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Abstract: Problem statement: This study proposed a robust algorithm named akv@ad Recovery
Preemptive Utility Accrual Scheduling (BRPUAS) aliiom that implements the Backward Recovery
(BR) mechanism as a fault recovery solution unterexisting utility accrual scheduling environment.
The problem identified in the TUF/UA scheduling domis that the existing algorithms only considers
the Abortion Recovery (AR) as their fault recoveojution in which all faulty tasks are simply algakto
nullify the erroneous effect. The decision to imimagely abort the affected tasks is inefficient hesza
aborted tasks produce zero utility causes the mysteaccrue lower utilityApproach: The proposed
BRPUAS algorithm enabled the re-execution of thlecadd tasks rather than abortion to reduce the
number of aborted task in the existing algorithrokn as Abortion Recovery Preemptive Utility Accrual
Scheduling (ARPUAS) algorithm that employed the ®Bchanism. The BRPUAS ensure the correctness
of the executed tasks in the best effort basisuth sa way that the infeasible tasks are aborted and
produced zero utility, while the feasible tasks r@executed to produce positive utility and consedy
maximized the total accrued utility to the systdine performances of these algorithms are measyred b
using discrete event simulatioResults: The proposed BRPUAS algorithm achieved higher usctr
utility compared to ARPUAS for the entire load ranGonclusion: Simulation results revealed that the
BR mechanism is more efficient than the existing ®Bchanism, producing higher accrued utility ratio
and less abortion ratio making it more reliable effidient for adaptive real time application domai
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INTRODUCTION 2004). A TUF specifies the utility of completingask
as an application function of when the task congslet

A real time system is a system where the time aas shown in Fig. 1. The urgency of a task is cagtas
which event occurs is important. Real-time scheduli a deadline on X-axis and the importance of a task i
is fundamentally concerned with satisfying anmeasured by utility in Y-axis. The completion ofagk
application time constraints. In adaptive real timewithin the deadline (i.e., within the start timedan
system an acceptable deadline misses and delays asFminate time) will accrue some positive utilitiye(,
tolerable and do not have great consequences to tihdaxAU) or zero utility otherwise.
system. For this type of system, a failure, thoogher The scheduling optimality criteria of TUF/UA are
desirable, degrades the reliability performancethef based on maximizing the total accrued utility from
system. Thus, one has to build a system as rdsitien execution of all tasks in the system. These caitare
fault as possible. Increasing the fault resilieine named as Utility Accrual (UA) criteria (Jensenhal.,
adaptive real-time systems is the focus of thidytu 1985). A TUF/UA scheduling algorithm that maximizes

The latest scheduling paradigm in adaptive reati the sum of tasks’ attained utilities will seek teeh all
system environment is known as Time Ultility task deadlines and naturally tend to favor task dine
Function/Utility Accrual (TUF/UA) schedulingVu et al., more important from whom higher utility can be aat.
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Fig. 1: The step TUF (Wat al., 2004; Jensent al.,
1985) Fig. 2: Inefficiency scenario in the AR mechanism
compared to the BR mechanism

Objective: The scheduling objectives of this research o
Table 1: Task characteristics

are to:
Task parameters Value
. - HoldTime 0.15 sec
» Maximize the total accrued utility from all aportTime 0.08 sec
executed tasks in the system TransientPeriod 0.10 sec
« Ensure correctness of the executed tasks on be¥gximum utility (MaxAU) 9.00 sec

effort basis and achieve the fault free tasks ashmu

as possible to increase the reliability of the eyst The aborted task executes the resource for 0.08esec

the time taken to release the resource indicatethéy
AbortTime parameter. Since the aborted task will no
contribute any positive utility, the AR mechanism i
this scenario accrued zero utility to the system.

Problem statement: Although the BR mechanism is
widely integrated in real time scheduling algorithm

such as EDF and RM (Brzezinsiti al., 1995; Sahoo Thus, it is important to observe that by reducing

and Ekka, 2007), none of the existing TUF/UA o .
scheduling algorithms consider the BR mechanism atshe number of aborted tasks, it is very likely tha

their recovery solution. It is observed that thésgmxg ;,I\Ilglsjtl:jat:gcmg Qéger:]:igtl(l)';thg tr::cﬁgiim. V';ggel:;e tﬁe
TUF/UA scheduling algorithms utilize the AR

) . . affected task is re-executed instead of being abort
mechanism for their fault recovery mechanism

] after the transient error period is over at tim@51.
(Edward, 2007; Fahmegt al., 2008) where the faulty Since the time to hold the resource i.e., HoldTime

task is aborted to perform recovery when a tas'f).lS sec, the re-execution of this task completeiiree

encounters an error during Its execution. The intui 1.40 before the deadline and produced 9 accruéty uti
to abort the faulty task (without repeating the sam
ct>0 the system.

computation) was to accelerate the recovery time t
release resources so that the resources can bebysedapproach: This research considers the BR mechanism
another task as soon as possible. to reduce the number of aborted tasks in the AR

However, it is observed that the decision to aborinechanism. The AR and BR recovery mechanisms are
the faulty task in AR mechanism is inefficient besa  compared and executed under the existing TUF/UA

the aborted tasks produced zero utility thus regult scheduling environment as stated below.
less total utility accrued to the system. Figure 2

illustrates the inefficiency scenario of the AR Backward Recovery Preemptive Utility Accrual
mechanism. The task characteristics of this scermag  Scheduling (BRPUAS) algorithm: This algorithm
depicted in Table 1. A task is generated at tin@ 1. implements the BR mechanism where the task isdolle
and its termination time (i.e., deadline) is at0l.3  back to its initial state and then proceeds toxecete
request for a resource occurs at time 1.10 and théhe affected request within the task. This algamith
duration to hold the resource is 0.15 sec indicdted ensure the correctness of the executed tasks ibesie
the HoldTime parameter. After using the resourae foeffort basis in such a way that the infeasible saaie
0.05 sec, an error occurs at time 1.15. The duraifo aborted and produced zero utility, while the felasiasks
the transient error denoted by TransientPeriod. 1€ 0 are re-executed to produce positive utility and
sec. In the AR mechanism, after the transient errogonsequently maximized the total accrued utilitythe
period is over at time 1.25, the affected taskbierted.  system.
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Figure 3 elaborates the BR mechanism in BRPUAS-igure 3 gives the details the scheduling decisiaale
algorithm. After an erroneous request is detected i by the AR mechanism in ARPUAS after the erroneous
task i.e., Trecthe time taken to re-execute the requestperiod for a request in a task, Trec is over. Afer
known also as HoldTimis placed into a feasibility test erroneous request is detected in a task i.e., Thec,
to check whether the request is eligible for re-resources that are currently held by task Trec are
execution. A task is feasible if the re-executidrtree  aborted and the resources are executed according to
affected request does not exceed the terminatiom ¢f  their AbortTime. This mechanism is simple becauke a
the task. The remaining execution time of task Tredhe faulty tasks are simply aborted to enable regov
before its termination time denoted as ExecTime is
measured. The calculation of the ExecTime can Ine do MATERIALSAND METHODS
by capturing the termination time of task Trec.(i.e
TerminateTime) and subtracts it with the current
simulation clock time denoted as sclock. If theueabf
HoldTime is more than the ExecTime, this indicates

that the t"?‘Sk is infeasibl_e af_]d the re-execution_hef the discrete event simulation tools (Jeneeal., 1985;
request will exceed termination time which ending u Ravindranet al., 2005 Liet al., 2006). Therefore, in

the task to be evenfcua(ljlly abdort Ialie[ron. In t}’gsec :;e_l_horder to precisely model the fault recovery aldoris,
re-execution is omitted and task Tec Is aborte DES written in C language is the best method to

status of resources that are currently held by Task

is changed to ABORT mode and the resources ar

executed accordmg to _thel( At_)ortTlme. of 1000 tasks, a queue of an unordered task hst, t
If task Trec is feasible indicated by the valudhaf scheduler and a set of resources.

HoldTime that is less than the ExecTime, then the

affected request is re-executed in NORMAL mode toTask model: The task model is shown in Fig. 5. The

perform the computation once again. The statuhef t average execution time i.e., ExecTime for a task is

resource is changed to BUSY state and task Treetis 0.50 sec. Each task has an initial time and a tetian

as the owner of the resource. time. Initial time is the earliest time for whichet utility

. ) . of a task is defined and termination time is thiedt
Abortion Recovery Preemptive Utility Accrual — ime for which the utility is defined. That is, ity is

Scheduling (ARPUAS) algorithm: This algorithm defined in the time interval of (StartTime,

|mple_ments the AR mecham_sm where __aII faUItyTerminateTime) for each task. Beyond that, thetwytil
task is aborted after the transient errorqukis over. is undefined

Resources

R1

We developed a Discrete Event Simulator (DES) to
verify the performance of our proposed algorithiiise
rationale of using DES lies in the fact that mofsthe
research in TUF/UA scheduling paradigm are based on

achieve this objective. Figure 4 shows the entities
fvolve in our simulation study. It consists of teeam

[ Arrival of Fault Recovery in arequest from task Trec for resource R ]

ARPUAS \]/
4[ Fault Recovery Algorithms { BRPUAS or ARPUAS) ]

\; BRPUAS

Unordered tasklist (utlist)

Task5 || Task3 J Task2
:R2 :R1 ‘R1

, R2

" R3

Calculate the remaining execution time of task Trec
(Trec. ExecTime = Trec. TerminateTime - sclock)

1

[ Capturethe initial HoldTime of the affected request in task Trec }

Task Trecis feasible?
[HoldTime < Trec.ExecTime)

Yes
[ Re-executes the affected request in NORMAL mode ]
v

{ Change thestatus ofresource R to be in BUSY stateand

R4

Fig. 4: Simulation model

Average execution time: C_Avg = 0.5 sec

< >

the owner of resource Ris Trec

J StartTime TerminateTime

Holdtime (nested)

Trecin ABORT mode for their AbortTime

[ Executethe resources thatare currently held by ]

Request Release Request Request Release Release
@ RI R1L R3S R3 R3 RS
Time

Fig. 3: Flow charts of the fault recovery mecharism  Fig. 5: Task model
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resource include disks or network interfaces for
performing disk I/O or network 1/O, respectivelynA
example of logical resource is critical sectionsafirce
codes in real time applications. To model the resesl

During the lifetime of a task, it may request ame
more resources. In general, the requested timevaite
of holding resource maybe overlapped. A task sjgcif
the duration to hold the requested resource in Hoid

parameter. The duration to hold a resource is nahgdo
generated following the normal distribution as dégd
in Table 2. The scheduler uses the HoldTimee
information at run time to make scheduling decision

Table 2 summarized the details task settings
configured for the simulation model. The arrivahéls  «
of tasks into the system (i.e., iat) are randomctvhi
follows exponential distribution. Each task has its.
maximum utility that could possibly accrued by the
system from the task if it is completed within its
deadline. We refer this value as MaxAU.

If task has not completed its execution, it whleh
be aborted. Abortion of a task usually involvesassary
cleanup operating by both the system software bad t
exception handlers in the application. We referthte
time consumed by this cleanup as AbortTime.

Fault model: The fault model is a set of assumptions
on the kind of faults that are possible to occuitha
system. During the execution of a task it may retjue
one or more resources. These requests may encountt
error such as request execution failure, requestiqg
failure, resources error and external triggers titaurs
during the runtime of a task. It is assumed thateh
transient software faults that occur in a request loe
effectively recovered by re-execution or abortidrihe
affected request. The fault model defined in this
research is shown in Fig. 6. Three steps are taken
order to induce an error into a request of a tasttated
below.

Step 1: For the erroneous task i.e., Terror, the
erroneous request is randomly chosen among
the entire possibly available request within that
task

|

the following assumptions are made:

Resources are reusable and can be shared but have
mutual exclusion constraints. Thus, only one task
can be using a resource at any given time

Only single instance of a resource is presented in
the system

A resource request from a task can only request a
single instant of the resource. If multiple res@src

are needed for a task to make progress, the task
must acquire all resources through a set of
consecutive resource requests

‘ Arrival of an error for task Terror ‘

Randomly assignthe erroneousrequest intask Terror ‘

Suspendthe execution of the erroneous request for
TransientPeriod of time

Assign the nexttaskto bein error
Terrar = Terror + Exponential (mean_tasks)

([ stop |

Fig. 6: Fault model

Step 2:

For this case, the request and the resource that

is currently being used by the task denoted adable 2: Simulation parameters

Range Description

rid is freezed for TransienPeriod to model theParameter
iat

transient default

Exponential (C_AVG/load) Task inter-arrival #m

HoldTime Normal (0.25, 0.25) Duration for holding a
resource.
Step 3: The next task to be in error state i.e., Terror igaxAU  Normal (10, 10) Task maximum utility
determined randoml followin the AbortTime Any random number that Duration for clepn
y 9 is less than HoldTime time of a task before it

exponential distribution with mean error rate

can releases the resources.

denoted by mean_tasks Transient  0.10 sec Duration of transient
period error of a request
ExecTime 0.50 sec Average task execution

Resource model: The resource model represents the

physical and logical resources. Examples of physicaMean_task 0.1,0.5 orl.0

time
Task error rate
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RESULTS

The performances of TUF/UA scheduling algorithms
are measured by the metrics that relies on thecafiph
specifications. For TUF/UA scheduling domain, the
Accrued Utility Ratio (AUR) metric defined in
(Ravindraret al., 2005) has been used in many algorithms
(Wu et al., 2004;Ravindranet al., 2005; Liet al., 2006)
and considered as a standard metric in this dorA&iR
is defined as the ratio of accrued aggregateyutiitthe
maximum possibly attained utility. Figure 7 shows t
comparison of the fault recovery algorithms i.e.,
BRPUAS and ARPUAS in three different error rates i.
0.1 (lowest), 0.5 (medium) and 1.0 (highest). Thtue
of 0.1, 0.5 and 1.0 indicates that almost 10, 50100%
of the total executed tasks, respectively expeeeénc
transient fault during their execution. The natafghe
curves in Fig. 6 clearly indicates that the propose
BRPUAS algorithm achieved better performance by
producing higher accrued utility compared to ARPUAS
for every error rates.

In the highest error rate, BRPUAS accrued almost
24.6% of the utility compared to ARPUAS that acctue
almost 1% utility to the system. As the error rate
decreases i.e., in the medium error rate, BRPUAS

]
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accrued higher utility i.e., 50.6% and ARPUAS aedu Fig. 7: AUR results

38.5% to the system. In the lowest error rate, BRBU
accrued almost 71.6% utility compared to 66.5%
accrued by ARPUAS. The higher utility accrued in
BRPUAS is because the BR mechanism eliminates th
abortion that occurs to erroneous tasks and it re
executes the affected tasks in best effort manimet t
possibly produces positive utility to the systenmus,
lead to greater accrued utility rather than AR
mechanism in ARPUAS that abort erroneous task:
which definitely produces zero utility to the syste
Since aborted tasks produce zero utility, conseityien

100

S0

SR (%)

ARPUAS produces more zero utility tasks that= 40 |

ultimately contributed to lower accrued utility W----- Wi B e eeee oo -

compared to BRPUAS. 30 '
In addition, we consider two other metrics to ., |

precisely examine the effectiveness of our propose

algorithms. The Success Ratio (SR) is the ratitask 0 == ———— e pe—!

successfully attained positive utility to the totakk

executed in the system. The SR supports the reéult " ow  DE o8 " 12 14

AUR because it measures the exact number of tas} Average load

that C.OntrlbUted to AUR. . — B BRPUAS: Emor = 0.1 8- ARPUAS: Emor=10.1
Figure 8 plots the success ratio performances ¢

the BRPUAS and ARPUAS algorithms. It highlights —&— BRPUAS: Emor = 0.5 —5— ARPUAS: Emor = 0.3

the improvement of BRPUAS compared to ARPUAS B - BRPUAS: Error — 1 0 — O ARPUAS: Error = 0.1

in the highest load. In the highest error rate, the H —

BRPUAS  achieved almost 32% compared to

ARPUAS that acquired only 7% of the successfuldask Fig. 8: SR results
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100 compared to the ARPUAS that simply abort erroneous
PO ettt tasks and thus failed to contribute any utility tie
system. Therefore, lower abortion ratio is recorésd
g0 | : the BR mechanism in BRPUAS.
70 | | DISCUSSION
L P |

The proposed BRPUAS algorithm achieved the
best performances with higher accrued utility, sssc
ratio and lowest abortion ratio compared to the
ARPUAS algorithm. In general, our proposed
algorithms BRPUAS have successfully reduced the
number of aborted tasks in ARPUAS that ultimately

ABR (o)
=
o
n\

30 b
g =T i contributed to reliable and higher accrued utititythe
0 T ey system.
= __.--D'” SN — -
wili S i CONCLUSION
0 : : : ; : : In this study we proposed an efficient TUF/UA
0.2 04 0.6 08 1 12 14

fault recovery scheduling algorithm called BRPUAS
that considers task subjected to deadline expressed
using step TUFs. The proposed BRPUAS algorithm
implemented the BR recovery mechanism to overcome
the abortion problem that occurs in the ARPUAS
algorithm that implemented the AR mechanism.
Simulation results reveal that BRPUAS outperform th
ARPUAS with highest accrued utility and lowest
abortion ratio making it more reliable and effidien

As the error rate decreases, higher successfu$ @msk real time application domain.

recorded in which BRPUAS achieved almost 53% and A number of extensions to this research can be
ARPUAS gained 41% of successful tasks ratio. In thecarried out and are given as follows:

lowest error rate, the BRPUAS achieved almost 71%

Average load

— B BRPUAS: Emor=0.1 -G ARPUAS: Eror=10.1

—8— BRPUAS: Emor=0.3 —8— ARPUAS: Enor =103

--m- BRPUAS: Error = 1.0 — 0 ARPUAS: Emor=10

Fig. 9: ABR results

and ARPUAS acquired 67% of the successful tasks. *

Figure 8 supports the AUR results shown in Fig. 7
because it measures the exact number of task$alsat
successfully contributed to AUR. The curves clearly
indicates that the proposed BR mechanism in BRPUAS
achieved better performance by producing higher
number of tasks that has accrued positive utitityhie
system compared to AR mechanism in ARPUAS. Thus,
it proves that the reason of BR mechanism acquired
higher utility compared to the AR mechanism is
specifically because of the increases on the nuraber
tasks that has successfully contributes utility the
system that lead to greater accrued utility.

Figure 9 plots the Abortion Ratio (ABR)
performances of the BRPUAS and ARPUAS
algorithms. The Abortion Ratio (ABR) is definedtas
ratio of aborted tasks to the total of executeéidak is
observed that the BR mechanism in BRPUAS is able to
reduce the number of abortion as compared to the AR
mechanism in ARPUAS for every error rates
The attempt to re-execute the affected tasks in
BRPUAS has prevented the tasks from being aborted
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The algorithms can be deployed in network and
distributed environment. Flow control and routing
algorithms should be integrated into the research.
Thus, increasing the feasibility in actual
implementation of the algorithms

The real implementation of BRPUAS on real-time
POSIX-compliant operating system using the meta-
scheduling framework can also demonstrates the
effectiveness of this algorithm
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