Journal of Computer Science 6 (5): 542-547, 2010
ISSN 1549-3636
© 2010 Science Publications

Tree Based Test Case Generation and Cost Calculation Strategy
for Uniform Parametric Pairwise Testing

Mohammad F.J. Klaib, Sangeetha Muthuraman, Norakimhad and Roslina Sidek
School of Computer Systems and Software Enginegering
University Malaysia Pahang, 26300 Gambang, Pahdataysia

Abstract: Problem statement: Although it is very important to test any systentemsively it is
usually too expensive to do so owing to the cost te resources that are involved in it. Software
testing is a very important phase of software dgwelent to ensure that the developed system is
reliable. Some systematic approach for testingsgemtial to test any system and make it acceptable.
Combinatorial software interaction testing is onkicl tests all possible software interactions. This
interaction could be at various levels such asway interaction (pairwise) or three or four or fige

six way interactions. Combinatorial interactiontiteg had been used in several fields. It was regubrt

in literature that pairwise combinatorial interactitesting had identified most of the software t&ul
Approach: In this study we proposed a new strategy for teste generation, a tree generation
strategy for pairwise combinatorial software tegtiwith parameters of equal values. The algorithm
considered one parameter at a time systematicaligeherate the tree until all the parameters were
considered. This strategy used a cost calculatohnique iteratively for each of the leaf nodes to
generate the test suite until all the combinatiorge coveredResults: The experimental data showed
that we had achieved about 88% (or more in somesyas reduction in the number of test cases needed
for a complete pairwise combinatorial software radtion testing.Conclusion: Thus, the strategy
proposed had achieved a significant reduction imimizing the number of test cases that was gerterate

Key words: Combinatorial testing, software testing, pairwissting

INTRODUCTION programmers and testers, software testing stillaias
an art, due to limited understanding of the pritespof

Software testing is a very important phase of thesoftware. The difficulty in software testing stefnsm
software development cycle (Bryat al., 2005; Tsui the complexity of software. Testing is more thastju
and Karam, 2007). A testing criterion is a rule ordebugging. The purpose of testing can be quality
collection of rules that imposes requirements seteof assurance, verification and validation, or relidpil
test cases. Test engineers measure the extenti¢ch wh estimation.
criterion is satisfied in terms of coverage; a test What is Combinatorial Explosion? Combinatorial
achieves 100% coverage if it completely satisfies t Explosion (Grindal, 2007; Zamét al., 2007a; 2007b)
criterion. Coverage is measured in terms of thedescribes the effect of functions that grow venyidby
requirements that are imposed. Partial coverage ias a result of combinatorial considerations. Cagrsidr
defined to be the percent of requirements that arénstance testing the addition functionality of slenp
satisfied. Test requirements are specific things thust calculator. Restricting the input space to onlyifpos
be satisfied or covered. Example: In case of ‘forintegers still yields a large number of possiblst te
statement’ coverage, each statement within théi$a cases, (1+1; 1+2; 1+3; ::;; 1+N; 2+1; 2+2; ::;;N+N)
requirement. In mutation, each mutant is a requérgm where N is the largest integer that the calculaizam
In combinatorial testing the covering array is arepresent. The example stated above highlights the
requirement. combinatorial explosion problem.

Software testing is any activity aimed at evahgti To be more clear on how the problem of
an attribute or capability of a program or systemd a combinatorial explosion could be resource and time
determining that it meets its requirements. AltHoug consuming, consider for instance testing the cuigem
crucial to software quality and widely deployed by dialog in the tools menu of Microsoft Word as shawn

Corresponding Author: Mohammad F.J. Klaib, School of Computer SystemsSuftivare Engineering,
University Malaysia Pahang, 26300 Gambang, Pahdataysia
542

J. Computer <ci., 6 (5): 542-547, 2010

Fig. 1. Even if only the toolbar tab is considerdthire at least one test case. Combinatorial pairwise
are 31 checkboxes to be tested. Therefore therg@are approaches (Grindat al., 2005) to testing are used in
(i.e., 2147483648) combinations of test cases to beeveral fields and have recently gained momentum in
evaluated. If the time required for one test casda the field of software testing through software
evaluated is 5 min, then it would require nearl#2® interaction testing. Pairwise testing provides a
years for a complete test of the toolbar tab alonebystematic approach to identify and isolate faults,
Therefore, it is very clear that combinatorial @gibn since many faults are caused by unexpected 2-way
is a serious issue which has to be considered andteractions among system factors. Empirical rasult
software testing always faces the problem ofshow that 50-97% of the software faults could be
combinatorial explosion. identified by pairwise interaction testing (Klad al.,
Although it is important to test any software 2008; Coheret al., 1997; Lei and Tai, 1998; Daletlal.,
exhaustively, it is not practically possible to go in 1999; Kuhnet al., 2008). This study proposes an
reality owing to the cost and resources (Chaudand efficient tree generation and cost calculationtegy
Zhu, 1992; Klaibet al., 2008; Copeland, 2004) that are for constructing a test suite with minimum numbér o
needed for the tests to be conducted. Therefore, orf€St cases.
good solution is to construct a test suite with an
acceptable number of test cases for any t-wayngpsti MATERIALSAND METHODS
(Burr and Young, 1998; Cohesat al., 1997; 2008;
Zamli et al., 2007c; Leiet al., 2009). There have been The proposed strategy: This strategy proposed
some solutions already proposed (Coleerl., 1994; constructs the tree based on the parameters and the
Cohen, 2004; Lei and Tai, 1998; Shibaal., 2004), values given to it. It considers one parameter thina
however the problem of constructing the minimunt testo construct the tree until all the values of diet
set for t-way testing is NP-complete (Shital., 2004; parameters are considered. To illustrate the cdncep
Tai and Lei, 2002) and the challenges in this figtiti ~ consider a system with parameters and values agnsho
remain. below:
Pairwise testing (Dalakt al., 1999; Kuhn and
Reilly, 2002; Kuhn and Okum, 2006; Kulei al., . Parameter A has values Al and A2
2004; Yan and Zhang, 2008; Bryce and Colbourns parameter B has values B1 and B2

2006) is an approach whereby every combination of pgrameter C has values C1 and C2
valid values of all the parameters should be caéday

Taolkars | Commands | Options |

The algorithm first uses all the values of thestfir
parameter to construct the tree. Then it useshall t
values of the second parameter and then the fhimas,
the tree is constructed iteratively until all thergmeters
are considered. As a result we get all possiblecteses
generated for all the parameters by consideringtsll
values. Figure 2 shows how the tree would be
constructed.

Delete Once the tree construction is over we have all the
test cases generated and the cost calculationegin.b
The cost calculation algorithm calculates the cnfst
each of the leaf nodes or test cases. The costyokaf
node or test case is equal to the number of plaatsit
covers in the covering array. The algorithm first
calculates the maximum cost or maximum number of

Tanlkhars:

Remame. ..
[AutoText

™ Contral Tookox

Reset,.,

Pl f

™ Function Key Display

™ Japanese Greetings pairs that can be covered by any test case fogithen
[Mail Merge = set of parameters and values. Then it starts the
calculation of the cost of each and every leaf niode
Kevhoard. . | Closs | order. Once it reaches a leaf node with the maximum

cost it includes this node or test case into tiseé aite
and also deletes all the pairs that the test case h
Fig. 1: Customize tab of the Microsoft word softerar ~ covered in the covering array.

543

J. Computer <ci., 6 (5): 542-547, 2010

‘ Tree ‘ T ={(vy), (W)...... (vj) / v4, V> and vj are values of
pl and are sequentially connected}
/‘“ “\ If n=1 then stop;
A2

“ {For the remaining parameters}

Al BZ\ . 32\ For parameter;pi =2, 3ndo
Al,B2 A2,Bl Begin
/C1 @ /Cl\cz Cl/c2 c%cz\ For each Test (yv,, ,Vi-1) in T do
‘ ALBICI H AlLBLC2 H ALB2C1 H AlB2C2 ‘ A2B1Cl || A2BLC2 H A2B2C1 H A2B2,C2 ‘ Beg|n
Fig. 2: Test tree Replicate the Test as many times as (the number

of values of p1)
Table 1: Test generation process

Test cases Costs Test suite Add all the replicated nodes sequentially after t

ﬁ'gi’g; g’ _Tl current original Test node and before the other

Al:BZ:Cl 2 _ Test nodes

Al,B2,C2 3 T2

A2,B1,C1 2 - For each value in;jplo

A2,B1,C2 3 T3 Begin

A2,B2,C1 3 T4

A2,B2,C2 0 - o .)

Replace the original with;\and all the replicated

Thus in the first iteration all the test caseduded tests with (y, Vva.......vi1, Vi etc. respectively)

in the test suite are said to have the maximum. ¢bst Where vy is a value of pand each of which is

all the pairs in the covering array are covereah ttiee considered in order

algorithm stops else it goes to the second itanatimw

the maximum cost value (Wmax) is decreased by one End

and the next best test cases i.e. test casesahaiwer End

the next maximum number of pairs are chosen and End

included in the test suite and the correspondirigspa End

covered by these test cases deleted from the omveri

array. Thus the algorithm continues until all therp The tree generation strategy thus provides the
are covered. For the example in Fig. 2 all the ¢ases following advantages:

which are included in the test suite are identifiech

single iteration as shown in Table 1. There are fest ¢ A systematic method whereby all possible test
cases included in the test suite that covers al th cases are generated in order

pairwise interactions. « The above procedure works fine with the
Table 1 explains how the cost calculation is done parameters having any number of values. Therefore
iteratively for Figure 2. This example is an exdeipt all parameters can have different or same values as
where all the test cases needed for pairwise ictiera any real time system to be tested would have
have been included in a single iteration. Howewver, « The procedure appears to generate the full tree by
takes more iteration for other samples. The straseg using all the values of the parameters but at every
work very efficiently in identifying the minimum iteration only a set of leaf nodes are left thus
number of test cases for any given parameters with having a list of leaf nodes (or test cases) wien t
uniform values for pairwise combinatorial testing. procedure ends

The ftree generation strategy for test case The example tree shown in Fig. 2 explains how the

generation: test cases are constructed manually. In realitynag
Strategy tree generation: need only the leaf nodes and all the intermediaties
are not used. Therefore in order to increase the
Begin efficiency of the implementation we have constrdcte
{for the first parameter p1} the same tree as in Fig. 2 using the proposed tree

544

J. Computer <ci., 6 (5): 542-547, 2010

generation algorithm. This proposed algorithmBegin

constructs the tree by minimizing the number ofexd

Minimization of the number of nodes is achieved byGenerate the pairwise Covering array for the given
giving importance only to the leaf nodes at eveags. parameters.

Therefore, at each stage or iteration we lookhat t
leaf nodes of the tree and generate the next leads
by considering all the values of the current patame
to generate the new set of nodes. The new setabf le
nodes from an already existing set is calculatéagua
replication strategy. The existing set of leaf rode
Esoln, new set of leaf nodes be Nsoln and the numbe
of values of the parameter under consideration be r-et T’ be an empty set.
Then:

Create a cost array corresponding to the T list.

Initialize each element in the cost array to irfini
(highest value).

Wmax = N(N-1)/2. // N-is the number of parameters
Nsoln = Esoln * n
While (covering array is not empty) do
Let there be 4 leaf nodes and the next parameter Begin
be considered has 2 values. Then the new list désio
will have 8 new leaf nodes as a result. The alforit For each Test Tjin T do // j =1, 2,....n where ther
considers every leaf node separately and calcuthtes are ntestcasesin T
number of times this particular node needs to beBegin
replicated with the formulae given below:
Mark all the pairs that Tj covers in the covering
The number of values of-ft array

where, p is the 1" parameter under consideration for Cost[Tj] = The number of pairs covered in the
constructing the new set of leaf nodes and i = 1,R- covering array

the number of parameters. In the Fig. 2 that isnsho

above consider the leaf nodes (Al, B1), (Al, B2), If (Cost[Tj] ==Wmax)

(A2, B1) and (A2, B2). To construct the next lewédl Begin

leaf nodes the parameter under consideration is C,

which has values C1 and C2. Therefore, the node (Al T=TUT|

B1) needs to be replicated once. Now we will have

two (Al, B1) nodes to which C1 is added to thetfirs Delete Tj from T and its corresponding cost
and C2 is added to the second and then the regticat from the cost array

node is included in the list of leaf nodes aftee th

original node and before the node (Al, B2). Theesam Delete all the marked pairs from the covering
is done to (A1, B2). It is replicated once and lene array

have two of it (one original and one replicated e)d

Now C1 is added to the first (original node) andi€?2 End

added to the second (replicated node). Thus we have

(A1, B2, C1) and (A1, B2, C2). The same process is Unmark all the pairs marked in the covering array
done for the nodes (A2, B1) and (A2, B2) and as &nd

result we get (A2, B1, C1), (A2, B1, C2) and (AZ,B

Cl), (A2,B2, C2) respectively. If there are more Wmax--;

parameters the same is continued until all theEnd

parameters are considered. Thus, once the listaff | End

nodes is generated we go to the next strategy of

iterative cost calculation to construct the testesu Table 2: Covering array

A with B A with C B with C
Test suite generation by iterative cost calculation Ai’g; ﬁg; Sig;
strategy_: Sj[rategy test suite generation by iterative cosﬁZ:Bl A2.C1 B2.C1
calculation: A2,B2 A2,C2 B2,C2

545

J. Computer <ci., 6 (5): 542-547, 2010

Table 3: Experimental results : non uniform values. These algorithms could also be
Exhaustive No. Reduction extended further and used for higher t-way intéoact

System of test cases TBGCC (%) testin g

S1 8 4 50.00 ’

S2 27 10 62.96

S3 81 9 88.88 CONCLUSION

S4 32 6 81.25 o . .

s5 64 17 73.40 Both the strategies implemented in this studykso

S6 16 6 62.50 well for uniform parametric values. The tree gatien

strategy works well in generating the test treee Th

The above algorithm starts by constructing thelterative cost calculation strategy works well in
covering array as shown in Table 2. Table 2 shdws t achieving a good amount of reduction in the tesg &in
covering array for the example shown in Fig. 2tHa SOme cases more than 88%). Therefore, the above
second step it creates and initializes a cost arra§trategies proposed have generated an efficienbeum
corresponding to the T List. Then the algorithmates ~ Of test cases that covers all combinatorial pagwis
through the list of test cases T to generate thestgite interactions for uniform parametric values.

T’ until all the pairs of the covering array areveced.
At each iteration all the test cases with the maxim REFERENCES

cost (Wmax) for that particular iteration are irddal in Bryce, R. and C.J. Colbourn, 2006. Prioritized

the test suite. Thus the algorithm guarantees ifyerg interaction testing for pairwise coverage with
a minimum set of test cases for parameters withesam seeding and avoids. Inform. Software Technol. J.

number of values. 48: 960-970.

Bryce, R., C.J. Colbourn and M.B. Cohen, 2005. A
RESULTS framework of greedy methods for constructing
interaction tests. Proceeding of the 27th
We have implemented a Tree Based Test Case International Conference on Software Engineering,
Generation and Cost Calculation Tool called TBGCC May 2005, ACM Press, St. Louis, MO., USA,,
that includes the above strategies. We have present pp: 146-155. DOI: 10.1145/1062455.1062495
the result for six system configurations as shown i Burr, K. and W. Young, 1998. Combinatorial test
Table 3. Thus, the strategies proposed works well i techniques: Table-based automation, test
constructing a minimum number of test cases which generation and code coverage. Proceeding of the
covers all pairwise interactions. Table 3 shows the International Conference on Software Testing,
exhaustive number of test cases and the perceofage Analysis and Review, Oct. 1998, San Diego, CA.,
reduction achieved. We observe that as the number o pp: 503-513.
parameters and its values increases there is disag Chaudhuri, D.K.R. and T. Zhu, 1992. A recursive
reduction in the number of test cases included tinéo method for construction of designs. Discrete Math.,
test suite. 106: 399-406.
The six system configurations used are as follows: Cohen, D.M., S.R. Dalal, A. Kajla and G.C. Patton,
1994. The Automatic Efficient Test Generator

S1: 3 2-valued parameters (AETG) system. Proceeding of the 5th

S2: 3 3-valued parameters International Symposium on Software Reliability

S3: 4 3-valued parameters Engineering, Monterey, (SREM'94), CA., USA,,

S4: 5 2-valued parameters pp: 303-309.

S5: 3 4-valued parameters http://aetgweb.argreenhouse.com/papers/1994-issre

S6: 4 2-valued parameters Cohen, D.M., S.R. Dalal, M.L. Fredman and G.C.

Patton, 1997. The AETG system: An approach to

DISCUSSION testing based on combinatorial design. IEEE Trans.

Software Eng., 23: 437-444, DOI:
In this study we have proposed the tree based test 10.1109/32.605761
case generation and iterative cost calculationtegfya Cohen, M.B., 2004. Designing test suites for sofeva

for pairwise testing. Both the strategies propolsade interaction testing. Degree of Doctor of Philosophy
been implemented. Both the algorithms presenteé hav ~ Thesis, Department of Computer Science, The
worked well for 2-way testing with uniform parametr University of Auckland.

values. However the algorithms could be extended fo http://cse.unl.edu/~myra/papers/mbcdiss.pdf
546

J. Computer <ci., 6 (5): 542-547, 2010

Cohen, M.B., C.J. Colbourn and A.C.H. Ling, 2008.Lei, Y. and K.C. Tai, 1998. In-parameter-order: e&stt

Constructing strength three covering arrays with
augmentecnnealing. Discrete Math., 308: 2709-2722.

Copeland, L., 2004. A Practitioner's Guide to Seiftey
Test Design. Artech House, Boston, MA., ISBN:
9781580537919, pp: 294.

generation strategy for pairwise testing. Procagdin
of the 3rd IEEE International Symposium on High-
Assurance Systems Engineering, June 21-21,
Washington DC., USA., pp: 254-261. DOI:
10.1109/HASE.1998.731623

Dalal, S.R., A. Jain, N. Karunanithi, J.M. Leatomda Lei, Y., R. Kacker, D. Kuhn, V. Okun and J. Lawrenc

C.M. Lott et al., 1999. Model based testing in
practice. Proceeding of the International
Conference on Software Engineering, May 1999,
pp: 285-294.
http://citeseerx.ist.psu.edu/viewdoc/download?doi=
10.1.1.41.4894&rep

Grindal, M., J. Offutt and S.F. Andler, 2005.
Combination testing strategies: A survey. Software
Test. Verific. Reliab., 15: 167-200.

Grindal, M., 2007. Handling combinatorial explosion

2009. IPOG/IPOD: Efficient test generation for
multi-way software testing. J. Software Test.
Verific. Reliab., 18: 125-148. DOI: 10.1002/stvr

Shiba, T., T. Tsuchiya and T. Kikuno, 2004. Using

artificial life techniques to generate test casas f
combinatorial testing. Proceeding of the 28th
Annual International Conference on Computer
Software and Applications, Sept. 28-30, IEEE
Computer SocietyWwashington DC., USA., pp: 72-77.

http://portal.acm.org/citation.cfm?id=1025478

software testing. Ph.D. Thesis, Dissertation No.Tai, K.C. and Y. Lei, 2002. A test generation >

1073, Linkoping Studies in Science and
Technology, University of Skdvde and Enea,
Sweden.

http://www.artes.uu.se/publications/Grindal.html
Klaib, M.F.J., K.Z. Zamli, N.A.M. Isa, M.l. Youniand
R. Abdullah, 2008. G2Way-a backtracking strategy

for pairwise testing. IEEE Trans. Software Eng.,
28: 2004, 109-111.

Tsui, F.F. and O. Karam, 2007. Essentials of Safwa

Engineering. 2nd Edn., Jones and Bartlett
Publishers, Massachusetts, USA, ISBN:
9780763785345, pp: 416.

for pairwise test data generation. Proceeding ®f thYan, J. and J. Zhang, 2008. A backtracking seavoh t

15th IEEE Conference on Asia-Pacific Software
Engineering, Dec. 3-5, IEEE Xplore Press, Beijing,

for constructing combinatorial test suites. J. Syst
Software, 81: 1681-1693.

China, pp: 463-470. DOI: 10.1109/APSEC.2008.49Zamli, K.Z.,, M.F.J. Klaib and N.A.M. Isa, 2007a.

Kuhn, D.R. and M.J. Reilly, 2002. An investigatioh
the applicability of design of experiments to
software testing. Proceeding of the 27th
NASA/IEEE Software Engineering Workshop,
Dec. 5-6, IEEE Computer Society, Washington
DC., USA,, pp: 69-80. DOIl:
10.1109/SEW.2002.1199454

Kuhn, D.R. and V. Okum, 2006. Pseudo-exhaustive
testing for software. Proceeding of the 30th Annual
IEEE/NASA Software Engineering Workshop,
Apr. 24-28, IEEE Computer Society, Washington
DC., USA,, 2006, pp:
http://portal.acm.org/citation.cfm?id=1264143

Kuhn, D.R., D.R. Wallace and A.M. Gallo, 2004.
Software fault interactions and implications for
software testing. IEEE Trans. Software Eng.,
30: 418-421.

Kuhn, D.R., Y. Lei and R. Kacker, 2008. Practical
combinatorial testing: beyond pairwise. IT
Profession. J., 10: 19-23.
http://csrc.nist.gov/groups/SNS/acts/itpro-finaf.pd

547

Combinatorial explosion problem in software
testing: Issues and practical remedies. Proceeding
of the 3rd Malaysian Software Engineering
Conference-Striving for High Quality Software,
(SHQS'07), Selangor, Malaysia, pp: 24-28.

Zamli, K.Z., N.A.M. Isa, M.F.J. Klaib, Z.H.C. Somd

C.Z. Zulkifli, 2007b. On combinatorial explosion
problem for software configuration testing.
Proceeding of the International Conference on
Robotics, Vision, Information and Signal
Processingjuly 20-22, Penang, Malaysia, pp: 442-446.

153-158. Zamli, K.Z., N.A.M. Isa, M.F.J. Klaib and S. Norkay

2007c. A tool for automated test data generation
(and execution) based on combinatorial approach.
Int. J. Software Eng. Appli., 1: 19-34.

