068 0,00003
Text 4 4 13766123,2 68,830,616 68,830,619 0,000004
Image 1 1 805560,4 4,024,802 4,027,980 0,002
Image 2 2 106496 532,480 532,520 0,007
Image 3 3 4561212 22,806,060 22,806,140 0,0003
Image 4 4 16241745,6 76,445,080 76,445,150 0,00009
Audio 1 1 805560,4 4,024,802 4,028,502 0,017
Audio 2 2 106496 532,480 532,990 0,095
Audio 3 3 456122 22,806,060 22,806,980 0,004
Audio 4 4 16241745,6 81,208,728 81,208,959 0,0002
Video 1 1 805560,4 4,024,802 4,037,802 0,248
Video 2 2 106496 532,480 534,480 0,375
Video 3 3 4561212 22,806,060 22,819,060 0,057
Video 4 4 15289016 81,208,728 81,229,728 0,025

J. Computer Sci., 5 (11): 890-897, 2009

895

Fig. 7: Video: After hiding operation inside the (hiding

folder), executable file (cover 3) still working

Fig. 8: Audio: After hiding operation inside the (hiding

folder), executable file (cover 4) still working

Fig. 9: Text: Shows that the executable file (cover 1)

inside (hiding folder) immune to anti-virus
program

Fig. 10: Image: Shows that the executable file (cover 2)

file inside (hiding folder) undetectable by anti-
virus program

Fig. 11: Video: Shows that the executable file (cover 3)

inside (hiding folder) immune to anti-virus
program

Fig. 12: Audio: Shows that the executable file (cover 4)

file inside (hiding folder) immune to anti-virus
program

J. Computer Sci., 5 (11): 890-897, 2009

896

Evaluation of the system:

• The size of the hidden message dependent of the

size of unused area 2 within cover files which is
equal 20% from the size of exe.file before hiding
process

• The executable files still working after its use as
cover for embedding data

• The executable file undetectable from Norton
antivirus software after the hiding operation

• The hiding method makes the relation between the
cover and the message dependent the size of
unused area 2 with in exe.file. So when the size of
the cover exe.files upgrade, the secure is very
height because in this case the exe.file have high
size of unused area 2 and when the information
hidden less inside the cover, the cover files in this
case has been more secure.

• From the information which is shown in Table 3
and 4 concludes that:

 The proportion of potential discovery of embedded
data in:

Text→[((((text1+cover1)-cover1)/cover1)
*100%)+((((text2+cover2)-cover2)/cover2)
*100%)+((((text3+cover3)-cover3)/cover3)
*100%)+((((text4+cover4)-cover4)/cover4)*100%)]/4

[(0.00012%)+(0.00112%)+(0.00003%)+(0.000004%)]/
4 = 0.0003185%

Image →[((((image1+cover1)-cover1)/cover1)
*100%)+((((image2+cover2)-cover2)/cover2)
*100%)+((((image3+cover3)-cover3)/cover3)
*100%)+((((image4+cover4)-cover4)/cover4)
*100%)]/4

[(0.002%)+(0.007%)+(0.0003%)+(0.00009%)]/4
= 0.0023475%

Audio →[((((audio1+cover1)-cover1)/cover1)
*100%)+((((audio2+cover2)-cover2)/cover2)
*100%)+((((audio3+cover3)-cover3)/cover3)
*100%)+((((audio4+cover4)-cover4)/cover4)*100%)]/4

[(0.017%)+(0.095%)+(0.004%)+(0.0002%)]/4
= 0.02905%

Video →[((((video1+cover1)-cover1)/cover1)
*100%)+((((video2+cover2)-cover2)/cover2)
*100%)+((((video3+cover3)-cover3)/cover3)
*100%)+((((video4+cover4)-cover4)/cover4)*100%)]/4

[(0.248%)+(0.375%)+(0.057%)+(0.025%)]/4=
0.17625%

Table 3: Inputs and outputs for test case two
Before hiding operation After hiding operation
--- ---------------------------
No. of cover Information hidden Usage the EXE covers
1 Text 1 Fig. 5
2 Image 1 Fig. 6
3 Video 1 Fig. 7
4 Audio 1 Fig. 8

Table 4: Inputs and outputs for test case three
Before hiding operation After hiding operation
-- ---------------------------
No. of cover Information hidden Usage the EXE covers
1 Text 1 Fig. 9
2 Image 1 Fig. 10
3 Video 1 Fig. 11
4 Audio 1 Fig. 12

 The percentage of success achieved by the
innovative system:

Text 100%-0.0003185% = 99.9996815%
Image 100%-0.0023475% = 99.9976525%
Audio 100%-0.02905% = 99.97095%
Video 100%-0.17625% = 99.82375%

CONCLUSION

 The hiding information in exe file is the basic goal
for this study, because most users of any system cannot
alter or modify the content of these files. We get the
following discussions:

• PE files structure is very complex because they

depend on multi headers and addressing and then
insertion of data to PE files without full
understanding of their structure may damage them,
so the choice is to hide the information beyond the
structure of these files

• Most antivirus systems do not allow direct write in
executable file, so the approach of the proposed
system is to prevent the hidden information to
observation of these systems

• One of the important discussion point in
implementation of the proposed system is the
solving of the problems that are related to the size
of cover file, so the hiding method makes the
relation between the cover and the message
dependent of the size of unused area 2 within cover
file files which is equal 20% from the size of
exe.file before hiding process

• The encryption of the message increases the degree
of security of hiding technique which is used in the
proposed system

• The proposed hiding technique is flexible and very
useful in hiding any type of data for files message
(text, image, sound or video)

J. Computer Sci., 5 (11): 890-897, 2009

897

ACKNOWLEDGEMENT

 Our sincere thanks to all researchers who have
contribute to this project. Also we would like to
acknowledge and thanks the researchers in UM for their
support.

REFERENCES

1. Zaidan, A.A., B.B. Zaidan, M.M. Abdulrazzaq,

R.Z. Raji and S.M. Mohammed, 2009.
Implementation stage for high securing cover-file
of hidden data using computation between
cryptography and steganography. Int. Assoc.
Comput. Sci. Inform. Technol., 20, Session 6, p.p
482-489.. http://WWW.IACSIT.ORG and
Www.WordAcademicPress.com

2. El-Khalil, R. and A.D. Keromytis, 2004. Hydan:
Hiding information in program binaries.
Proceedings of the 6th International Conference on
Information and Communications Security, Oct. 27-
29, Springer Berlin, Heidelberg, pp: 187-199.
http://cat.inist.fr/?aModele=afficheN&cpsidt=1633
4236

3. Anckaert, B.B. De Sutter, D. Chanet and K. De
Bosschere, 2005. Steganography for executable
and code transformation signatures. Proceedings of
the 7th Information Security and Cryptology, May
24, Springer Berlin, Heidelberg, pp: 425-439.

 http://www.springerlink.com/content/vbxjdapj9g25
agel/

4. Zaidan, B.B., Zaidan.A.A, F. Othman and A. Rahem,
2009. Novel approach of hidden data in the unused
area 1 within exe files using computation between
cryptography and steganography. Proceeding of the
International Conference on Cryptography, Coding
and Information Security, June 24-26, Academic
and Scientific Research Organizations, Paris,
France, pp: 1-22.
http://www.waset.org/programs/Paris09.pdf

5. Naji, A.W., Zaidan.A.A. Zaidan.B.B. A. Shihab
and O.O. Khalifa, 2009. Novel approach of hidden
data in the unused area 2 within exe file using
computation between cryptography and
steganography. Int. J. Comput. Sci. Network
Secur., 9: 294-300.

 http://paper.ijcsns.org/07_book/200905/20090539.
pdf

6. Muhamadi, I.A.S., Zaidan .M.A., Zaidan A.A and
Zaidan.B.B, 2009. Student record retrieval system
using knowledge sharing. Int. J. Comput. Sci.
Network Secur., 9: 97-106.
http://paper.ijcsns.org/07_book/200906/20090614.
pdf

