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Abstract: Problem statement: Dealing with arbitrary failures effectively, while reaching agreement, 
remains a major operational challenge in distributed transactions. In the contemporary literature, standard 
protocols such as Byzantine Fault Tolerant Distributed Commit and Practical Byzantine Fault Tolerance 
handles the problem to a greater extent. However, the limitation with these protocols is that they incur 
increased message overhead as well as large latency. Approach: To improve the failure resiliency with 
minimum execution overhead, we propose two new protocols based on proactive view change and reactive 
view change. Also, both approaches have been analyzed and compared. Results: Our dynamic analysis 
reflects that, in a faulty scenario, the proactive approach is computationally more efficient with reduced 
latency as compared to reactive one. Conclusion/Recommendations: Moreover, unlike PBFT and 
BFTDC, our agreement protocol runs in two phases, which leads to reduced message overhead and total 
execution time.                 
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INTRODUCTION 

 
 A distributed system is a collection of 
independent computers, which are capable of 
collaborating on a task (Swaroop and Singh, 2007). 
Distributed Computing Systems (DCS) provide an 
efficient way to achieve fault-tolerance and share 
system resources such as processing elements, 
memory modules, data files, and so on. A successful 
execution of a distributed program usually requires 
one or more of the resources that reside on multiple 
hosts at different geographic sites of the DCS (Xing 
and Shrestha, 2010). It is possible that some faults of 
hosts or communication links may not be adequately 
detected. This can be categorized under Byzantine 
i.e., arbitrary faults.  
 Transaction processing is a basic application of 
distributed computing. Like other applications, fault 
tolerance is a major concern in transaction processing 
also. Moreover, the transaction handling protocols 
should maintain atomicity, i.e., either all operations 
of the transaction commit, or none of the operations 
is carried out, i.e. the transaction aborts. The standard 
commit protocol for distributed transaction is two-
phase commit protocol, popularly referred as 2PC 
(Silberschatz et al., 1991), which study correctly in 
presence of benign faults only. The present study 
aims at designing an efficient agreement algorithm 
that successfully handles Byzantine faults (El Emary 
and Al Rabia, 2005). In addition, it significantly 
reduces the time taken to complete the transaction. 
Two protocols, one based on proactive and the other 

on reactive approach, have been presented and 
analyzed. Both the protocols achieve increased 
system availability and enhanced throughput.     
 Traditional Byzantine fault tolerant protocols 
such as BFTDC (Zhao, 2007), PBFT (Castro and 
Liskov, 2002) and Zyzzyva (Kotla et al., 2007) deal 
with failures in a reactive manner, i.e., they rely on 
the specification of the faults to initiate view change. 
In a particular view, one of the replicas is chosen as 
primary and other replicas study as backups. In the 
middle of agreement, if time out occurs for current 
view because of delay in message propagation or the 
primary is found faulty then view change occurs. The 
proactive approach (Saini and Singh, 2010), on 
contrary, is designed to minimize the transaction 
discontinuity and latency while ensuring stability as 
well as availability of replicas through failure 
notifications in advance. Failures may be caused by 
power exhaustion as well as due to malicious security 
attacks (Sundararajan and Shanmugam, 2010) like 
message replication, passing wrong information, 
fluctuating status of replicas etc. The proactive 
protocols maintain the state information in advance 
while, on contrary, the reactive one reduces the 
impact of frequent failures whenever the fault in the 
system is notified by the active participating replicas 
in the system (Vijayaragvan et al., 2009).   
 Towards this goal, we build a system model to 
analyze the failure resiliency of our protocol under 
both reactive and proactive approaches.  
 
Motivation: In most of the contemporary study, the 
protocol replaces the replica from the system when it 
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is diagnosed as faulty. This leads to increased 
message overhead for the overall execution of the 
protocol. Although, the protocols produce desired 
result, they incur latency in order to initiate the view 
change mechanism which results in short-lived (i.e., 
transient) halts during the transaction processing. We 
have attempted to devise a technique which is able to 
detect, in advance, the tentative fault in the system.  
The protocol fulfills all the requirements that are 
agreement, validity, and termination. We use a 
Transaction Manager, which itself is assumed to be 
trusted and fault free.  
  
Contribution of paper: As the large scale 
distributed computing systems are more prone to 
failures, our protocol runs agreement on every 
request without involving the clients. It makes the 
protocol faster in the presence of increased number of 
faults and makes it more useful for large networks.  
 Agreement-based protocols, such as BFTDC 
(Zhao, 2007), run a three phase agreement protocol 
among replicas before it executes a request. 
However, in our proposed system model, the 
agreement process finishes in two phases, namely 
ready-to-commit and set-commit. Thus, the protocol 
has reduced message overhead and it broadcasts the 
right decision to all clients. The protocol has been 
shown to be computationally more efficient.  
   
System model: We assume client/server architecture 
between the coordinator replicas and the participants. 
The protocol is started for a transaction when a 
commit/abort request is received from the initiator. 
To ensure safety and liveness properties, certain 
synchrony has been assumed among the replicas. As 
Byzantine faults are considered, only at the 
coordinator site, participants are not replicated. There 
are 3f +1 coordinator replicas, among which at most f 
can be faulty during a transaction. We assume a 
Transaction Manager TM, which itself is trusted and 
possesses the power to diagnose and replace the 
faulty coordinator as well as the faulty replicas. Each 
coordinator replica is assigned a unique id i, where i 
varies from 0 to 3f. The id is required to identify the 
primary in a particular view and also for verification 
of the replica during message transmission. Fig. 1 
illustrates the schematic view change architecture 
where the replica labeled P is primary and replicas 
labeled R are backups. The rounded-corner rectangle 
represents the semantic view of Transaction 
Manager, TM.    
The agreement for initial transaction request starts 
from view 0. After the first phase (prepare), the 
coordinator and replicas execute the agreement 
protocol.   Subsequently  they   send  their decision to  

 
 
Fig. 1: The schematic view change architecture 
 
coordinator replica and enter into the second phase 
(commit). Our view change mechanism is run by the 
Transaction Manager under both, reactive and 
proactive, approaches. Thus, agreement and view 
change protocols run in the interleaved manner. 
 
Problem definition: Consider a protocol wherein a 
primary replica, say P, is activated for a particular 
transaction request by receiving a commit/abort 
message from among the population of clients. The 
message is propagated to rest 3f replicas for their 
proposed decision. Now, the agreement protocol 
among the replicas is run. Three basic properties that 
an agreement protocol must satisfy are: 
 
Agreement: Any two non-faulty replicas that decide 
on a value (commit/abort) for a particular id, i, must 
decide on the same value. More specifically, a faulty 
replica, if any, is computationally infeasible to alter 
the decision of two non-faulty replicas.  
 
Validity: If all non-faulty replicas have been 
activated on a given id, i, with the same initial value, 
then all non-faulty replicas that decide must decide 
on this value. 
 
Termination: All non-faulty replicas eventually 
decide. 
 At the end of agreement protocol, all the replicas 
send their decision to the clients. This starts the 
commit phase. A client waits for f+1 matching 
messages before taking commit decision on 
transaction. After receiving the required number of 
matching replies, the client commits the transaction. 
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MATERIALS AND METHODS 
 
The proactive approach: In this approach, in a 
particular view, one of the replicas is chosen as 
primary and other replicas study as backups. During 
the initial phase of registration, all replicas register 
themselves to the Transaction Manager, TM with 
their unique id’s. Following this, the TM assigns the 
responsibility of the coordinator to the lowest id 
replica and designates it as primary, P. The current 
view message that contains the current view number 
v, primary replica P and transaction id i, is then 
broadcast to each participating replica. Finally, if 3f 
+1 replicas respond with an acknowledgement of 
current view, the TM sends a begin-transaction 
message to primary P in order to start the transaction 
processing.  
 The proactive approach depends mainly on two 
entities, namely ping_time and status_flag. The 
ping_time has been used to implement, essentially, a 
time out mechanism. It is an additional message that 
is attached only in the message field of the primary 
(coordinator) replica. Now, the coordinator replica is 
bound to declare its status to the TM within 
ping_time. It works as a failure detector in order to 
detect crash failure with the required level of 
accuracy. Although, for byzantine faulty replica, the 
failure detector has to know the semantic of the 
protocol as it may send some spurious messages to 
other replicas. However, the ping_time corresponds 
to failure detector that helps to ensure completeness 
in the protocol rather than accuracy. This would help 
to detect if primary P would be able to successfully 
participate in further transaction processing.   
 Each of the backup replicas has a special state 
variable status_flag, which represents the status of 
the replica. If the replica is non-faulty then it would 
set its status_flag as alive. However, any other value 
assumed by status_flag is considered to be don’t care 
value. Initially, all replicas’ status_flag value has 
been assumed to be alive. After the completion of 
each transaction round, the backup replicas inform 
their status to the TM. The transaction proceeds 
further, only, if the status of backup replica is alive; 
otherwise, it is suspected as a faulty. A call for new 
view change is initiated and the faulty replica is 
removed at an early stage. Otherwise, the faulty 
replica would have been detected after executing 
some rounds. The pseudo code for view change 
approach is shown in the following Fig. 2.  
 To this end, both of the above entities play key 
role in detecting proactively, in a transaction 
processing system.  

 

 
 
Fig. 2: Proactive View Change Approach 

 
The reactive approach: In this approach, a faulty 
replica is treated only when it is identified and 
informed using time out mechanism. In a sense, this 
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approach restricts the faulty replica to deviate from the 
specified behavior as any message, further, passed by 
faulty replica is not accepted by other nodes. 
 The reactive approach works as follows. 
Initially, all participating replicas register themselves 
to the Transaction Manager, TM with their id’s. 
Afterwards, one of the replicas, the replica with 
lowest id, is selected to serve as the primary, say P. 
The current view is then broadcasted to everyone 
involved in the transaction processing. The message 
format of current view contains the current view 
number v, primary P, transaction id i, and with a 
predefined timeout T to run the protocol. If TM 
receives the acknowledgement, in response to the 
current view message, from 3f +1 replicas, it allows 
primary P to begin transaction processing. While 
running agreement, if timeout occurs for current view 
because of delay in message propagation or the 
primary is found faulty then view change occurs. If f 
+ 1 replicas inform to TM that the view change is due 
to fault in primary then the TM decides the new 
timeout to be T (i.e., timeout for previous view), 2T 
otherwise. Thus, it keeps same timeout for each view 
change in case of primary being suspected as faulty. 
Now, the transaction proceeds to reach an atomic 
decision commit or abort. For reactive view change, 
the pseudo code is given in the Fig. 3. 
 Both of the view change approaches, proactive 
and reactive, are designed to minimize the 
discontinuity in the transaction processing. The 
comparative analysis of the performance of both 
mechanisms brings out the potential benefits of 
proactive over reactive in terms of latency, message 
overhead, and throughput.  
  
The optimized agreement: The system handles one 
transaction request at a time. The initiator is 
responsible for initializing a transaction. During the 
prepare   phase,   the   primary sends a prepare 
request to every participant in the transaction. The 
prepare request is piggybacked with a prepare 
certificate, which contains the commit request sent by 
the initiator. 
 After the prepare phase, the replicas engage in 
the agreement round for the transaction. The 
agreement protocol works in two phases namely, 
ready-to-vote and set-commit. During the first phase, 
the primary p sends an awake-to-vote message and its 
decision to all other replicas. The message has the 
format <awake-to-vote, v, t, o, C, Ati>, where v is the 
current view number, t is the transaction id, o is the 
proposed transaction outcome (i.e., commit or abort), 
C is the decision certificate and Ati is the predefined  

 

 
 
Fig. 3: Reactive View Change Approach 

 
upper bound in order to reach agreement. There is 
one decision certificate corresponding to each 
participant. The transaction id is included in each 
registration and vote record so that the final outcome 
given by correct participants is atomic. A backup 
replica suspects, the primary P to be faulty, on 
following basis: if awake-to-vote message does not 
fall into the same view number v, and the same 
transaction id t that has not been executed earlier. If 
the primary replica fails the above verification then 
the backup replica initiates a view change 
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immediately; otherwise, it accepts the awake-to-vote 
message. It then logs the accepted message and 
multicasts act-commit message with the same 
decision o, which is in the awake-to-vote message. 
This initiates the set-commit phase. The act-commit 
message has the format <act-commit, v, t, o, D>, 
where D is the digest of the decision certificate C and 
other contents are same as awake-to-vote message.  A 
coordinator replica i.e., primary P accepts act-commit 
message provided the backup replica is in the current 
view v and the current transaction is t. Also, the 
digest value on both sides must be same. The 
following Fig. 4 represents the agreement algorithm. 
 If a replica has collected 2f+1 matching awake-
to-vote messages from different replicas (including 
the replica’s own, if it is backup), it executes act-
commit on transaction t. This marks the end of set-
commit phase and also the agreement protocol. 
During agreement, if any conflict occurs and a non-
faulty replica i could not advance to set-commit state 
till the timeout, it broadcast a view change message 
to the TM as well as to all other replicas. If the 
primary is found faulty, TM assigns to next lowest id 
the responsibility of the coordinator replica i.e., 
primary, P. Otherwise, the transaction is reinitiated 
from the agreement protocol with the previously 
selected primary replica. 
 Now, the agreement for incomplete transaction 
request starts from the last consistent state. At the end 
of agreement protocol, all the replicas send their 
decision to the clients. This marks the beginning of 
the commit phase. A client waits for f+1 matching 
messages before taking commit decision on 
transaction. After receiving required number of 
matching replies, the client commits the transaction. 
 
The idea of agreement phase removal: In literature, 
PBFT (Castro and Liskov, 2002) is the first protocol 
that employs a three-phase agreement between the 
replicas. The protocol is designed for total ordering 
of multiple transactions and runs in three-phase to 
reach agreement. Our protocol handles one 
transaction at a time and runs agreement to decide on 
commit or abort for a particular transaction. The three 
phases in BFTDC are ba-pre-prepare, ba-prepare 
and ba-commit. In ba-pre-prepare phase, the 
secondary replicas check for the validity of the 
primary replica by comparing the messages they 
received from the clients and messages received from 
the primary. If the numbers of messages fail to 
match, the replicas suspect the primary to be faulty 
and request for a view change in order to select new 
primary. However, in our protocol the faulty primary,  

 
 
Fig. 4: The Optimized Agreement Protocol 

 
if exists, is treated by the TM, in advance, before it 
gets involved in further transaction processing. It 
would result in the increased efficiency of the system 
in terms of time overhead. 
 Secondly, in both ba-prepare and ba-commit 
phase, messages are exchanged. The number of 
messages being compared at each replica is different 
in both phases. In ba-prepare phase this number is 2f 
while in ba-commit phase it is 2f + 1. By running the 
protocol for different number of faulty replicas, it is 
found that the ba-commit phase (with 2f +1 
comparisons) also fulfills the minimum matching 
criteria for ba-prepare phase (with 2f comparisons). 
Therefore, one of the phases from the agreement 
protocol can be avoided or merged with any of the 
other phase while maintaining the minimum 
conditions to reach an atomic decision.  
 Our protocol reduces the three-phase agreement 
in two-phases only while achieving the necessary and 
minimum requirements to complete the protocol 
execution. Thus, the message overhead of agreement 
protocol reduces drastically. This also results in less 
execution time overhead of the protocol. These 
analytical inferences have also been substantiated by 
the experimental results. 



J. Computer Sci., 7 (1): 101-107, 2011 
 

106 

RESULTS 
 
 We have conducted simulation in order to 
evaluate the performance of reactive and proactive 
view change mechanism on the execution time (i.e., 
latency). Also, the agreement protocol is run and 
simulated to evaluate the performance of two-phase 
agreement over the standard three-phase agreement. 
 

 
  
Fig. 5: Latency-Throughput Curve 
 

 
 
Fig. 6: Message overhead 
 

 
 
Fig. 7: Time overhead 

 We have used BFTSim (2008). It uses a back-
end simulator which is based on ns-2. The front-end 
uses a declarative overlog language P2. The 
experiment is carried out for queries with different 
batch size in order to view the differences in message 
overhead and time overhead involved in the 
transaction query processing. 
 The protocols are implemented based on the 
pseudo code description. Figure 5 shows latency-
throughput curves for the protocols with proactive 
and reactive view change mechanism.                    

As we have used exponential distribution of 
faults, when the number of faults is less, both 
approaches deliver comparative performance in terms 
of latency. However, with the increase in number of 
faults, the latency gradient is significantly less in 
proactive approach.     
 In the next experiment, protocol has been 
simulated to compare the message overhead of our 
protocol with BFTDC (Silberschatz et al., 1991). The 
output plot is shown in Fig. 6.        
 For small-sized batch of transaction queries, the 
message overhead is nearly same. However, as the 
batch size of transaction query increases, the message 
overhead increases with faster rate in case of BFTDC 
(Silberschatz et al., 1991). This phenomenon leads to 
reduction in total time consumed to complete the 
transactions. This is evident in the plot shown above 
in Fig. 7. 
 

DISCUSSION 
 
 The study evacuates the overhead involved in 
terms of latency as well as message overhead to a 
greater extent. Moreover, the optimized reactive view 
change with the proposed novel idea of proactive 
view change helped in designing a more failure-
resilient protocol. 
 

CONCLUSION 
 
 The major contribution of this study is the novel 
solution to view change mechanism. Our method 
uses a Transaction Manager, TM, to proactively 
detect the crash of the primary as well as backup 
replicas. To compare the performance, we also 
presented a reactive approach to view change 
mechanism. Both approaches have also been 
analyzed and experimentally evaluated. The 
proactive approach always exhibits the better 
performance in a faulty scenario that makes it 
suitable for long-lived applications. The proposed 
approach dramatically reduces the latency of the 
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protocol and leads to enhanced throughput. The study 
also presents an optimized Byzantine agreement 
protocol which is able to reach agreement in two-
phases   in comparison to widely used three-phase 
like  in   BFTDC   protocol.   In  the end, the 
proposed agreement protocol reduces the overall 
message overhead as well as total execution time to a 
greater extent. 
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