
Journal of Computer Science 6 (7): 728-734, 2010 
ISSN 1549-3636 
© 2010 Science Publications 

Corresponding Author: Idawaty Ahmad, Department of Communication Technology and Network,  
 Faculty of Computer Science and Information Technology, University Putra Malaysia, 43400 UPM, 

Serdang, Selangor DE, Malaysia 
728 

 
A Backward Recovery Mechanism in Preemptive Utility Accrual Real  

Time Scheduling Algorithm 
 

1Idawaty Ahmad and 2Muhammad Fauzan Othman 
1Department of Communication Technology and Network, 
Faculty of Computer Science and Information Technology,  

University Putra Malaysia, 43400 UPM, Serdang, Selangor DE, Malaysia 
2Engineering Application and System Support Division, 

Motorola Multimedia Sdn Bhd 3507 Prima Avenue, Jalan Teknokrat 5,  
63000 Cyberjaya, Malaysia 

 
Abstract: Problem statement: This study proposed a robust algorithm named as Backward Recovery 
Preemptive Utility Accrual Scheduling (BRPUAS) algorithm that implements the Backward Recovery 
(BR) mechanism as a fault recovery solution under the existing utility accrual scheduling environment. 
The problem identified in the TUF/UA scheduling domain is that the existing algorithms only considers 
the Abortion Recovery (AR) as their fault recovery solution in which all faulty tasks are simply aborted to 
nullify the erroneous effect. The decision to immediately abort the affected tasks is inefficient because 
aborted tasks produce zero utility causes the system to accrue lower utility. Approach: The proposed 
BRPUAS algorithm enabled the re-execution of the affected tasks rather than abortion to reduce the 
number of aborted task in the existing algorithm known as Abortion Recovery Preemptive Utility Accrual 
Scheduling (ARPUAS) algorithm that employed the AR mechanism. The BRPUAS ensure the correctness 
of the executed tasks in the best effort basis in such a way that the infeasible tasks are aborted and 
produced zero utility, while the feasible tasks are re-executed to produce positive utility and consequently 
maximized the total accrued utility to the system. The performances of these algorithms are measured by 
using discrete event simulation. Results: The proposed BRPUAS algorithm achieved higher accrued 
utility compared to ARPUAS for the entire load range. Conclusion: Simulation results revealed that the 
BR mechanism is more efficient than the existing AR mechanism, producing higher accrued utility ratio 
and less abortion ratio making it more reliable and efficient for adaptive real time application domain.  
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INTRODUCTION 

 
 A real time system is a system where the time at 
which event occurs is important. Real-time scheduling 
is fundamentally concerned with satisfying an 
application time constraints. In adaptive real time 
system an acceptable deadline misses and delays are 
tolerable and do not have great consequences to the 
system. For this type of system, a failure, though never 
desirable, degrades the reliability performance of the 
system. Thus, one has to build a system as resilient to 
fault as possible. Increasing the fault resilience in 
adaptive real-time systems is the focus of this study.  
 The latest scheduling paradigm in adaptive real time 
system environment is known as Time Utility 
Function/Utility Accrual (TUF/UA) scheduling (Wu et al., 

2004). A TUF specifies the utility of completing a task 
as an application function of when the task completes 
as shown in Fig. 1. The urgency of a task is captured as 
a deadline on X-axis and the importance of a task is 
measured by utility in Y-axis. The completion of a task 
within the deadline (i.e., within the start time and 
terminate time) will accrue some positive utility (i.e., 
MaxAU) or zero utility otherwise. 
  The scheduling optimality criteria of TUF/UA are 
based on maximizing the total accrued utility from 
execution of all tasks in the system. These criteria are 
named as Utility Accrual (UA) criteria (Jensen et al., 
1985). A TUF/UA scheduling algorithm that maximizes 
the sum of tasks’ attained utilities will seek to meet all 
task deadlines and naturally tend to favor task that are 
more important from whom higher utility can be accrued. 
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Fig. 1: The step TUF (Wu et al., 2004; Jensen et al., 

1985) 
 
Objective: The scheduling objectives of this research 
are to: 
 
• Maximize the total accrued utility from all 

executed tasks in the system  
• Ensure correctness of the executed tasks on best 

effort basis and achieve the fault free tasks as much 
as possible to increase the reliability of the system  

 
Problem statement: Although the BR mechanism is 
widely integrated in real time scheduling algorithms 
such as EDF and RM (Brzezinski et al., 1995; Sahoo 
and Ekka, 2007), none of the existing TUF/UA 
scheduling algorithms consider the BR mechanism as 
their recovery solution. It is observed that the existing 
TUF/UA scheduling algorithms utilize the AR 
mechanism for their fault recovery mechanism 
(Edward, 2007; Fahmy et al., 2008) where the faulty 
task is aborted to perform recovery when a task 
encounters an error during its execution. The intuition 
to abort the faulty task (without repeating the same 
computation) was to accelerate the recovery time to 
release resources so that the resources can be used by 
another task as soon as possible.  
 However, it is observed that the decision to abort 
the faulty task in AR mechanism is inefficient because 
the aborted tasks produced zero utility thus resulting 
less total utility accrued to the system. Figure 2 
illustrates the inefficiency scenario of the AR 
mechanism. The task characteristics of this scenario are 
depicted in Table 1. A task is generated at time 1.00 
and its termination time (i.e., deadline) is at 1.50. A 
request for a resource occurs at time 1.10 and the 
duration to hold the resource is 0.15 sec indicated by 
the HoldTime parameter. After using the resource for 
0.05 sec, an error occurs at time 1.15. The duration of 
the transient error denoted by TransientPeriod is 0.10 
sec. In the AR mechanism, after the transient error 
period  is  over at time 1.25, the affected task is aborted. 

 
 
Fig. 2: Inefficiency scenario in the AR mechanism 

compared to the BR mechanism  
 
Table 1: Task characteristics 
Task parameters Value 
HoldTime 0.15 sec 
AbortTime 0.08 sec 
TransientPeriod   0.10 sec 
Maximum utility (MaxAU) 9.00 sec 
 
The aborted task executes the resource for 0.08 sec i.e., 
the time taken to release the resource indicated by the 
AbortTime parameter. Since the aborted task will not 
contribute any positive utility, the AR mechanism in 
this scenario accrued zero utility to the system.  
 Thus, it is important to observe that by reducing 
the number of aborted tasks, it is very likely that we 
would accrue higher utility to the system. Figure 2 
illustrates the scenario of BR mechanism where the 
affected task is re-executed instead of being aborted 
after the transient error period is over at time 1.25. 
Since the time to hold the resource i.e., HoldTime is 
0.15 sec, the re-execution of this task completed at time 
1.40 before the deadline and produced 9 accrued utility 
to the system. 
 
Approach: This research considers the BR mechanism 
to reduce the number of aborted tasks in the AR 
mechanism. The AR and BR recovery mechanisms are 
compared and executed under the existing TUF/UA 
scheduling environment as stated below.  
 
Backward Recovery Preemptive Utility Accrual 
Scheduling (BRPUAS) algorithm: This algorithm 
implements the BR mechanism where the task is rolled 
back to its initial state and then proceeds to re-execute 
the affected request within the task. This algorithm 
ensure the correctness of the executed tasks in the best 
effort basis in such a way that the infeasible tasks are 
aborted and produced zero utility, while the feasible tasks 
are re-executed to produce positive utility and 
consequently maximized the total accrued utility to the 
system. 
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 Figure 3 elaborates the BR mechanism in BRPUAS 
algorithm. After an erroneous request is detected in a 
task i.e., Trec, the time taken to re-execute the request 
known also as HoldTime is placed into a feasibility test 
to check whether the request is eligible for re-
execution. A task is feasible if the re-execution of the 
affected request does not exceed the termination time of 
the task. The remaining execution time of task Trec 
before its termination time denoted as ExecTime is 
measured. The calculation of the ExecTime can be done 
by capturing the termination time of task Trec (i.e., 
TerminateTime) and subtracts it with the current 
simulation clock time denoted as sclock. If the value of 
HoldTime is more than the ExecTime, this indicates 
that the task is infeasible and the re-execution of the 
request will exceed termination time which ending up 
the task to be eventually abort later on. In this case, the 
re-execution is omitted and task Tec is aborted. The 
status of resources that are currently held by task Trec 
is changed to ABORT mode and the resources are 
executed according to their AbortTime. 
 If task Trec is feasible indicated by the value of the 
HoldTime that is less than the ExecTime, then the 
affected request is re-executed in NORMAL mode to 
perform the computation once again. The status of the 
resource is changed to BUSY state and task Trec is set 
as the owner of the resource.  
 
Abortion Recovery Preemptive Utility Accrual 
Scheduling (ARPUAS) algorithm: This algorithm 
implements  the   AR  mechanism  where  all  faulty 
task  is  aborted  after  the  transient error period is over. 
 

 
 
Fig. 3: Flow charts of the fault recovery mechanisms 

Figure 3 gives the details the scheduling decision made 
by the AR mechanism in ARPUAS after the erroneous 
period for a request in a task, Trec is over. After an 
erroneous request is detected in a task i.e., Trec, the 
resources that are currently held by task Trec are 
aborted and the resources are executed according to 
their AbortTime. This mechanism is simple because all 
the faulty tasks are simply aborted to enable recovery. 
 

MATERIALS AND METHODS 
 
 We developed a Discrete Event Simulator (DES) to 
verify the performance of our proposed algorithms. The 
rationale of using DES lies in the fact that most of the 
research in TUF/UA scheduling paradigm are based on 
the discrete event simulation tools (Jensen et al., 1985; 
Ravindran et al., 2005; Li et al., 2006). Therefore, in 
order to precisely model the fault recovery algorithms, 
DES written in C language is the best method to 
achieve this objective. Figure 4 shows the entities 
involve in our simulation study. It consists of a stream 
of 1000 tasks, a queue of an unordered task list, the 
scheduler and a set of resources.  
 
Task model: The task model is shown in Fig. 5. The 
average execution time i.e., ExecTime for a task is 
0.50 sec. Each task has an initial time and a termination 
time. Initial time is the earliest time for which the utility 
of a task is defined and termination time is the latest 
time for which the utility is defined. That is, utility is 
defined in the time interval of (StartTime, 
TerminateTime) for each task. Beyond that, the utility 
is undefined.  
   

 
 
Fig. 4: Simulation model 
 

 
 
Fig. 5: Task model 
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 During the lifetime of a task, it may request one or 
more resources. In general, the requested time intervals 
of holding resource maybe overlapped. A task specifies 
the duration to hold the requested resource in HoldTime 
parameter. The duration to hold a resource is randomly 
generated following the normal distribution as depicted 
in Table 2. The scheduler uses the HoldTime 
information at run time to make scheduling decisions. 
 Table 2 summarized the details task settings 
configured for the simulation model. The arrival times 
of tasks into the system (i.e., iat) are random which 
follows exponential distribution. Each task has its 
maximum utility that could possibly accrued by the 
system from the task if it is completed within its 
deadline. We refer this value as MaxAU.  
 If task has not completed its execution, it will then 
be aborted. Abortion of a task usually involves necessary 
cleanup operating by both the system software and the 
exception handlers in the application. We refer to the 
time consumed by this cleanup as AbortTime.  
 
Fault model: The fault model is a set of assumptions 
on the kind of faults that are possible to occur in the 
system. During the execution of a task it may request 
one or more resources. These requests may encounter 
error such as request execution failure, request queuing 
failure, resources error and external triggers that occurs 
during the runtime of a task. It is assumed that these 
transient software faults that occur in a request can be 
effectively recovered by re-execution or abortion of the 
affected request. The fault model defined in this 
research is shown in Fig. 6. Three steps are taken in 
order to induce an error into a request of a task as stated 
below. 

 
Step 1: For the erroneous task i.e., Terror, the 

erroneous request is randomly chosen among 
the entire possibly available request within that 
task  

 
Step 2: For this case, the request and the resource that 

is currently being used by the task denoted as 
rid is freezed for TransienPeriod to model the 
transient default 

 
Step 3: The next task to be in error state i.e., Terror is 

determined randomly following the 
exponential distribution with mean error rate 
denoted by mean_tasks 

 
Resource model: The resource model represents the 
physical and logical resources. Examples of physical 

resource include disks or network interfaces for 
performing disk I/O or network I/O, respectively. An 
example of logical resource is critical sections of source 
codes in real time applications. To model the resources 
the following assumptions are made: 
 
• Resources are reusable and can be shared but have 

mutual exclusion constraints. Thus, only one task 
can be using a resource at any given time 

• Only single instance of a resource is presented in 
the system  

• A resource request from a task can only request a 
single instant of the resource. If multiple resources 
are needed for a task to make progress, the task 
must acquire all resources through a set of 
consecutive resource requests 

 

 
 
Fig. 6: Fault model 
 
Table 2: Simulation parameters 
Parameter Range Description 
iat Exponential (C_AVG/load) Task inter-arrival time 
HoldTime Normal (0.25, 0.25) Duration for holding a 
  resource. 
MaxAU Normal (10, 10) Task maximum utility 
AbortTime Any random number that Duration for cleanup 
 is less than HoldTime time of a task before it  
  can releases the resources. 
Transient 0.10 sec Duration of transient  
period  error of a request 
ExecTime 0.50 sec Average task execution  
  time 
Mean_task 0.1, 0.5 or1.0 Task error rate 
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RESULTS 
 
 The performances of TUF/UA scheduling algorithms 
are measured by the metrics that relies on the application 
specifications. For TUF/UA scheduling domain, the 
Accrued  Utility Ratio (AUR) metric defined in 
(Ravindran et al., 2005) has been used in many algorithms 
(Wu et al., 2004; Ravindran et al., 2005; Li et al., 2006) 
and considered as a standard metric in this domain. AUR 
is defined as the ratio of accrued aggregate utility to the 
maximum possibly attained utility. Figure 7 shows the 
comparison of the fault recovery algorithms i.e., 
BRPUAS and ARPUAS in three different error rates i.e., 
0.1 (lowest), 0.5 (medium) and 1.0 (highest). The value 
of 0.1, 0.5 and 1.0 indicates that almost 10, 50 and 100% 
of the total executed tasks, respectively experienced 
transient fault during their execution. The nature of the 
curves in Fig. 6 clearly indicates that the proposed 
BRPUAS algorithm achieved better performance by 
producing higher accrued utility compared to ARPUAS 
for every error rates. 
 In the highest error rate, BRPUAS accrued almost 
24.6% of the utility compared to ARPUAS that accrued 
almost 1% utility to the system. As the error rate 
decreases i.e., in the medium error rate, BRPUAS 
accrued higher utility i.e., 50.6% and ARPUAS accrued 
38.5% to the system. In the lowest error rate, BRPUAS 
accrued almost 71.6% utility compared to 66.5% 
accrued by ARPUAS. The higher utility accrued in 
BRPUAS is because the BR mechanism eliminates the 
abortion that occurs to erroneous tasks and it re- 
executes the affected tasks in best effort manner that 
possibly produces positive utility to the system. Thus, 
lead to greater accrued utility rather than AR 
mechanism in ARPUAS that abort erroneous tasks 
which definitely produces zero utility to the system. 
Since aborted tasks produce zero utility, consequently 
ARPUAS produces more zero utility tasks that 
ultimately contributed to lower accrued utility 
compared to BRPUAS. 
 In addition, we consider two other metrics to 
precisely examine the effectiveness of our proposed 
algorithms. The Success Ratio (SR) is the ratio of task 
successfully attained positive utility to the total task 
executed in the system. The SR supports the result of 
AUR because it measures the exact number of tasks 
that contributed to AUR.  
 Figure 8 plots the success ratio performances of 
the BRPUAS and ARPUAS algorithms. It highlights 
the improvement of BRPUAS compared to ARPUAS 
in the highest load. In the highest error rate, the 
BRPUAS  achieved  almost 32% compared to 
ARPUAS that acquired only 7% of the successful tasks.   

 
 
Fig. 7: AUR results 
 

 
 
Fig. 8: SR results 
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Fig. 9: ABR results 
 
As the error rate decreases, higher successful tasks are 
recorded in which BRPUAS achieved almost 53% and 
ARPUAS gained 41% of successful tasks ratio. In the 
lowest error rate, the BRPUAS achieved almost 71% 
and ARPUAS acquired 67% of the successful tasks.  
 Figure 8 supports the AUR results shown in Fig. 7 
because it measures the exact number of tasks that has 
successfully contributed to AUR. The curves clearly 
indicates that the proposed BR mechanism in BRPUAS 
achieved better performance by producing higher 
number of tasks that has accrued positive utility to the 
system compared to AR mechanism in ARPUAS. Thus, 
it proves that the reason of BR mechanism acquired 
higher utility compared to the AR mechanism is 
specifically because of the increases on the number of 
tasks that has successfully contributes utility to the 
system that lead to greater accrued utility. 
 Figure 9 plots the Abortion Ratio (ABR) 
performances of the BRPUAS and ARPUAS 
algorithms. The Abortion Ratio (ABR) is defined as the 
ratio of aborted tasks to the total of executed tasks. It is 
observed that the BR mechanism in BRPUAS is able to 
reduce the number of abortion as compared to the AR 
mechanism   in   ARPUAS   for   every   error rates. 
The attempt to re-execute the affected tasks in 
BRPUAS has prevented the tasks from being aborted 

compared to the ARPUAS that simply abort erroneous 
tasks and thus failed to contribute any utility to the 
system. Therefore, lower abortion ratio is recorded for 
the BR mechanism in BRPUAS.  
 

DISCUSSION 
 
 The proposed BRPUAS algorithm achieved the 
best performances with higher accrued utility, success 
ratio and lowest abortion ratio compared to the 
ARPUAS algorithm. In general, our proposed 
algorithms BRPUAS have successfully reduced the 
number of aborted tasks in ARPUAS that ultimately 
contributed to reliable and higher accrued utility to the 
system. 
 

CONCLUSION 
 
 In this study we proposed an efficient TUF/UA 
fault recovery scheduling algorithm called BRPUAS 
that considers task subjected to deadline expressed 
using step TUFs. The proposed BRPUAS algorithm 
implemented the BR recovery mechanism to overcome 
the abortion problem that occurs in the ARPUAS 
algorithm that implemented the AR mechanism. 
Simulation results reveal that BRPUAS outperform the 
ARPUAS with highest accrued utility and lowest 
abortion ratio making it more reliable and efficient in 
real time application domain. 
 A number of extensions to this research can be 
carried out and are given as follows: 
 
• The algorithms can be deployed in network and 

distributed environment. Flow control and routing 
algorithms should be integrated into the research. 
Thus, increasing the feasibility in actual 
implementation of the algorithms 

• The real implementation of BRPUAS on real-time 
POSIX-compliant operating system using the meta-
scheduling framework can also demonstrates the 
effectiveness of this algorithm 
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